CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO
|
|
- Lidia Zielińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 1 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO 1. Zasada działanie licznika Geigera-Müllera. Licznik Geigera-Müllera (GM) jest detektorem promieniowania jonizującego. Jego działanie oparte jest na wzmacnianiu procesów jonizacyjnych wywołanych przez promieniowanie alfa (α), beta (β) lub elektromagnetyczne promieniowanie gamma (γ) czy też rentgenowskie (X). Wzmocnienie procesów jonizacji prowadzi do wytworzenia w liczniku wyładowania lawinowego, które nie zależy od energii padającego promieniowania. Licznik GM nie służy zatem do wyznaczanie energii promieniowania, a umożliwia jedynie jego rejestrację. Licznik GM zbudowany jest z zamkniętego metalowego cylindra oraz cienkiego drutu umieszczonego na jego osi. Cylinder i cienki drut stanowią elektrody, odpowiednio katodę i anodę do których doprowadzone jest napięcie. Układ napełniony jest gazem pod zmniejszonym ciśnieniem, zwykle jest to argon. W przypadku licznika mogącego rejestrować promieniowanie alfa oraz beta jedną z podstaw cylindra stanowi cienkie okienko. W przypadku promieniowania beta stosuje się okienka mikowe natomiast w przypadku promieniowania alfa, o znacząco większej zdolności jonizacyjnej stosuje się okienka ultra cienkie. Rys.1 przedstawia licznik GM. Rys.1. Licznik Geigera-Müllera 1
2 Wpadające do licznika cząsteczki beta czy też wtórne elektrony związane z promieniowaniem elektromagnetycznym (dla tego ostatniego zastosowanie cienkiego okienka nie jest konieczne bo elektrony wtórne mogą być wybijane bezpośrednio z obudowy licznika przez fotony γ lub X) 1) jonizują atomy gazu. W liczniku powstanie więc pewna ilość par jonów i mówimy o jonizacji pierwotnej obojętnego wcześniej gazu. Jony są przyśpieszane w polu elektrycznym między elektrodami. Pole to jest szczególnie silne 2) w pobliżu anody i gdy powstałe w pierwotnej jonizacji elektrony docierają w ten obszar zyskują tak dużą energię kinetyczną, że jonizują kolejne atomy. Z kolei elektrony oderwane od tych atomów jonizują następne atomy. W ten sposób powstaje w liczniku wyładowanie lawinowe. Wyładowanie to jest podtrzymywane przez wybijane z katody fotoelektrony (w związku z powstającym we wzbudzonych atomach gazu promieniowaniem ultrafioletowym) oraz przez elektrony, które powstają na wskutek bombardowania katody przez docierające do niej jony dodatnie gazu. Licznik w stanie wyładowania lawinowego nie może rejestrować następnych cząstek beta czy też elektronów wtórnych. Wygaszenie lawiny jest zatem konieczne aby można zarejestrować następne cząstki jonizujące. Jednym ze sposobów gaszenia wyładowania lawinowego jest dodanie do argonu domieszki w postaci gazów lub par o cząsteczkach wieloatomowych (metan, pary alkoholu). Przy odpowiedniej ilości domieszki wyładowanie wygaśnie samo gdyż jony cząsteczek wieloatomowych pochłaniają promieniowanie ultrafioletowe i nie wybijają z katody elektronów. Kolejne impulsy ładunkowe mogą zatem wychodzić z anody, zamienione na napięciowe i po wzmocnieniu, podane na przelicznik są rejestrowane. Liczniki GM z domieszką gazów wieloatomowych noszą nazwę liczników samogasnących. Drugą grupę stanowią liczniki niesamogasnące w których wygaszanie wyładowania lawinowego jest zewnętrzne. Rozwijająca się lawina jest wygaszana poprzez zastosowanie dużego oporu w obwodzie zasilania elektrod. 1) Promieniowanie γ lub X oddają energię na rzecz elektronów wtórnych w trzech zjawiskach: efekcie fotoelektrycznym, efekcie Comptona i efekcie tworzenia par. 2) Jeśli promień katody i anody licznika GM są odpowiednio równe a i b, napięcie wynosi V to natężenie pola elektrycznego E pomiędzy elektrodami określa wzór: E = V / r ln(b/a). 2
3 Czas martwy Czas, w którym licznik GM nie może rejestrować następnej cząstki jonizującej nosi nazwę czasu martwego τ. Amplituda impulsu wyjściowego osiąga pierwotną wartość po upływie tzw. czasu restytucji τ R, a różnica (τ R - τ) to czas regeneracji potrzebny licznikowi aby standardowej wielkości impuls pojawił się na wyjściu. Rys.2 przedstawia kształt impulsów na wyjściu licznika od chwili gdy pierwsza cząstka jonizująca znajdzie się w liczniku. Rys.2. Zależność amplitudy impulsu od czasu. Poprawkę na stratę liczby zliczeń spowodowaną istnieniem czasu martwego należy wprowadzać przy liczbie zliczeń powyżej około 100 impulsów na sek. Jeśli n 0 i n są odpowiednio rzeczywistą liczba cząstek wpadających do licznika i liczbą cząstek rejestrowanych w jednostce czasu to liczba niezarejestrowanych cząstek równa jest: a rzeczywista liczba cząstek: n 0 -n = n 0 (nτ) [1] n 0 = n / (1-nτ) [2] Jedną z metod wyznaczania czasu martwego jest metoda dwóch źródeł. Polega ona na porównywaniu aktywności pojedynczych źrodeł i sumy ich aktywności. Charakterystyka licznika Charakterystyką licznika nazywamy krzywą zależności liczby impulsów rejestrowanych w jednostce czasu od wartości przyłożonego napięcia, przy stałym natężeniu promieniowania jonizującego. Poniżej napięcia V p (Rys.3) wyładowanie lawinowe nie powstaje i promieniowanie nie może być rejestrowane. V p jest tzw. napięciem progowym. Poczynając od napięcia V1 do napięcia V2 ilość zliczanych impulsów prawie nie zależy od napięcia. Jest to obszar plateau licznika. W licznikach GM długość plateau powinna być 3
4 możliwie duża, a nachylenie plateau zdefiniowane jako procentowy wzrost liczby impulsów przy wzroście napięcia o 100V: α = (I2 - I1)100% I1 + I2 V2 - V Gdzie I 1, I 2 ilość impulsów w jednostce czasu na końcach plateau przy napięciach V 1, V 2 1 [3] Napięcie pracy licznika należy wybierać w środku plateau: V pr acy V1 + V2 = [4] 2 Rys.3. Charakterystyka licznika Geigera-Müllera. Napięcie wyższe od V 2 powoduje w liczniku wyładowanie samorzutne, a przy bardzo dużych napięciach powstaje wyładowanie samorzutne, niegasnące. 2. Prawa statystyczne, a rozpad promieniotwórczy Zjawiska zachodzące w fizyce jądrowej mają charakter statystyczny. Na błędy związane z niedokładnością przyrządów nakładają się fluktuacje, które nie mogą być wyeliminowane gdyż są związane z naturą zachodzących procesów. Gdy źródło promieniotwórcze o długim czasie połowiczne rozpadu umieścimy w pobliżu licznika GM i wielokrotnie, w ustalonym czasie rejestrować będziemy liczbę zliczeń to uzyskane wyniki fluktuować będą wokół wartości średniej k. Jeśli postawimy pytanie jakie jest prawdopodobieństwo P(k) otrzymania określonej liczby zliczeń to odpowiedzią jest zależność nosząca nazwę rozkładu statystycznego Poissona. W sytuacji gdy średnia liczba zliczanych przez licznik GM impulsów ma dużą wartość rozkład Poissona może być przybliżony rozkładem Gaussa. 4
5 Rozkład Poissona Rozkład Poissona opisuje prawdopodobieństwo dla przyjmujących wartość całkowitą (dyskretną) zmiennych losowych. Może on być stosowany w przypadku rozpadu promieniotwórczego jąder ponieważ: a) prawdopodobieństwo rozpadu pojedynczego jądra jest bardzo małe b) w źródle promieniotwórczym znajduje się duża ilość jąder. Prawdopodobieństwo zaobserwowania k zdarzeń w czasie jednego pomiaru, gdy pomiar powtarzany jest wielokrotnie opisane jest wyrażeniem: P (k) P k k! k k = e [5] gdzie k jest średnią (wartością oczekiwaną) zdarzenia rejestrowanego w stałym czasie t. Rozkład Poissona jest rozkładem niesymetrycznym jednoparametrowym ( k ). Rozkład Gaussa Rozkład Gaussa opisuje prawdopodobieństwo dla ciągłych zmiennych losowych ale dobrze przybliża rozkład Poissona dla dużych wartości średniej. Jest symetrycznym rozkładem dwuparametrowym ( k,σ ). Prawdopodobieństwo znalezienia zmiennej losowej x wyraża równanie: 2 1 (x - k) P G(x) = exp - 2 [6] σ 2π 2σ WYKONANIE POMIARÓW Rejestracja liczby zliczeń w zależności od grubości okienka sondy G-M. Wykonać pomiary, przy tej samej geometrii źródło-sonda dla dwóch różnych grubości okienek sondy. Wyznaczenie charakterystyki kielichowego licznika Geigera-Müllera. Włączyć zasilacz licznika i ustawić napięcie na 600 V. Uruchomić program CW1. Ustalić czas pomiaru 50 sek. Po umieszczeniu źródła w domku pomiarowym rozpocząć pomiar. Zmniejszając napięcie określić napięcie progowe licznika. Ustawić czas pomiaru na 10 sek. 5
6 Wyznaczyć charakterystykę licznika rozpoczynając od napięcia progowego. Pomiary wykonywać co 2-3 V, a po osiągnięciu plateau co 5-10V, maksymalne napięcie 750V. Wyniki umieścić w tabeli protokołu. Narysować charakterystykę licznika. Określić długość i napięcie pracy licznika. Rejestrowanie histogramów źródeł promieniotwórczych. Ustawić na zasilaczu wyznaczone wcześniej napięcie pracy. Uruchomić program CW1A. Ustalić z prowadzącym liczebność serii pomiarowej i ustawić czas pojedynczego pomiaru na 0.1 sek. Zarejestrować histogramy. Każdy z wykonujących ćwiczenie zdejmuje histogram dla wyznaczonego źródła promieniotwórczego.. OPRACOWANIE WYNIKÓW Badanie liczby zliczeń w zależności od grubości okienka sondy G-M. Na podstawie pomiarów liczby impulsów zliczonych w ustalonym czasie dla nieznanego źródła w przypadku cienkiego i grubego okienka sondy, wyciągnąć wniosek co do rodzaju emitowanego promieniowania. Zapisać odpowiadającą mu reakcję rozpadu. Wyznaczanie charakterystyki kielichowego licznika G-M. 1. Wykreślić charakterystykę licznika G-M zależność liczby impulsów n od przyłożonego napięcia U. Wyliczyć i nanieść na wykres niepewności pomiarowe dla n i U. Za niepewność standardową liczby zliczeń przyjąć. Jest to niepewność typu A wynikająca z przypadkowego charakteru rozpadu promieniotwórczego. 2. Określić długość i nachylenie plateau licznika oraz jego napięcie pracy. Określić niepewności pomiarowe wyznaczonych wielkości. 6
7 Badanie statystycznego charaktery rozpadu promieniotwórczego 1. Korzystając z zarejestrowanych histogramów wykonać histogramy obrazujące prawdopodobieństwo uzyskania danej liczby zliczeń w serii. Uwaga: uzyskane w trakcie pomiarów krotności wystąpień przeliczyć na ich prawdopodobieństwa. 2. Obrazujące prawdopodobieństwo histogramy dopasować (Origin) do hipotetycznych rozkładów statystycznych Poissona i Gaussa. Wyliczone parametry rozkładów (średnią wartość zliczeń k P - Poisson, wartość średnią k G oraz odchylenie standardowe σ - Gauss) wpisać do protokołu. 3. Dla dwóch wybranych zmiennych losowych wyliczyć: a) prawdopodobieństwo doświadczalne, b) prawdopodobieństwo teoretyczne wynikające z rozkładu Poissona, c) prawdopodobieństwo teoretyczne wynikające z rozkładu Gaussa. Dokonać graficznego porównania histogramów doświadczalnych z hipotetycznymi. W tym celu należy na jednym wykresie nałożyć na siebie histogram doświadczalny i teoretyczny policzony zgodnie z rozkładem Poissona. Na drugim wykresie należy porównać w ten sposób histogram doświadczalny i teoretyczny dla rozkładu Gaussa. 4. Stosując test zgodności rozkładów χ 2 określić który z rozkładów (Poissona czy Gaussa) lepiej opisuje zebrane dane pomiarowe. Sformułować wnioski na temat stosowalności obu rozkładów do opisu statystycznego charakteru rozpadu promieniotwórczego. Pytania kontrolne. 1. Co to jest wyładowanie lawinowe i jaką rolę odgrywa w procesie rejestracji przez licznik Geigera-Müllera promieniowania jonizującego? 2. Jaką wartość ma pole elektryczne w pobliżu anody o promieniu 0.1mm, jeżeli promień licznika równy jest 1cm, a napięcie między elektrodami ma wartość 600V? 3. Dlaczego w przypadku rejestrowania promieniowania alfa okienko licznika musi być znacznie cieńsze niż w przypadku rejestrowania promieniowania beta? 7
8 4. Jaka jest różnica pomiędzy samogasnącym, a niesamogasnącym licznikiem GM? 5. Czy licznik GM daje możliwość określenia energii promieniowania jonizującego? 6. Omów parametry charakteryzujące licznik GM. 7. Dlaczego liczba impulsów rejestrowanych przez licznik GM jest znacząco mniejsza niż liczba emitowanych przez preparat promieniotwórczy elektronów (lub fotonów)? 8. Przedstaw różnice pomiędzy rozkładami Gaussa i Poissona. Narysuj stosowne wykresy zaznacz na nich parametry rozkładów. 9. Jakie warunki doświadczalne muszą być spełnione aby do opisu rozpadów promieniotwórczych można było stosować rozkład Poissona lub Gaussa? Literatura 1. A. Strzałkowski, Wstęp do fizyki jądra atomowego, PWN W-wa, D. Halliday, R.Resnick, J. Walker, Podstawy fizyki, tom 5, PWN W-wa, J. R.Taylor, Wstęp do analizy błędu pomiarowego, PWN W-wa,
9 Schematy rozpadów wybranych źródeł promieniotwórczych. 9
Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU
Badanie licznika Geigera- Mullera
Badanie licznika Geigera- Mullera Cel ćwiczenia Celem ćwiczenia jest zbadanie charakterystyki napięciowej licznika Geigera-Müllera oraz wyznaczenie szczególnych napięć detektora Wstęp Licznik G-M jest
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć
Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Wyznaczanie czasu martwego licznika Geigera-Müllera metodą dwóch
Opracował: Roman Szatanik Wyznaczanie czasu martwego licznika Geigera-Müllera metodą dwóch źródeł oraz przy pomocy oscyloskopu I. Cel ćwiczenia Praktyczne wyznaczenie dwoma metodami wielkości charakteryzującej
ĆWICZENIE NR 1. Część I (wydanie poprawione_2017) Charakterystyka licznika Geigera Műllera
ĆWICZENIE NR 1 Część I (wydanie poprawione_2017) Charakterystyka licznika Geigera Műllera 1 I. Cel doświadczenia Wykonanie charakterystyki licznika Geigera-Müllera: I t N min 1 Obszar plateau U V Przykładowy
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych
Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący
Szkoła z przyszłością. Detektor Geigera-Müllera narzędzie do pomiaru podstawowych cech promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-00 Otwock-Świerk ĆWICZENIE
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
OZNACZANIE OKRESU PÓŁROZPADU DLA NUKLIDU 40 K WSTĘP Naturalny potas stanowi mieszaninę trzech nuklidów: 39 K (93.08%), 40 K (0.012%) oraz 41 K (6.91%). Nuklid 40 K jest izotopem promieniotwórczym, którego
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie
Ćwiczenie nr 1 : Statystyczny charakter rozpadów promieniotwórczych
Ćwiczenie nr 1 : Statystyczny charakter rozpadów promieniotwórczych Oskar Gawlik, Jacek Grela 26 stycznia 29 1 Wstęp 1.1 Podstawy teoretyczne 1.1.1 Detektor Geigera-Müllera Jest to jeden z podstawowych
LABORATORIUM PROMIENIOWANIE w MEDYCYNIE
LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego
- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek,
Ćwiczenie A Wyznaczanie napięcia pracy licznika Ćwiczenie B Pomiary próbek naturalnych (gleby, wody) Ćwiczenie C Pomiary próbek żywności i leków - ĆWICZENIA - Radioaktywność w środowisku naturalnym K.
Licznik Geigera - Mülera
Detektory gazowe promieniowania jonizującego. Licznik Geigera - Mülera Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/7 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii
Pomiar charakterystyki licznika Geigera-Müllera
Pomiar charakterystyki licznika Geigera-Müllera Cel ćwiczenia Zagadnienia do przygotowania 1. Promieniowanie jądrowe: 1. natura i rodzaje promieniowania oraz przemiany jądrowe. 2. Detektory promieniowania
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia
Osłabienie Promieniowania Gamma
Marcin Bieda Osłabienie Promieniowania Gamma (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Pomiar właściwości detektora Geigera-Müllera
arodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZEIE 3 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar właściwości
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne
Badanie absorpcji promieniowania γ
Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji
IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1. Badanie absorpcji promieniowania gamma w materiałach
IM-8 Zaawansowane materiały i nanotechnologia - Pracownia Badań Materiałów I 1 IM-8 Badanie absorpcji promieniowania gamma w materiałach I. Cel ćwiczenia Celem ćwiczenia jest pomiar współczynników absorpcji
Osłabienie promieniowania gamma
Osłabienie promieniowania gamma Cel ćwiczenia Celem ćwiczenia jest badanie osłabienia wiązki promieniowania gamma przy przechodzeniu przez materię oraz wyznaczenie współczynnika osłabienia dla różnych
Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.
Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość
Ćwiczenie 3. POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU Rozpad α
39 40 Ćwiczenie 3 POMIAR ZASIĘGU CZĄSTEK α W POWIETRZU W ćwiczeniu dokonuje się pomiaru zasięgu w powietrzu cząstek α emitowanych przez źródło promieniotwórcze. Pomiary wykonuje się za pomocą komory jonizacyjnej
Ćwiczenie 9. Pomiar bezwględnej aktywności źródeł promieniotwórczych.
Ćwiczenie 9 Pomiar bezwględnej aktywności źródeł promieniotwórczych. Stanowisko 9 (preparaty beta promieniotwórcze) Stanowisko 9 (preparaty gamma promieniotwórcze) 1. Student winien wykazać się znajomością:
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania
ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH
ĆWICZENIE 3 BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu w
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
LICZNIKI PROPORCJONALNE
LICZNIKI PROPORCJONALNE 1. Zasada działania liczników proporcjonalnych Liczniki proporcjonalne należą do grupy liczników, które wypełnione są mieszaninami gazowymi. Detekcja promieniowania za pomocą liczników
Ćwiczenie nr 5. Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji.
Ćwiczenie nr 5 Pomiar górnej granicy widma energetycznego Promieniowania beta metodą absorpcji. 1. 2. 3. 1. Ołowiany domek pomiarowy z licznikiem kielichowym G-M oraz wielopoziomowymi wspornikami. 2. Zasilacz
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA Opiekun ćwiczenia: Jerzy Żak Miejsce ćwiczenia:
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH
C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania
WYZNACZANIE ZAWARTOŚCI POTASU
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.
Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy
Licznik scyntylacyjny
Detektory promieniowania jonizującego. Licznik scyntylacyjny Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 004. s.1/8 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej,
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego
Ćwiczenie 8 Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego 8.. Zasada ćwiczenia Celem ćwiczenia jest wyznaczenie czasu połowicznego zaniku izotopu promieniotwórczego Ba-37m (izotop wtórny)
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.
Wyznaczanie energii promieniowania γ pochodzącego ze. źródła Co metodą absorpcji
Wyznaczanie energii promieniowania γ pochodzącego ze 6 źródła Co metodą absorpcji I. Zagadnienia 1. Procesy fizyczne prowadzące do emisji kwantów γ. 2. Prawo absorpcji. Oddziaływanie promieniowania γ z
Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009
Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.
Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Rodzaje promieniowania PROMIENIOWANIE ŁADUNEK ELEKTRYCZNY MASA CECHY CHARAKTERYSTYCZNE alfa +2e 4u beta
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
obowiązuje w r. akad / 2020
POLITECHIKA ŚLĄSKA WYDZIAŁ CHEMICZY KATEDRA FIZYKOCHEMII I TECHOLOGII POLIMERÓW obowiązuje w r. akad. 2019 / 2020 OZACZAIE AKTYWOŚCI I OKRESU PÓŁTRWAIA SUBSTACJI PROMIEIOTWÓRCZEJ Opiekun ćwiczenia: dr
gamma - Pochłanianie promieniowania γ przez materiały
PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez
Ćwiczenie 159. Liczba warstw substancji pochłaniającej 0 1 2 3 4 5. Liczba warstw substancji pochłaniającej 0 1 2 3 4 5. Współczynnik pochłaniania
Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 159 Badanie pochłaniania promieniowania jądrowego Godzina... Pomiar tła radiacyjnego średnia liczba zliczeń
Wyznaczenie absorpcji promieniowania radioaktywnego.
Prof. Henryk Szydłowski BADANIE ROZPADU PROMIENIOTWÓRCZEGO Cel doświadczenia: Wyznaczenie promieniotwórczości tła. Wyznaczenie absorpcji promieniowania radioaktywnego. Przyrządy: Zestaw komputerowy z interfejsem,
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO
Politechnika Poznańska, nstytut Chemii i Elektrochemii Technicznej, OZNACZANE WSPÓŁCZYNNKA POCHŁANANA PROMENOWANA GAMMA PRZY UŻYCU LCZNKA SCYNTYLACYJNEGO nstrukcję przygotował: dr, inż. Zbigniew Górski
Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
Ćwiczenie 52 Spektroskopia β
Ćwiczenie 52 Spektroskopia β II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLA SKI W KATOWICACH 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przy użyciu spektrometru magnetycznego widm energetycznych elektronów
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie
Detekcja promieniowania jonizującego Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Przyrządy dozymetryczne - są to podstawowe narzędzia do bezpośredniego określania stopnia zagrożenia
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji
Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek
Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach
Korpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2
Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
ROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD NORMALNY 1. Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teorii pomiarów). 2. Opis układu pomiarowego
(1) Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej
(1) Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania fluorescencyjnego...
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
Dozymetria promieniowania jonizującego
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr. 15 Dozymetria promieniowania jonizującego SZCZECIN - 2004 WSTĘP Promieniowanie jonizujące występuje w przyrodzie
BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
Ćwiczenie nr 4. Wyznaczanie energii cząstek alfa metodą emulsji jądrowych.
Ćwiczenie nr 4 Wyznaczanie energii cząstek alfa metodą emulsji jądrowych. Student winien wykazać się znajomością następujących zagadnień: 1. Promieniotwórczość α. 2. Energia prędkość i zasięg cząstek α.
J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE
J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Pomiar maksymalnej energii promieniowania β
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R