Złota liczba. Zajęcia matematyczno przyrodnicze w Szkole Podstawowej w Antolce
|
|
- Konrad Skiba
- 8 lat temu
- Przeglądów:
Transkrypt
1 Złota liczba Zajęcia matematyczno przyrodnicze w Szkole Podstawowej w Antolce
2 Ciąg Fibonacciego 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377, Ciąg Fibonacciego ma wiele ciekawych własności. Zbadajmy jedną z nich. Podzielmy przez siebie dwie kolejne liczby tego ciągu (liczbę większą przez mniejszą)
3 Ciąg Fibonacciego 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377, Zacznijmy dzielenie od liczby 5. 5:3 = 8:5 = 13:8 = 21:13 = 1,6. 1,6 1,6. 1,6. Wynik tego dzielenia zawsze daje liczbę równą w przybliżeniu 1,6 Liczbę tą nazywamy złotą liczbą i oznaczamy przez f f =1,6
4 Złota liczba f 1, Złota liczba jest równa w przybliżeniu Złota liczba jest związana z tak zwanym złotym podziałem zadziwiała przez stulecia matematyków, architektów, botaników, fizyków i artystów niezwykle interesującymi własnościami.
5 Złoty podział odcinka Złoty podział, podział harmoniczny, złota proporcja, złote cięcie polega na podziale odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej i był równy złotej liczbie φ. (Iloraz tych odcinków jest równy około 1,6)
6 Złoty podział odcinka Stosunek dłuższej części odcinka do krótszej, jest taki sam, jak stosunek całego odcinka do dłuższej części. liczba wyrażająca stosunek złotego podziału to złota liczba (oznaczana grecką literą φ (fi)). a b a b a + b a a + b
7 Złoty podział odcinka Czy potrafisz skonstruować taki odcinek, aby po podzieleniu go na dwie równe części otrzymać złoty podział? a b a + b
8 Złote cięcie w przyrodzie Na wspólnej gałązce między każdymi dwiema parami listków trzecia para leży w miejscu złotego cięcia.
9 Złote cięcie w przyrodzie
10 Złote cięcie w przyrodzie Można skonstruować przyrząd do sprawdzania złotej proporcji
11 Złote cięcie w przyrodzie
12 Złote cięcie w przyrodzie
13 Złote cięcie w przyrodzie
14 Nikt nie rozumiał boskiej struktury ludzkiego ciała lepiej niż Leonardo da Vinci. Ekshumował nawet zwłoki, żeby mierzyć dokładne proporcje budowy kostnej człowieka. On pierwszy wykazał, że ludzkie ciało jest dosłownie zbudowane z elementów, których proporcje wymiarów zawsze równają się Fi. Złote cięcie w przyrodzie
15 Złote cięcie w przyrodzie
16 Złote cięcie w architekturze W starożytności Grecy wysoko cenili harmonię i proporcje. Złoty podział uważali za proporcję doskonałą. Stosowali go w architekturze i sztuce.
17 Złote cięcie w architekturze Parthenon na Akropolu fronton świątyni mieści się w złotym prostokącie plan świątyni jest złotym prostokątem
18 Złote cięcie w architekturze Apollo Belwederski Twórcą rzeźby był Leochares (IV wiek pne.) Linia I dzieli na dwie części całą postać w złotej proporcji, linia E wskazuje złotą proporcję między głową a górną częścią tułowia, linia O zaznacza podział nóg w kolanach według złotego cięcia.
19 Złote cięcie w architekturze
20 Złote cięcie w architekturze Renesans okres wielkiej fascynacji antykiem, złota proporcja nazywana jest boską proporcją (divina proportio), powstaje traktat matematyczny O boskiej proporcji Luca Pacioli (1509r.), ilustracje do traktatu wykonuje Leonarda da Vinci mistrz proporcji i perspektywy.
21 Złoty kąt Jeśli podzieli się kąt pełny (360 stopni) w stosunku złotym, otrzyma się tzw. złoty kąt. Okazuje się, że ten złoty kąt jest bardzo często spotykany u roślin: nasiona słonecznika, kwiat kalafiora, w szyszkach i ananasach.
22 Złote cięcie w architekturze Na podsumowanie można stwierdzić, iż zjawiska, których struktura oparta jest na ciągu Fibonacciego, sprawiają przyjemność zmysłom wzroku i słuchu istot ludzkich. Dowodem na to może być to, że złotymi proporcjami wyznaczonymi na podstawie ciągu Fibonacciego posługiwał się w swoim malarstwie Leonardo da Vinci, podobnie jak Botticelli. Złote proporcje wykorzystano także podczas wznoszenia piramidy Cheopsa w Gizie i Partenonu w Grecji.
ϕ =... LICZBA ZŁOTA Liczba ϕ
LICZBA ZŁOTA Liczba ϕ Liczba ta nie jest tak znana jak π czy e lecz nie mniej interesująca. Wyraża ona długość spełniającą warunek tzw. złotego podziału (ang. gold section, łac. sectio aurea lub inaczej
Ciągi liczbowe. - oznacza, że a(1) = a 1, a(2) = a 2, a(n) = a n a 1, a 2, a 3, a 4,... a n a(n) a n
Ciągi liczbowe Spis treści Ciąg liczbowy Ciąg liczbowy skończony Ciąg liczbowy nieskończony Przykłady i sposoby określania ciągu, suma n początkowych wyrazów ciągu Suma n początkowych, kolejnych wyrazów
ISBN: Moim córkom: Liwii i Helence
Nasza Księgarnia Moim córkom: Liwii i Helence Copyright by Wydawnictwo Nasza Księgarnia, Warszawa 2017 Text and illustrations copyright by Anna Ludwicka 2017 Redaktor prowadzący Anna Garbal Opieka redakcyjna
Złoty podział. "Zmysły radują się na widok rzeczy o właściwych proporcjach" św. Tomasz z Akwinu. Lidia Anna Janicka, Zuzanna Pałosz.
"Zmysły radują się na widok rzeczy o właściwych proporcjach" św. Tomasz z Akwinu Złoty podział Lidia Anna Janicka, Zuzanna Pałosz Klasa Ic Gimnazjum nr 3 w Zespole Szkół Publicznych Nr 34-100 Wadowice
Pracę wykonali: -Bryjak Mateusz -Chudziak Paweł -Palacz Angelika -Skorwider Dariusz
Pracę wykonali: -Bryjak Mateusz -Chudziak Paweł -Palacz Angelika -Skorwider Dariusz Symetria osiowa- przekształcenie płaszczyzny względem pewnej prostej, jest ona osią symetrii. Każdemu punktowi A przyporządkowujemy
Ciągi i rekurencja, komputer dla matematyka. warsztaty towarzyszące konferencji Informatyka realnie prowadzą: Hanna Basaj Jan Aleksander Wierzbicki
Ciągi i rekurencja, komputer dla matematyka warsztaty towarzyszące konferencji Informatyka realnie prowadzą: Hanna Basaj Jan Aleksander Wierzbicki Ciągi określone rekurencyjnie w projekcie nowej podstawy
Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna. Złota Liczba. Zeszyt II. 2009/2010r.
Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Złota Liczba Zeszyt II 009/00r. Spis treści:. Złota liczba.. 3. Złoty podział odcinka.3. Złoty prostokąt.......3 Złoty trójkąt.6.4
PROJEKT EDUKACYJNY SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
PROJEKT EDUKACYJNY SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Tematyka projektu Kobieta istota idealna? Na podstawie pracy uczniów pod opieką Aleksandry
SZKOŁA PODSTAWOWA IM. KS. ST. SŁOTWIŃSKIEGO W KAMIENIU UL. PIASKI 2A KAMIEŃ TEL.
SZKOŁA PODSTAWOWA IM. KS. ST. SŁOTWIŃSKIEGO W KAMIENIU UL. PIASKI 2A 32-071 KAMIEŃ EMAIL: KONTAKT@SZKOLAKAMIEN.PL TEL. 12 280 30 05 Wybuchające kropki, czyli wielkie boom na znanych i nieznanych wyspach
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
Scenariusz zajęć. Temat: Tajemniczy Ciąg Fibonacciego. Czas: 3 godziny lekcyjne
Scenariusz zajęć Źródło: Scenariusz napisany w oparciu o projekt M. Bartosiewicz pt. Podobieństwa w matematyce i przyrodzie. Ciąg Fibonacciego wokół nas, scenariusz lekcji z informatyki Magiczna rodzina
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie
Materiały z zajęć artystycznych dla klas II Klasowy quiz wiedzy o sztuce etap I test wyboru
Materiały z zajęć artystycznych dla klas II Klasowy quiz wiedzy o sztuce etap I test wyboru 1.Jakiego koloru szatę miał na sobie Stefan Batory w obrazie Marcina Kobera pt.,,portret Stefana Batorego? a)
HISTORIA LICZB RZECZYWISTYCH ROZRYWKA
HISTORIA LICZB RZECZYWISTYCH Do liczb rzeczywistych zalicza się wszystkiego rodzaju liczby: wymierne, niewymierne, całkowite, naturalne i wszystkie inne zbiory jakie tylko sobie wymyślimy i znajdziemy
WYMAGANIA EDUKACYJNE Z PLASTYKI DLA KLASY I GIMNAZJUM
WYMAGANIA EDUKACYJNE Z PLASTYKI DLA KLASY I GIMNAZJUM KRYTERIA WYPOWIEDZI ARTYSTYCZNEJ 1. Dopuszczający nieprawidłowe wykonanie, odbiegające od głównego tematu, brak logiki, nieprawidłowy dobór kompozycji,
Matematyka jest wszędzie W każdej nauce jest tyle prawdy ile jest w niej matematyki J.Kant
Matematyka jest wszędzie W każdej nauce jest tyle prawdy ile jest w niej matematyki J.Kant BUDOWA CIAŁA CZŁOWIEKA Matematyka jest miarą wszystkiego Arystotel Człowiek witruwiański rysunek autorstwa Leonarda
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
MATEMATYKA DLA CIEKAWSKICH
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić
POLITECHNIKA ŚLĄSKA. ZADANIE 2 WALCEM PO WALCU Zadanie zaproponowali: dr inż. Mariusz Pleszczyński, Wydział Matematyki Stosowanej, Politechnika Śląska
ZADANIE 1 LICZBY ZESPOLONE Zadanie zaproponował: mgr Krzysztof Jarczewski, III LO im. S. Batorego w Chorzowie Liczbą zespoloną nazywamy wyrażenie postaci a + bi, gdzie a i b są dowolnymi liczbami rzeczywistymi,
Troszkę Geometrii. Kinga Kolczyńska - Przybycień
Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego
PYTANIA POWTÓRZENIOWE Z PALSTYKI DLA KL.II I półrocze cz.3
PYTANIA POWTÓRZENIOWE Z PALSTYKI DLA KL.II I półrocze cz.3 57. Za początek sztuki bizantyjskiej przyjmuje się okres między V a VI w. n. e. Doszło wtedy do podziału cesarstwa rzymskiego na wschodzie i zachodzie.
Co łączy geometrię z architekturą?
Co łączy geometrię z architekturą? Agata Dziadur Szymon Rosiński klasa VII Opiekun pracy: mgr Katarzyna Jabcoń Kraków, 27 lutego 2018 roku Spis treści Wstęp... 3 Rozdział 1... 4 Geometria na przestrzeni
WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ
1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Scenariusz zajęć nr 8
Autor scenariusza: Małgorzata Marzycka Blok tematyczny: Witamy Nowy Rok Scenariusz zajęć nr 8 I. Tytuł scenariusza: Czy umiesz określić temperaturę? II. Czas realizacji: 2 jednostki lekcyjne. III. Edukacje
Scenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
Analiza jakościowa testów na wejściu i testów na wyjściu dla uczniów I naboru
Analiza jakościowa testów na wejściu i testów na wyjściu dla uczniów I naboru Analizie jakościowej poddano testy diagnostyczne i sumatywne pisane przez 2561 uczniów klas VI z pierwszego naboru. Analizie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z plastyki w Szkole Podstawowej w Miękini
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z plastyki w Szkole Podstawowej w Miękini Ocenie podlegają chęci i wysiłek ucznia wkładany w wykonywanie zadań
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
PRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
Matematyka w kulturze i życiu codziennym
Matematyka w kulturze i życiu codziennym Prezentacja jest materiałem źródłowym europejskiego projektu matematycznego QED Comenius Matematyka z języka greckiego oznacza: μάθημα = uczyć się, studiować Geometria
Wymagania na ocenę bardzo dobrą.
I.1 III.1 III.3 Temat. Treści nauczania i aktywność plastyczna. celującą. dobrą. 1 2 3 4 5 6 7 1.PSO. O czym będziemy się Uczeń zna zasady przedmiotowego oceniania oraz zakres treści i wymagania edukacyjne
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Ciąg Fibonacciego jako szczególny przykład ciągu określonego rekurencyjnie. Przykłady rekurencji w informatyce
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.
1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
ZŁOTY PODZIAŁ W DYDAKTYCE MATEMATYKI
ZŁOTY PODZIAŁ W DYDAKTYCE MATEMATYKI Iwona Kowalska Podział podstawy programowej Na wymagania ogólne i szczegółowe Na wymagania konieczne, podstawowe wykraczające Na działy Na klasy, semestry Na wymagania
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na ocenę bardzo dobrą.
Podst programowa I.1 III.1 III.3 Agnieszka Czerska Pawlak. Wymagania edukacyjne z plastyki w klasie IV. Temat. Treści nauczania i aktywność plastyczna. celującą. bardzo dobrą. dobrą. dostateczną. 1 2 3
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
Podział kąta na dowolną liczbę części - konstrukcja
Podział kąta na dowolną liczbę części - konstrukcja Artykuł pobrano ze strony eioba.pl Przedstawię Wam przybliżoną konstrukcję geometryczną konstruowalną środkami klasycznymi (linijka i cyrkiel) przy pomocy,
Matematyka dyskretna. Andrzej Łachwa, UJ, A/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
ANALIZA SPRAWDZIANU DIAGNOSTYCZNEGO DLA KLAS IV PRZEPROWADZONEGO W DNIACH WRZEŚNIA 2010 ROKU W SZKOLE PODSTAWOWEJ NR 9 IM. JANA PAWŁA II W EŁKU
ANALIZA SPRAWDZIANU DIAGNOSTYCZNEGO DLA KLAS IV PRZEPROWADZONEGO W DNIACH 14-15 WRZEŚNIA 2010 ROKU W SZKOLE PODSTAWOWEJ NR 9 IM. JANA PAWŁA II W EŁKU Opracowała: Anna Lewoc Ełk, październik 2010 roku Cel
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska
Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
STAROŻYTNY TEATR GRECKI
SCENARIUSZ LEKCJI dla uczniów klas I - III STAROŻYTNY TEATR GRECKI AUTOR SCENARIUSZA mgr Hanna Kaźmierska SCENARIUSZ LEKCJI Czas realizacji: 2 x 45min TEMAT LEKCJI: W starożytnym teatrze greckim. CEL OGÓLNY:
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
Przyrządy do kreślenia, plansza połażenie prostych i odcinków, kąty, domino, krzyżówka, kartki z gotowymi figurami.
Powtórzenie wiadomości o figurach geometrycznych. 1. Cele lekcji a) Wiadomości Uczeń: - zna podstawowe figury geometryczne, - zna własności figur, - zna pojęcie kąta oraz wierzchołka i ramion kąta. b)
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Liczba Fi. Magdalena Tabała Joanna Buss Dominika Dąbrowska Karol Medwid
Liczba Fi Magdalena Tabała Joanna Buss Dominika Dąbrowska Karol Medwid SPIS TREŚCI Wprowadzenie...2 Historia... 4 -Fidiasz...5 -Platon...6 -Euklides z Aleksandrii...8 -Luca Pacioli...9 -Michael Maestlin...10
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 5/14 Rekurencja Weźmy dla przykładu wzór (przepis) na liczenie silni: n! to iloczyn kolejnych liczb naturalnych od 1 do n oraz 0!=1.
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
1. Mistrzowie włoskiego renesansu
1. Mistrzowie włoskiego renesansu Uczeń powinien: 1. 1. Cele lekcji 1. a) Wiadomości umiejscowić epokę w czasie, przyporządkować dzieła autorom, związać prezentowane dzieła z miejscem, w którym się znajdują,
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Wielokąty foremne. (Konstrukcje platońskie)
Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
LICZBY PIERWSZE. Jan Ciurej Radosław Żak
LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna
COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów.
COMENIUS PROJEKT ROZWOJU SZKOŁY Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. GIMNAZJUM 20 GDAŃSK POLSKA Maj 2007 SCENARIUSZ LEKCJI MATEMATYKI Z WYKORZYSTANIEM METODY STOLIKÓW
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 O KONSTRUKCJACH GEOMETRYCZNYCH 1. Starożytni matematycy posługiwali się konstrukcjami geometrycznymi. 2. Wykonanie konstrukcji polega na narysowaniu
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 4/10 rekurencja Wzór (przepis) na liczenie silni: n! to iloczyn kolejnych liczb naturalnych od 1 do n oraz 0!=1. Oto wartości silni
WYMAGANIA EDUKACYJNE - PLASTYKA DLA KLAS IV
WYMAGANIA EDUKACYJNE - PLASTYKA DLA KLAS IV Do Dzieła Program nauczania ogólnego plastyki w klasach IV VII szkoły podstawowej Jadwiga Lukas, Krystyna Onak Ocenę celującą otrzymuje uczeń który: opanował
KRYTERIA OCENIANIA W KLASIE III. przygotowane teksty czyta płynnie, wyraziście i w pełni rozumie ich treść;
KRYTERIA OCENIANIA W KLASIE III wyraża myśli w formie wielozdaniowej wypowiedzi; słucha i w pełni rozumie wypowiedzi innych; przygotowane teksty czyta płynnie, wyraziście i w pełni rozumie ich treść; bezbłędnie
POMIAR DYDAKTYCZNY Z MATEMATYKI
POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE:
WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V
WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V (n - el prowadzący M. Stańczyk) Wymagania programowe z matematyki w klasie V szkoły podstawowej czyli kompetencje i umiejętności uczniów z matematyki w klasie
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Przedmiot: matematyka Data: 07.04.2006 Klasa: I T inf i I T mech Imię i nazwisko nauczyciela prowadzącego: Agnieszka Hodor Cel hospitacji: zdiagnozowanie umiejętności posługiwania
2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
dopuszczający dostateczny dobry bardzo dobry celujący rozpoznaje budowle greckie
WYMAGANIA NA POSZCZEGÓLNE OCENY - PLASTYKA klasa III gimnazjum Sztuka starożytnej Grecji. dopuszczający dostateczny dobry bardzo dobry celujący rozpoznaje budowle greckie posługuje się formą kariatydy
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Program Coachingu dla młodych osób
Program Coachingu dla młodych osób "Dziecku nie wlewaj wiedzy, ale zainspiruj je do działania " Przed rozpoczęciem modułu I wysyłamy do uczestników zajęć kwestionariusz 360 Moduł 1: Samoznanie jako część
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Temat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
PRZEDMIOTOWY SYSTEM OCENIANIA Z PLASTYKI Przedmiotowy system oceniania z plastyki jest zgodny z wewnątrzszkolnym systemem oceniania.
PRZEDMIOTOWY SYSTEM OCENIANIA Z PLASTYKI Przedmiotowy system oceniania z plastyki jest zgodny z wewnątrzszkolnym systemem oceniania. Obszary podlegające ocenianiu na plastyce klasy IV- VI 1. Prace plastyczne
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.)
DZIAŁ 1. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM. (32 GODZ.) 1 PSO i kontrakt z uczniami. 1 Matematyka w otaczającym nas świecie 1 Karta pracy 1 Po I etapie edukacyjnym 1 Ślimak gra edukacyjna
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne