Elektrotechnika elektronika miernictwo

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrotechnika elektronika miernictwo"

Transkrypt

1 Elektrotechnika elektronika miernictwo Franciszek Gołek Wykład 05 i 06 Filtry i układy RLC

2 Decybel Decybel to jednostka logarytmiczna. 1B = log10(p/po), 1dB = 0,1B. Decybele służą do porównania dwóch sygnałów (oczywiście o identycznych jednostkach) i wyrażają ich logarytmiczny stosunek. Decybele stosujemy przede wszystkim w akustyce (tam gdzie reakcja układu biologicznego jest proporcjonalna do logarytmu natężenia bodźca). Stosujemy je również w elektronice. W przypadku porównywania amplitud mocy obowiązuje: kp[db] = 10log10(P2/P1). Dla napięciowych lub prądowych amplitud mamy: ka[db] = 20log10(A2/A1) bo 10log10(A22 /A12 ) = 10log10(A2/A1)2 = 20log10(A2/A1). Przy porównywaniu sygnałów o różnych przebiegach np. sygnału sinusoidalnego i szumu bierzemy wartości RMS czyli wartości skuteczne. Czasem wyrażamy daną wielkość odniesioną do wzorca lub wartości progowej np. 1V, lub w akustyce 20µP jako próg słyszalności (120dB oznacza µp). Jako wartości odniesienia można spotkać napięcia zapewniające wydzielanie mocy 1mW na standardowej oporności 50 Ω lub 600 Ω. Wartości skuteczne napięć wyrażone jako 0 dbm (m oznacza mw) wynoszą odpowiednio 0.22V dla obciążenia 50 Ω i 0.78V dla 600 Ω).

3 Decybel W komunikacji moc bywa wyrażana w jednostkach: dbw lub dbm: 100 W to 20 dbw, 1 W to 0 dbw, 0,5 W to -3 dbw, 1 W to 30 dbm. Napięcie bywa wyrażane w jednostkach dbv, co należy rozumieć jako:

4 Z poprzednich wykładów wiemy że: indukcyjność i pojemność, w odróżnieniu od idealnej rezystancji, przyczyniają się do powstawania różnicy faz między napięciem i prądem a ich impedancje zależą od częstotliwości wymuszeń elektrycznych: XL = jωl, XC = 1/jωC. Przypomnijmy nazwy: Impedancja (oporność zespolona): Z = R + X, R rezystancja, X reaktancja. Dla szeregowo połączonych idealnych L i C - gdy pomijamy rezystancję cewki i upływność kondensatora: X = j(xl XC) = j(ωl 1/ωC), Z = R + j(xl XC). Admitancja (przewodność zespolona): Y = 1/Z = G + jb G konduktancja, B susceptancja. Dla równolegle połączonych idealnych L i C: B = j(bc BL) = j(ωc 1/ωL) Z = (R2 + X2), Y = (G2 + B2), Z = Z ej[arctg(r/x)], Y = Y ej[arctg(b/g)]

5 Dla realnej cewki L obok jej indukcyjności Istotna jest również rezystancja uzwojenia RL Z = RL + jωl. Przy wysokich częstotliwościach napięć mogą okazać się istotne również pojemności pasożytnicze między doprowadzeniami i zwojami. Dla realnego kondensatora obok jego pojemności C istotnymi mogą okazać się: rezystancja upływności R u, rezystancja doprowadzeń Rd i indukcyjność doprowadzeń Ld Z = Rd + jωld + 1/(jωC + 1/RU)

6 W tym wykładzie pokażemy dalsze konsekwencje obecności pojemności i indukcyjności w obwodach elektrycznych. Między innymi zbadamy jaki wpływ mają one na tzw. pasmo przenoszenia oraz kształtowanie impulsów i skoków napięcia. Dowiemy się co to jest współczynnik dobroci (tzw. Q-factor). Poznamy też najprostsze filtry i dzielniki napięcia zawierające impedancję zależną od częstotliwości sygnału.

7 Pasmo częstotliwości Pasmo częstotliwości jest ważną wielkością i podstawowym pojęciem w systemach komunikacji. Pasmem częstotliwości dla danego sygnału nazywamy zakres częstotliwości jaki obejmuje spektrum tego sygnału. FM modulacja częstotliwości Aby przesłać informację przy pomocy fali nośnej o częstotliwości ωo trzeba ją zmodulować (zdeformować) w takt informacji. AM modulacja amplitudy Taka modulacja oznacza zamianę sygnału nośnego o jednej częstości na spektrum, które zajmuje pewne pasmo.

8 Filtrem nazywamy urządzenie, które wpływa na spektralny rozkład energii sygnałów elektrycznych. Filtry eliminujące zakłócenia

9 Rodzaje filtrów Podział pod względem pasma przenoszenia wyróżnia filtry: dolnoprzepustowe, górno-przepustowe, pasmowe (wąsko-pasmowe, szeroko-pasmowe), pasmowo zaporowe. Filtry dzielimy pod względem technologii wykonania: a) Pasywne - są nimi dzielniki napięcia (lub prądu) z elementami pasywnymi: R, C i L). b) Aktywne (zawierają, oprócz elementów R, C i L, tranzystory lub wzmacniacze operacyjne). c) Cyfrowe, w których sygnał jest zamieniany na postać cyfrową a następnie szeregi liczb są przetwarzane, filtrowane i ponownie zamieniane na sygnał. Filtry dzielą się też na liniowe i nieliniowe. Filtry dzielimy pod względem złożoności na jednobiegunowe i wielobiegunowe. Inne np. atomowe, kwarcowe... Filtry mają za zadanie przenosić sygnały o interesujących nas częstotliwościach i tłumić sygnały o częstotliwościach niepożądanych. Filtry, poprzez zmianę składowych harmonicznych, modelują impulsy elektryczne.

10 W śród innych filtrów należy wymienić: Filtry atomowe. Filtry kwarcowe. Filtry z akustyczną falą powierzchniową SAW, lub objętościową BAW. Grzebieniowe. Filtry Nyquista. Filtry adaptacyjne (przestrajalne). Filtry obrazu.

11 Filtry kwarcowe, Rezonatory kwarcowe

12 Filtry z akustyczną falą powierzchniową.

13 Obrazkowa ilustracja działania filtru Zauważmy, że sinusoida nie jest deformowana!

14 Pasmo przenoszenia filtra Jest to obszar częstotliwości o najlepszym przenoszeniu sygnału zawarty między granicami pasma. Granice pasma przenoszenia to takie częstotliwości fg1, fg2, przy których moc sygnału spada o 50%. Oczywiście moduł współczynnika przenoszenia sygnału ku= IUwy/UweI lub ki = IIwy/IweI przy tych granicach jest 2 razy mniejszy od swej maksymalnej wartości. W decybelach: 20log(1/ 2) = -3 db, czyli stosunek k(fg)/kmax wyrażony w decybelach wynosi -3 db. Pamiętając, że moc jest proporcjonalna do kwadratu napięcia jak również do kwadratu natężenia prądu, P = U2/R = I2R stwierdzamy, że graniczne częstotliwości fg spełniają równość: IK(fg)/KmaxI = k(fg)/kmax = 1/ 2 P(fg)/Pmax = U2(fg)/U2max = I2(fg)/I2max =1/2

15 Pasmo przenoszenia dowolnego układu W zasadzie każdy układ, przez który następuje propagacja jakiegokolwiek sygnału ma jakieś ograniczenia dotyczące częstotliwości propagowanego sygnału, zatem charakteryzuje się pasmem przenoszenia. KP(fg) = P(fg)/Pmax = U2(fg)/U2max = I2(fg)/I2max = 1/2 IK(fg)/KmaxI = k(fg)/kmax = 1/ 2

16 Filtry pasywne jako dzielniki napięcia lub prądu, zależne od częstotliwości, są zwykle filtrami RC (złożonymi z rezystorów i kondensatorów) i stanowią bardzo ważne zastosowanie kondensatorów. Obliczenia parametrów tych dzielników w dziedzinie częstotliwości wymagają stosowania uogólnionych praw Ohma i Kirchhoffa czyli praw w zapisie zespolonym. Przy analizie filtrów warto też stosować wykresy wskazowe bo mogą one stanowić dogodną ilustrację relacji między sygnałem wejściowym i wyjściowym danego filtra dla wybranej częstotliwości.

17 Współczynnik przenoszenia ku i przesunięcie fazy ϕ. Rysunek przedstawia dzielnik napięcia złożony z zespolonych impedancji Z 1 i Z2, zasilany przez źródło o pomijalnie małej impedancji wewnętrznej Z 0 ~ 0 Ω. Zatem Z0 ma pomijalny udział w podziale napięcia Thevenina. Ponadto dzielnik jest nieobciążony, gdyż obciążenie Z3 ~. Aby obliczyć współczynnik przenoszenia tego dzielnika, zwanego też czwórnikiem bo ma dwa zaciski wejściowe i dwa zaciski wyjściowe razem cztery, stosujemy taką logikę postępowania jak przy zwykłych opornikach ale z użyciem liczb zespolonych. Zespolony stosunek Uwy/Uwe= KU = kueiϕ zawiera współczynnik przenoszenia ku, czyli stosunek wartości skutecznych lub amplitud napięcia wyjściowego do napięcia wejściowego ku = IUwyI/IUweI oraz względne przesunięcie fazy ϕ. Napięcie wyjściowe to spadek napięcia na Z2: Uwy= U2 = I1 Z2. Napięcie wejściowe to spadek na szeregowo połączonych Z1 i Z2 czyli Uwe= I1Z1+I1Z2. ku = IUwyI/IUweI = IZ2I/IZ1+Z2I, ϕ = arctg((im(ku))/(re(ku))).

18 Filtr dolnoprzepustowy, opis w dziedzinie częstotliwości. Opis ten mówi jak, w funkcji częstotliwości ma się stosunek amplitud napięcia wyjściowego do napięcia wejściowego - ku oraz względna różnica faz - ϕ sygnału wyjściowego względem wejściowego. Obie te wielkości mamy w funkcji zespolonej przedstawiającej stosunek zespolonych wartości napięcia wyjściowego do wejściowego. Zakładamy, że źródło sygnału ma zerową a obciążenie nieskończoną oporność wewnętrzną.

19 Charakterystyki Bodego Henrik Wade Bode ( ) Charakterystyka, która obrazuje logarytmiczną zależność amplitudy i fazy od częstotliwości nazywa się charakterystyką Bodego!

20

21 Ważne

22

23 Bardzo często podczas łączenia układów elektronicznych powstają pasożytnicze układy całkujące - filtry dolno-przepustowe (lub różniczkujące, czyli filtry górno-przepustowe). Zwykle składają się one z rezystancji wyjściowej jednego układu i pojemności wejściowej następnego lub pojemności przewodów łączących. Te pasożytnicze elementy mogą przyczyniać się do zmniejszenia górnej częstotliwości granicznej danej aparatury oraz wpływać na kształt i czas trwania impulsów. Przykład 5.3. Co pojawia się na nieobciążonym wyjściu dolnoprzepustowego filtru RC gdy na jego wejściu wymuszamy skok napięcia o wartości U0? Rozwiązania, jak na poprzedniej stronie: Dla skoku 0 do U0: uwy(t) = U0(1 - e-t/rc) Dla skoku U0 do 0: uwy(t) = U0e-t/RC. Iloczyn RC, zwany stałą czasową τ, określa czas, po którym uwy(t) zbliża się do swej asymptotycznej wartości na odległość = 1/e wysokości skoku. τ = RC

24 Oszacujmy ile wynosi czas narastania impulsu prostokątnego zdeformowanego filtrem dolnoprzepustowym. Czyli w jakim czasie Uwy(t) wzrośnie od 10% do 90% swej wartości maksymalnej? 0.9 U0 = U0(1 - e-t/rc) -> t90%= -RCln0.1(U0 wartość maksymalna) 0.1 = 1 - e-t/rc -> t10%= -RCln0.9 tr = t90% - t10% = RC(ln0.9 - ln0.1) = RCln9 2.2RC. Pamiętając, że fg = 1/(2πRC) -> RC = 1/2πfg otrzymamy związek: tr 2.2RC = 2.2/(2π fg). Zatem możemy napisać: tr 1/(3fg). Rysunek przedstawia odpowiedź filtru dolnoprzepustowego na ciąg impulsów prostokątnych o różnych częstotliwościach.

25

26 Filtr górno-przepustowy, opis w dziedzinie czasu.

27 Filtr pasmowo-przepustowy tłumi jednocześnie sygnały o częstotliwościach niższych od fg. dolna oraz sygnały o częstotliwościach wyższych od fg. górna. Przykładem takiego filtra może być kaskadowe połączenie filtrów: górno i dolno przepustowego o odpowiednio dobranych częstotliwościach granicznych. Przykład z identycznymi fg poniżej.

28 Zastosowanie filtrów Filtry są stosowane do kształtowania charakterystyk częstotliwościowych układów elektronicznych i do kształtowania impulsów napięciowych. Wybierania jednych i eliminowania innych sygnałów (zakłócających) np. tunery to po prostu przestrajalne filtry pasmowe. W zasadzie każde urządzenie elektroniczne zawiera filtry. Filtry górnoprzepustowe stosowane są często jako pojemnościowe sprzężenie między układami elektronicznymi (np. wzmacniaczami) celem zablokowania tzw. składowej stałej. Sygnały w.cz. mogą nieoczekiwanie przeniknąć przez pojemności wyłączników, albo zbliżonych do siebie przewodów powodując wzajemne zakłócanie obwodów elektronicznych. Warto pamiętać, że filtry typu RC lub RL wykazują raczej łagodne stromości charakterystyk. Natomiast bardziej złożone filtry typu RLC (wielostopniowe lub zawierające obwody rezonansowe o dużej dobroci) mogą wykazywać bardzo duże stromości na brzegach pasm!

29

30

31

32

33

34 Prosta zasada łączenia układów (np. pojedynczych filtrów w filtry wielostopniowe) mówi, że jeżeli obwód A steruje obwodem B (B obciąża obwód A) to warto zadbać o to aby Rwy układu A < 0,1RWE układu B. Wtedy wpływ B układu obciążenia na A układ sterujący będzie mało znaczący. Układ A po obciążeniu go takim układem B działa z zaburzeniem nie przekraczającym 10% (A wystawia na swoim wyjściu o 10% napięcie niższe niż w przypadku braku obciążenia). W sytuacji gdy takie 10%-we odchylenie możemy zaniedbać uzyskujemy prosty sposób na projektowanie wielostopniowych układów. Po prostu każdy podukład (stopień) projektujemy i obliczamy osobno (obliczenia są proste).

35 Dla poprawienia efektu filtracji stosowane są bardziej rozbudowane filtry, w tym filtry aktywne czy filtry cyfrowe. Filtry aktywne powstają poprzez zastosowanie układów aktywnych (tranzystorów, wzmacniaczy operacyjnych itp.) w obwodach filtrujących RLC. Elementy aktywne (dzięki dużej impedancji wejściowej i efektowi wzmacniania sygnału) pozwalają na budowanie filtrów wielostopniowych o bardzo stromym przebiegu charakterystyk na brzegach filtrowanych pasm. Filtry cyfrowe to układy filtrujące i przetwarzające sygnały dyskretne (cyfrowe). Filtry cyfrowe są coraz częściej i szerzej stosowane w wielu dziedzinach techniki bowiem każdy sygnał analogowy (prosty jednowymiarowy jak i złożony wielowymiarowy, fotografia, film itp) można zamieniać na sygnał cyfrowy odpowiednimi przetwornikami analogowo-cyfrowymi. (Skrót DSP oznacza: digital signal processing)

36 Poprawianie stromości charakterystyki przez zastosowanie filtrów wyższego rzędu.

37 Rezonans Obwody rezonansowe to szczególna grupa obwodów, które w zasadzie możemy zaliczyć do filtrów. Zasługują one jednak na odrębne potraktowanie co najmniej z dwu powodów: 1) Wykorzystywane są przy wymuszaniu oscylacji o ściśle określonej częstotliwości fali nośnej stacji nadawczych (emitujących fale elektromagnetyczne). 2) Jako przestrajane obwody rezonansowe wykorzystywane są w odbiornikach radio, TV itp. do wybierania pożądanych sygnałów (tj. pożądanych stacji nadawczych). Przykładowa krzywa rezonansowa pokazana jest na rys. obok. Widać tu reakcję o dużej amplitudzie tylko dla pewnego zakresu częstości w otoczeniu częstotliwości rezonansowej fr Dla sygnałów o bardziej oddalonych częstościach reakcja jest znikoma.

38 Rezonans szeregowo połączonych elementów R, L i C. Indukcyjność L i pojemność C są tu konieczne natomiast rezystancja R zwykle pojawia się jako oporność wewnętrzna źródła wymuszania i jako rezystancja przewodu uzwojenia solenoidu stanowiącego indukcyjność L. Czasem należy uwzględnić nawet rezystancję połączeń. Gdy impedancje źródła można pominąć to zawadą (impedancją) szeregowego układu rezonansowego RLC jest Z = R + XL + XC = R + j(ωl 1/ωC). Rezonans wystąpi dla pulsacji ω = ω0, przy której Z = R i (ω0l 1/ω0C) = 0. Dla rezonansu zawada Z = R ma najmniejszą wartość co skutkuje największym prądem: I = UT/(ZT + Z) UT/R gdy ZT jest do zaniedbania. Poza rezonansem, dla ω > ω0 lub ω < ω0, moduł Z ma wartość większą co zmniejsza prąd I a UC i UL mają różne moduły. Gdy ZT nie pomijamy to: Z = R + RT + j[ω(l + LT) 1/ω(C CT/(C + CT))].

39 Czasem mówi się, że rezonans szeregowo połączonych elementów R, L i C jest rezonansem napięć. Łatwo to zrozumieć gdy w rezonansie Impedancje XL = XC >> R. Wówczas spadki napięcia na Indukcyjności i pojemności są wielokrotnie większe od napięcia wymuszającego UT, a UR = UT. Dla zadanych wartości L i C pulsacja rezonansowa spełnia równość: ω0l = 1/ω0C, ω0 = 1/ (LC) a wartość częstotliwości rezonansowej wynosi: Z czego wynika, że chcąc dostroić obwód rezonansowy do częstotliwości wybranego sygnału należy zmieniać wartość L lub C, w praktyce zwykle zmieniamy pojemność.

40 Rezonans równolegle połączonych elementów R, L i C. Dla zadanych wartości L i C pulsacja rezonansowa spełnia równość susceptancji (przewodności zespolonych) BL i BC: 1/ω0L = ω0c, ω0 = 1/ (LC) a wartość częstotliwości rezonansowej wynosi: Mamy tu rezonans prądów, gdyż przy małym G = 1/R (dużym R) i jednocześnie dużych BL i BC (czyli małych XL i XC) mamy olbrzymi prąd w L i C wielokrotnie większy od prądu wymuszenia, który płynie przez rezystor R. Niestety w praktyce nie możemy pomijać rezystancji przewodów cewki stanowiącej Indukcyjność i otrzymany tu wzór na częstotliwość rezonansową jest tylko przybliżeniem.

41 Rzeczywisty równoległy obwód rezonansowy. Aby wyznaczyć częstotliwość rezonansową fp r szeregowy układ L i RL zastąpimy równoważnym mu obwodem równoległym:

42 Dla tak przekształconego ale równoważnego układu mamy: Zerowanie się części urojonej (rezonans) oznacza: XLp = XC

43 Oba powyższe wzory mówią między innymi, że chcąc zwiększać częstotliwość rezonansową (w obszar wielu GHz) musimy zmniejszać L i C. Zmniejszając L i C niemal do granic możliwości osiągamy tzw. rezonatory wnękowe:

44 Filtry mikrofalowe (tu zamiast zwoi i okładek mamy wnęki rezonansowe!)

45 Współczynnik dobroci Q, Q factor (quality factor) Dobroć Q dotyczy tracenia energii przez układ, który może oscylować (elektryczny lub elektroniczny obwód rezonansowy, huśtawka, struna itp.) i wyraża się stosunkiem posiadanej energii do względnej szybkości jej tracenia. Dobroć układu decyduje o kształcie (ostrości) jego krzywej rezonansowej. DEFINICJA Po prostym przekształceniu: widzimy, że Q jest stosunkiem posiadanej energii do jej porcji traconej w ciągu jednostkowej części cyklu (w rezonansie) jaką jest 1 radian! Dla dowolnego układu elektrycznego to część rzeczywista R jego impedancji Z jest tym czynnikiem, który odpowiada za straty (rozpraszanie) energii.

46 Współczynnik Q zależy oczywiście od budowy elementów składowych. U idealnych indukcyjności L i pojemności C przyjmujemy, że gromadząc energię nie rozpraszają jej. W rzeczywistych L i C rozpraszanie energii nie jest zerowe ale może być małe, a czasem pomijalnie małe. Rozważmy układ równoległy RLC, którego admitancja (przewodność zespolona) wyraża się przez:

47 Zatem dla obwodu równoległego RLC (L i C idealne) jak na rysunku mamy Q faktor wyrażony przez: Widać, że rezystancja równolegle włączona do równoległego układu LC powinna być jak największa dla największego Q (najlepiej ten rezystor usunąć). Opornik R tak włączony osłabia dobroć Q. W praktyce jednak należy uwzględniać przynajmniej nieidealność L czyli niezerową oporność drutu z jakiego wykonana jest indukcyjność. Wtedy obowiązuje schemat jak obok:

48 Dobroć Q jest również miarą ostrości krzywych rezonansowych wyrażanej jako: Dla sprawdzenia równoważności tego wyrażenia na Q, przydatnego do analizy filtrów RLC, z innymi wyrażeniami, policzmy ωrez i ω3db. Niech np. UWY = UR to ku = UR/URLC i kumax = 1. Dla ω3db: ku/kumax = Zatem dla szeregowego układu RLC mamy cały szereg wyrażeń na Q!

49 Dodajmy, że w elektronice poza dobrocią układów rezonansowych można mówić o dobroci innych układów czy elementów. Przykładowo straty energii w cewkach lub kondensatorach można wyrażać przy pomocy współczynnika dobroci Q. Dobroć cewki zdefiniowana jest jako stosunek: ωl/r Q = ωol/r albo R = ωol/q (gdzie L-indukcyjność cewki, R oporność cewki). Traktując kondensator jako równoległe połączenie idealnej pojemności i rezystancji R (reprezentującej straty w dielektryku) definiujemy dobroć kondensatora jako stosunek prądów Q = IC/IR = (U/XC)/(U/R) = R/XC= ωcr. Wynika z tego, że układy o dużej dobroci to takie, które marnotrawią mało energii na straty w rezystancjach przewodów cewki, ewentualnego rezystora R oraz w materiale kondensatora.

50

51 Filtry w radiu..

52 Akcelerometry i zastosowanie pojemności MEMS (ang. Micro Electro-Mechanical Systems) czyli Mikrosystemy, są to zintegrowane układy elektro-mechaniczne, u których co najmniej jeden wymiar szczególny mieści się w skali mikro (0,1-100 μm). Akcelerometr piezoelektryczny.

53 Przykładowe ekstra zastosowanie pojemności: Trzy-osiowy akcelerometr: MMA7260Q, MMA7261QT, LIS3L06AL i inne. (też MEMS) MMA7260Q LIS3L06AL LIS3L06AL Inne ekstra zastosowanie pojemności to czujniki pojemnościowe w ekranach dotykowych.

54 Trzy-osiowy akcelerometr ADXL330 Czułość do 330mV/g LIS3L06AL

55 E-E-M. Lista-05 1 Narysuj wykres wskazowy dla układu równolegle połączonych L = 10mH i C = 50µF, zasilanych z generatora napięcia sinusoidalnego o pulsacji ω = 1000 rad/s i amplitudzie 1V. Impedancja wewnętrzna generatora wynosi Rwe = 1Ω. 2 Na zaciski układu RC podano sygnał o złożonym (prostokątnym) przebiegu. Naszkicuj przebiegi napięć UR i UC. 3. Szeregowy obwód rezonansowy zawiera: R = 1Ω, L = 1mH, C = 1µF. Oblicz dobroć układu i stosunki: UR/UWe, UC/UWe i UL/UWe w rezonansie (Uwe napięcie zasilające o częstotliwości rezonansowej). 4. Wylicz częstotliwości graniczne i określ pasma przenoszenia układów: 5. Zaprojektuj filtr pasmowy dla pasma 1 khz-10khz wykorzystując prostą zasadę ułatwiającą obliczenia: Zwy/Zwe 1/10 (strona 25).

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 04 Filtry RLC Filtrem nazywamy urządzenie, które przepuszczając (transmitując) sygnał wejściowy może zmieniać

Bardziej szczegółowo

Elektrotechnika elektronika miernictwo

Elektrotechnika elektronika miernictwo Elektrotechnika elektronika miernictwo Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 05 Schemat odbiornika radiowego Pionier (filtry p.cz. są w ekranach zaznaczonych przerywaną

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Temat: Wzmacniacze selektywne

Temat: Wzmacniacze selektywne Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Filtry. Przemysław Barański. 7 października 2012

Filtry. Przemysław Barański. 7 października 2012 Filtry Przemysław Barański 7 października 202 2 Laboratorium Elektronika - dr inż. Przemysław Barański Wymagania. Sprawozdanie powinno zawierać stronę tytułową: nazwa przedmiotu, data, imiona i nazwiska

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 2

Bardziej szczegółowo

Generatory drgań sinusoidalnych LC

Generatory drgań sinusoidalnych LC Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

Ćwiczenie 3 Obwody rezonansowe

Ćwiczenie 3 Obwody rezonansowe Ćwiczenie 3 Obwody rezonansowe Opracowali dr inż. Krzysztof Świtkowski oraz mgr inż. Adam Czerwiński Pierwotne wersje ćwiczenia i instrukcji są dziełem mgr inż. Leszka Widomskiego Celem ćwiczenia jest

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1 Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ 1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek:

Dr inż. Agnieszka Wardzińska 105 Polanka Konsultacje: Poniedziałek : Czwartek: Dr inż. Agnieszka Wardzińska 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Konsultacje: Poniedziałek : 8.00-9.30 Czwartek: 8.00-9.30 Impedancja elementów dla prądów przemiennych

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i normatyki aboratorium Teorii Obwodów Przedmiot: Elektrotechnika teoretyczna Numer ćwiczenia: 4 Temat: Obwody rezonansowe (rezonans prądów i napięć). Wprowadzenie

Bardziej szczegółowo

Ćwiczenie F3. Filtry aktywne

Ćwiczenie F3. Filtry aktywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:

Bardziej szczegółowo

Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW

Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW Laboratorium KOMPUTEROWE PROJEKTOWANIE UKŁADÓW SYMULACJA UKŁADÓW ELEKTRONICZNYCH Z ZASTOSOWANIEM PROGRAMU SPICE Opracował dr inż. Michał Szermer Łódź, dn. 03.01.2017 r. ~ 2 ~ Spis treści Spis treści 3

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI OBWODY REZONANSOWE

LABORATORIUM ELEKTRONIKI OBWODY REZONANSOWE ZESPÓŁ ABORATORIÓW TEEMATYKI TRANSPORTU ZAKŁAD TEEKOMUNIKAJI W TRANSPORIE WYDZIAŁ TRANSPORTU POITEHNIKI WARSZAWSKIEJ ABORATORIUM EEKTRONIKI INSTRUKJA DO ĆWIZENIA NR OBWODY REZONANSOWE DO UŻYTKU WEWNĘTRZNEGO

Bardziej szczegółowo

Wzmacniacze selektywne Filtry aktywne cz.1

Wzmacniacze selektywne Filtry aktywne cz.1 Wzmacniacze selektywne Filtry aktywne cz.1 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wzmacniacze selektywne

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Nr. studenta:...

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Ćwiczenie F1. Filtry Pasywne

Ćwiczenie F1. Filtry Pasywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE UKŁADY RC REV. 1.2 1. CEL ĆWICZENIA - praktyczna weryfikacja teoretycznych własności układów RC przy pobudzeniu przebiegami sinusoidalnymi,

Bardziej szczegółowo

Wzmacniacze, wzmacniacze operacyjne

Wzmacniacze, wzmacniacze operacyjne Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie

Bardziej szczegółowo

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych

Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Laboratorium: Projektowanie pasywnych i aktywnych filtrów analogowych Autorzy: Karol Kropidłowski Jan Szajdziński Michał Bujacz 1. Cel ćwiczenia 1. Cel laboratorium: Zapoznanie się i przebadanie podstawowych

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

Elektrotechnika i elektronika (konspekt)

Elektrotechnika i elektronika (konspekt) Elektrotechnika i elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Sprzężenia zwrotne i oscylatory Obwody sprzężenia zwrotnego badano niemal od początku

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry bierne typu k i m... Z A Z + Z 4Z A Z Z + 4 Z Z Z Z Z ZT ZZ + Z + 4Z Filtry spełniające warunek filtrów typu k: 4 Z Z Z T Z Z Z k Można wykazać, że

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF):

Zadania z podstaw elektroniki. Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Zadania z podstaw elektroniki Zadanie 1. Wyznaczyć pojemność wypadkową układu (C1=1nF, C2=2nF, C3=3nF): Układ stanowi szeregowe połączenie pojemności C1 z zastępczą pojemnością równoległego połączenia

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy:

Wykonawcy: Data Wydział Elektryczny Studia dzienne Nr grupy: POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 2 Temat: Projektowanie i analiza

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo