Ć W I C Z E N I E N R M-9 OKREŚLANIE WZGLĘDNYCH WARTOŚCI WSPÓŁCZYNNIKÓW OPORU OŚRODKA DLA CIAŁ O RÓŻNYCH KSZTAŁTACH

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ć W I C Z E N I E N R M-9 OKREŚLANIE WZGLĘDNYCH WARTOŚCI WSPÓŁCZYNNIKÓW OPORU OŚRODKA DLA CIAŁ O RÓŻNYCH KSZTAŁTACH"

Transkrypt

1 INSTYTUT IZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-9 OKREŚLANIE WZGLĘDNYCH WARTOŚCI WSPÓŁCZYNNIKÓW OPORU OŚRODKA DLA CIAŁ O RÓŻNYCH KSZTAŁTACH

2 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth I. Zgdiei do przestudioi. Siły tri.. Oreślie siły oporu ośrod. 3. Lepość. 4. Moet siły zględe osi orotu. 5. Rhue łędu etodą różizi zupełe. II. Wprodzeie teoretyze Przy ruhu ił ośrodu ieły lu gzoy postą siły tri przeidziłąe ruhoi zleże od spółzyi lepośi ośrod η, pol przerou poprzezego s, sztłtu ił i prędośi v ił zględe ośrod. Moż zleżość tę zpisć zore: t = -η s ν () Jeżeli ił o różyh sztłth, edoy przerou poprzezy s płszzyzą prostopdłą do ieruu ruhu, ędą poruszć się z edoą prędośią ν poietrzu o spółzyiu lepośi η to sił dziłą żde z ił oże yć zpis o: gdzie C= η s ν t = -C () Przy t oreśloyh złożeih sił oporu ośrod t ędzie prost proporol do spółzyi zleżego od sztłtu ił, rtość spółzyi C ędzie stł. N dy stoisu dzy rtość siły t ędzie oreślo dl ił o stępuąyh sztłth: uli, dysu, elipsoidy i stoż (rys. ).

3 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth Rys.. Shet ułdu Jeżeli z refereyy sztłt ił yierzey ulę, to dl ił sztłie uli siłę oporu t oreśliy o: t = -C (3) gdzie est spółzyiie sztłtu dl uli. Dl ił o iy sztłie iż ulisty sił t ędzie ozzo o: t = -C (4) Jeżeli siłę oporu ośrod dziłąą ił sztłie dysu, elipsoidy i stoż oreślić zględe siły dziłąe iło sztłie uli to: t t (5) 3

4 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth Mierzą rtośi sił t i t oż oreślić dego ił zględe uli. Dl oreśli zględyh spółzyió oporu ośrod zproetoo stoiso dze, tóre przedstioo (rys. ). Ułd leży zróożyć przed uruhoieie przepłyu struiei poietrz. Oreśleie siły oporu ośrod poleg poróiu oetó sił zględe osi orotu trie przepłyu struiei poietrz. Wzore oż to zpisć o: d (6) t Zą rtośi rio, i d orz ierzą rtośi sił iężośi i, ze zoru (6) oż yzzyć siły t dl żdego z ił. Współzyii oporu ośrod yzzy ze zoru (5). Względy spółzyi oporu ośrod dl elipsoidy, l i stoż, z uzględieie zoru (6), oże yć yrżoy o: t t (7) gdzie - sił przyłożo do riei ; - sił przyłożo do riei. Ides ozz odiesieie do ił sztłie elipsoidy, l i stoż, ides odosi się do ił sztłie uli. 4

5 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth III. Zest poiroy Rio, i d, sił oporu ośrod t oreśl dl uli, dysu, elipsoidy i stoż. Rys. 3. Ułd poiroy do oreśli rtośi spółzyió oporu ośrod dl ił o różyh sztłth IV. Przeieg ćizei. Ziesić oiążi posti uli.. Sprdzić róogę ułdu poprzez ustieie szói środoe pozyi trzy. 3. Włązyć duhę syle oroty. 4. Zróożyć ułd poprzez podieszeie oiążió rieiu. Odzeć, ż plitud drgń zieszy się do rtośi uożliiąe oreśleie stu róogi. Poir yoć dl 3 różyh rtośi i odpoidąyh róodze ułdu. 5. Położeie oiążió rioh i, odpoidąe stoi róogi, pisć do teli. 6. Puty od -5 potórzyć dl żdego z oiążió. 5

6 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth V. Tel poiro Lp. Rodz oiążi Położeie iężr rieiu [] Położeie iężr rieiu [] Moet siły M [N ] Średi rtość oetu siły [N ] Wrtość zględ spółzyi oporu ośrod Średi rtość spółzyi oporu ośrod ul le 3 elipsoid 4 Stoże zróoy ostrze do duhy 5 Stoże zróoy podstą do duhy s iężró róożąyh ułd = =0g; 3 =g; 4 =g; odległość poiędzy puti zieszei iężró rieiu:. 6

7 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth 7 Rys. 4. Msy poszzególyh iężró VI. Oproie ćizei. Olizyć rtość oetu siły dl żdego z ił o dy sztłie: (8) Wzór (8) dotyzy przypdu, gdy róogę ułdu osiągiey przy pooy iężró. W przypdu ięsze ilośi iężró zór (8) ędzie ieć postć: (9) gdzie: est ilośią iężró rieiu, est ilośią iężró rieiu.. Olizyć stosui spółzyió oporu ośrod dl l, elipsoidy i stoż zględe uli edług zoru: (0) g M i i i g M

8 Ćizeie M-9: Oreślie zględyh rtośi spółzyió oporu ośrod dl ił o różyh sztłth Wzór (0) dl ogólego przypdu przyue postć: i i i 3 4 l l l () Poież do osiągięi róogi ułdzie przedstioy (rys.3) ystrzą iężri z idozyh (rys. 4) do olizei oetu sił ystrzy zstosoć zór (8), do zględego spółzyi oporu zór (0). VII. Rhue łędu. Olizyć łąd oreślei oetu siły dl poszzególyh ił, przyuą dołdośi oreśli sy iężró Δ =0-6 g, dołdośi położei putó zieszei iężró Δ = Δ = 0-3 edług zoru: Dl :, M g (). Olizyć łąd oreślei zględe rtośi spółzyió oporu ośrod przyuą dołdośi Δ i Δ puie edług zoru: Dl : Litertur (3). Dryńsi T., Ćizei lortorye z fizyi, PWN, Wrsz Leh J., Oproie yió poiró lortoriu podst fizyi, Wydito Wydziłu Iżyierii Proesoe, Mteriłoe i izyi Stosoe PCz, Częstoho Msslsi J., Mssls M., izy dl iżyieró, izy lsyz, To I, WNT, Wrsz Szydłosi H., Proi fizyz spog oputere, Wydito Nuoe PWN, Wrsz

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Matematyka wybrane zagadnienia. Lista nr 4

Matematyka wybrane zagadnienia. Lista nr 4 Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Nadokreślony Układ Równań

Nadokreślony Układ Równań Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś

Bardziej szczegółowo

ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą

Bardziej szczegółowo

Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź

Bardziej szczegółowo

Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś

Bardziej szczegółowo

Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć

Bardziej szczegółowo

Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź

Bardziej szczegółowo

ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó

Bardziej szczegółowo

Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą

Bardziej szczegółowo

Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż

Bardziej szczegółowo

Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź

Bardziej szczegółowo

Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć

Bardziej szczegółowo

Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć

Bardziej szczegółowo

ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć

Bardziej szczegółowo

Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę

Bardziej szczegółowo

ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É

Bardziej szczegółowo

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym

4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj

Bardziej szczegółowo

ć Ó Ó Ż

ć Ó Ó Ż Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó

Bardziej szczegółowo

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i .. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

Ćwiczenie 03 POMIAR LUMINANCJI POMIAR LUMINANCJI. Celem ćwiczenia jest poznanie metod pomiaru luminancji oraz budowy i zasady działania nitomierza.

Ćwiczenie 03 POMIAR LUMINANCJI POMIAR LUMINANCJI. Celem ćwiczenia jest poznanie metod pomiaru luminancji oraz budowy i zasady działania nitomierza. Ćwiczenie O3. Cel i zres ćwiczeni Celem ćwiczeni jest poznnie metod pomiru luminncji orz udowy i zsdy dziłni nitomierz.. Widomości wstępne i opis stnowis lortoryjnego Definicj I: Luminncją świetlną nzywmy

Bardziej szczegółowo

Ą Ż Ś Ą Ą ć Ź Ź Ś Ą Ż Ń Ż ź Ż ć ć ć Ź ć Ć ć Ż Ż ć ć ŻĄ Ń Ś Ć Ś Ą Ą Ś ć ć ć ć Ż Ż ź Ż ć Ą Ć Ś Ż Ż Ż ć Ż Ż Ż ć Ś Ż Ż Ą Ż Ź Ż ć Ż ć Ć ć Ś Ś Ż Ą Ś ć ź Ź Ż Ż Ź Ą ŻĄ Ź ć Ż ć ć Ż ŻĄ Ź Ż Ż Ż Ż Ś Ą Ż Ś Ą Ś Ą Ś

Bardziej szczegółowo

Ż Ł Ł Ł ż Ź ż Ą Ą Ł Ż Ż Ł Ł Ł ż Ą Ą Ą Ń Ś Ł Ż Ś Ś ż Ż Ł Ł Ź Ś Ż ć Ż Ś ż Ź Ż Ł Ż Ć Ś ż Ź Ć Ś Ś Ź Ź Ź Ś Ś Ś Ś Ś Ż Ź Ć Ś Ś Ś ż Ą Ą Ą Ż Ś ż ż Ź Ś Ś ż ż ż Ś Ź ż ż Ś ż Ś Ś ć Ż Ć ż Ć Ż Ś Ś Ś Ż ż ć Ż Ś Ź Ś Ń Ś

Bardziej szczegółowo

Ż Ż Ł Ą Ą Ą Ą ć Ą Ć ć ć ć ć ć ć ć Ó Ą Ż Ó Ó Ż ć ć Ą Ą ć ć ć ź ć Ź Ó ć ć ć ź ć ć ź Ł ć ć ć ć Ń ć Ą ć ć Ą Ż ć ć Ł ć ć Ź ć Ó ć ć Ł Ó ć ć ć Ł ć Ć ć ź ć ć ć Ść ź ć ć ć ć Ł Ó Ą Ź ć ć ć ć ź ź ź ć Ż ć ć ć ć ć

Bardziej szczegółowo

Ś ś ś Ż ś ść ś ś ś ś ś ś ś ś ś ś Ź ś ś Ź ś ś Ź Ę Ś ś Ę Ą Ą ś Ś ś Ą Ą ść ć ś ś ś Ś ś Ś Ś Ś ś ś Ź ś ś ś ś ś ź ś ś ć Ź Ń ś ś ś ś Ź Ń ś ś ć ś ć Ź ś ś ś ś ść ś ś Ź Ś Ź ś ś Ę ś ś ś ś Ź ć Ń ś ś Ń Ś ś ś ś ść ś

Bardziej szczegółowo

Ł ź ź ź ź Ź ż ź źą Ś Ą Ł Ń Ę ź Ś Ł Ś Ę Ę Ł ż ż Ę Ś ć ż ź Ą ż ż ź ż ż ż ż Ę Ł ż Ź Ę ć Ę ć ć Ź ć Ą Ę Ł ż ż ć ż ż ć ż Ę ć ż ż ż ż Ą ż ż Ś Ą ż ż ź ż ż Ą ż Ł Ź ż Ą ż ć Ę ż ć Ę ż ć ż Ę ż Ś Ź ć Ś ż Ę ż ź ż ź

Bardziej szczegółowo

Ą Ę Ę Ą Ł Ą Ą Ż ź Ę Ł Ż Ą Ł ź Ł Ą Ł Ź Ź Ż Ź ź Ź Ź Ż Ę ź Ę Ę Ż Ę ź Ę Ż Ź ź Ź Ż Ź Ż ŻĄ Ś Ż Ż Ę Ś Ć Ś Ż Ż Ż Ę Ę Ż ź ź ź Ę ź Ę Ę Ź Ż Ć Ą Ż Ę Ł Ę ź Ź Ź Ź Ą Ż Ć Ż Ę Ę Ę Ę Ę Ę ź Ę Ę ź Ć Ś Ą Ć Ł Ć Ś ź Ś ź Ż Ł

Bardziej szczegółowo

ź ź ź Ć Ń ŻĄ Ó Ą ć Ą Ą Ó ć ć Ż Ó ć Ń ć Ą Ż Ż Ź Ż ź Ż Ą Ę ć Ż Ż Ł Ą Ś ć Ń Ó ć ć Ś ź Ą Ą ć ć Ż Ć Ż Ż Ż Ż Ą Ż Ś ć Ż Ż Ż ź Ę Ż ź Ż Ż Ż Ę Ś Ą ć ć Ż ć Ż Ą Ś ć ź Ą ć ź ź ć ć ć ć ć Ż ć ć Ź Ż Ż Ż Ą Ą ź Ś ź ć Ż

Bardziej szczegółowo

Ą Ł ś ś Ł Ł ś Ł Ł ś ż ż ś ś ś ś Ż ŻĄ Ż ć Ź ż Ć ć ś ś ś Ż Ż Ż Ż Ż Ż Ż ż Ź ś ś ż Ą ść Ć ś ś ż ś Ć Ę ż Ż ż ś ż Ę Ę Ę ż ść ś Ż Ć Ż Ż Ź Ż Ź Ż ś Ć Ż ś Ż Ł Ć Ż Ć Ż Ą Ż Ż ś Ż Ą Ż Ż Ż Ć ś Ż Ż Ź Ż Ć Ą Ć ś Ż Ż Ż

Bardziej szczegółowo

Ś Ż Ó ń ć ć Ż ć ć ń Ż ń ż Ż ć ń Ś ń Ę Ż ć ń ń Ż ć ż ż Ę Ż ń Ł Ż ź ń ż ź Ż Ż ź Ż ń Ę Ę Ż Ż ŻĄ ń Ż Ż Ż ć Ż ć Ż ń ż ż Ż Ż Ż ź Ż Ó Ż Ż ć Ś ć ń ż ć Ż Ę ń ń Ż ń ż Ż ć Ż ć Ż ć ż Ż Ż Ą Ż Ł ż ż Ż ć Ż Ż Ż Ż Ż ż

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

PROGRAMOWANIE LINIOWE.

PROGRAMOWANIE LINIOWE. Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

Ż Ń

Ż Ń Ó Ń ź ź Ś ź Ó ź Ż Ń Ś ź Ź ź Ż Ż Ś Ń Ć Ś ź ź ź Ż ź Ń ź ź ź Ń Ń Ń Ń ź Ć ź ź ź Ś Ś Ś Ó Ó Ż Ś ź ź ź ź ź ź ź ź Ś ź Ś Ś Ś Ć Ś Ś Ś Ż Ć Ż ź Ń Ż ź Ń ź Ń Ś Ó ź Ń ź Ń ź ź ź Ń Ń ź Ś ź Ń Ć Ń Ń ź ź Ń ź Ń ź Ś ź Ń Ń

Bardziej szczegółowo

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy KRYTERIA OCEIAIA ODPOWIEDZI Próbn Mtur z OPEROEM izyk i tronoi Pozio podtwowy Litopd 0 W niniejzy heie oenini zdń otwrtyh ą prezentowne przykłdowe poprwne odpowiedzi. W tego typu h nleży również uznć odpowiedzi

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Zapis wskaźnikowy i umowa sumacyjna

Zapis wskaźnikowy i umowa sumacyjna Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź

ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Blok nr 3 Kształtowanie właściwości mechanicznych materiałów Ćwiczenie nr KWMM 1 Temat: Obróbka

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.

3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej. WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

Zasada wariacyjna mechaniki kwantowej

Zasada wariacyjna mechaniki kwantowej Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

ć Ę ó ż ć

ć Ę ó ż ć Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu stałym

Badanie wytrzymałości powietrza przy napięciu stałym Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do

Bardziej szczegółowo

ELEMENTÓW PRĘTOWYCH. Rys.D3.1

ELEMENTÓW PRĘTOWYCH. Rys.D3.1 DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

ń Ę ń Ś Ą Ń ż Ą ż ż ż ż ż ć ć ż ż ż ż ż ń ź ż ż ż ć ż ć ż ż ż ż ż ń Ą ż ń ń ż ń Ń Ę ż ź ń ż ć ć ń ż ż ż ń ż ż ż ć ć ń Ń ń ż ż Ń ć Ę ń ć ć ż ż ż ż ń Ę ń ż Ź Ś ż ć ć ż Ś ż ż ć ń ń ż ć ć ż Óż ń ń ż ż ć ć

Bardziej szczegółowo

Ocena niepewności wyniku pomiaru metodą typu B

Ocena niepewności wyniku pomiaru metodą typu B Laoratorim Metrologii I Politechnika zeszowa Zakład Metrologii i Systemów Pomiarowych Laoratorim Metrologii I Ocena niepewności wynik pomiar metodą typ B Grpa Nr ćwicz. 3... kierownik... 3... 4... Data

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu stałym

Badanie wytrzymałości powietrza przy napięciu stałym POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wytrzymałości powietrza przy napięciu stałym Grupa

Bardziej szczegółowo

ć Ł Ą Ź Ś Ó Ó ŚĆ Ó Ż ż Ó Ó Ć Ó Ś Ą Ą Ź Ś Ś Ź Ź Ó ż Ó Ź Ś ż Ę ć ż Ę Ź ÓŻ Ś ż Ą Ó Ą Ś ż ź Ó ż ć Ż Ź Ó Ó ć ż ć ć ż ć Ą Ż Ż Ó ć Ź Ż ć Ę ć Ó Ż ć Ś ć ć Ó Ó Ą ć ć Ść ć ć Ż ż ż Ó Ż ż ć Ż ć ć ć ć ć Ó Ż ć Ę ć Ó

Bardziej szczegółowo

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3

Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3 To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna pdkow prestreego ukłdu sił ieżc ecik teoretc kłd r 56 Ukłd prestree. etod grfic: = 2 = = 2 3 2 3 = i 3 2 2 2 3 2 2 litc etod wci wpdkowej α = 2 cosα = = γ 2 β 2 cos α cos β cos γ = cos β = = 2 cosγ = =

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz

Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

ó óź óź óź ó ó ć ó ó ó ó Ą ó ó ó Ż ó ó ń Ą Ą Ą ó ó Ż ź Ś Ż Ż Ś Ż Ż Ż Ś Ż Ą ź ź Ą ź ź Ż Ż Ż Ś Ż ź Ż Ż Ż ć Ś Ż Ś ć Ł Ś Ś Ś Ł ć Ł Ś ó ó ó ó ó ó ó ó ó ó ń ń ń ó Żń ź ó ó ó ó ó Ż ó Ś ó ó ó ć ó ó ó ó ć ń Ż

Bardziej szczegółowo

Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś

Bardziej szczegółowo

Ą Ą Ł ś ś Ł ś Ę Ę Ś Ś Ó Ę ź ś ś ś ś ś ń Ł Ą Ę ś ś ś Ś ń Ś ś Ę Ó Ź ś ś ś ś Ś ń ń ś ś Ś ń ź Ą ś ś Ł ź Ź Ś ś Ś ś ś ń ś Ś Ś ś Ł ś Ć ź ź ś Ś ś ś Ś ń Ć Ł Ą Ę ś ś ś Ś ść Ź ś Ś ś ś ś ń Ę ś Ś ś Ą Ó ś ś Ę Ł Ź ś

Bardziej szczegółowo