Jowisz i jego księżyce

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jowisz i jego księżyce"

Transkrypt

1 Fizyka układów planetarnych Jowisz i jego księżyce Wykład 6

2 Jowisz Ziemia półoś wielka 5,2 j.a. 1,0 j.a. okres orbitalny 11,86 roku 1 rok mimośród 0,05 0,017 inklinacja (kąt nachylenia płaszczyzny orbity względem ekliptyki) 1,3 okres rotacji (doba gwiazdowa) 9 h 55 min 30 s 23 h 56 min 04 s promień równikowy (1 bar) biegunowy masa km (11,21 R Z ) km (10,52 R Z ) kg (318 M Z ) 6378 km 6357 km kg (1,0 M Z ) śr. gęstość 1,3 g cm - 3 5,5 g cm - 3 przysp. grawit. (na równiku) 24,8 m s - 2 9,8 m s - 2 albedo 0,52 0,367 I/(MR 2 ) 0,254 0,3308

3 Budowa wewnętrzna lodowo-skaliste jądro wodór staje się ciekły powyżej ciśnienia 10 5 bar powyżej 10 6 bar (głębokość km, temperatura 6000 K) zaczyna zachowywać się jak ciekły metal (przewodzi prąd, nieprzezroczysty dla VIS). Jest to mieszanina protonów i elektronów warstwa ta ma grubość 50 tys. km, u jej podstawy ciśnienie sięga MBar, a temperatura K jądro ma masę ok. 10 M Z, składa się z lodów (woda, metan, amoniak) i krzemianów. Może jest zestalone wskutek ogromnego ciśnienia planeta emituje 2 razy więcej energii niż dostaje od Słońca skutek powolnej kontrakcji. Ciepło transportowane jest poprzez konwekcję /SwRI

4 Budowa wewnętrzna Całkowita moc promieniowania planety L wynosi L = L v + L ir + L i, gdzie L v to odbite światło słoneczne (głównie zakres widzialny), L ir to światło słoneczne pochłonięte i ponownie wyemitowane przez planetę (głównie w podczerwieni), L i to emisja własna z akumulowanego ciepła (głównie podczerwień). Temperatura efektywna T e obliczana jest poprzez scałkowanie wyemitowanej energii w podczerwieni, czyli zależy od L ir i L i. Temperatura równowagowa T eq to temperatura, którą miałaby planeta w przypadku braku wewnętrznego źródła energii. Zatem na podstawie prawa Stefana-Boltzmanna L i = 4π R 2 σ T 4 4 ( e T eq ), gdzie R to promień planety. Tempo spadku średniej temperatury wewnątrz planety wynosi dt i dt = L i c V M, gdzie M to masa planety, c V to ciepło właściwe przy stałej objętości. Dla Jowisza L i jest zgodne z ilością zakumulowanego ciepła wynikającej z modelu procesu powstawania planety.

5 Budowa wewnętrzna Rozważmy prosty model budowy wewnętrznej planety składającej się jedynie z wodoru. Uproszczone równanie stanu, tj. relacja między ciśnieniem P i gęstością ρ, ma postać P = Kρ 1+1/n, gdzie K to stała politropowa, n to wykładnik politropy. Niech n = 1. Wówczas P = Kρ 2. Scałkowanie równania równowagi hydrostatycznej R P(r) = g(r')ρ(r')dr' lub dp r dr = g(r)ρ(r), gdzie g(r ) to przyspieszenie grawitacyjne w r, R to promień planety, daje przebieg zmian gęstości wewnątrz planety w postaci! sin( Cr) $ ρ = ρ c # &, gdzie C = 2πG " Cr % K, a ρ c to gęstość w centrum. Promień planety jest zdefiniowany w taki sposób, że ρ = 0, zatem sin(cr) = 0 CR = π R = π C. Otrzymujemy wartość R = km (niezależną od masy!). Wartość ta jest niewiele większa od wartości rzeczywistej km, co wskazuje wyraźnie, że Jowisz nie jest zbudowany wyłącznie z wodoru, choć nasze założenia są co do rzędu wielkości poprawne.

6 Budowa wewnętrzna Źródło: Marley & Fortney 2007 W bardziej realistycznych modelach bierze się pod uwagę multum efektów, m.in. bardziej skomplikowane równania stanu skład chemiczny rotacja pole magnetyczne kontrakcja i chłodzenie Występuje degeneracja rozwiązań.

7 Pole magnetyczne Źródło: SwRI w warstwie metalicznego wodoru działa dynamo magnetohydrodynamiczne źródło potężnego pola magnetycznego planety (magnetyczny moment dipolowy większy niż dla Ziemi) ogon magnetosfery ma 5 j.a. w kierunku dosłonecznym rozpościera się na 3 5 mln km oś dipola nachylona jest względem osi rotacji planety o 9,6 w odległości od 20 do 60 promieni planety naładowane cząstki tworzą torus prądu elektrycznego generującego dodatkowe pole magnetyczne widoczne jako zniekształcenie ( wyciągnięcie ) linii sił pola magnetycznego

8 Pole magnetyczne zorze widziane w ultrafiolecie wywoływane przez cząstki wiatru słonecznego oraz jony pochodzące z księżyców galileuszowych (głównie Io) Źródło: Lowell Observatory jony siarki i tlenu tworzą torus współrotujący z planetą (zaznaczono na czerwono) wskutek wzajemnego ruchu pojawia się napięcie rzędu V i prąd A płynący z Io do Jowisza (zaznaczony na zielono) podstawa znajduje się w jonosferze planety, 250 km powyżej warstwy chmur Źródło: HST

9 Struktura chmur układ pasów może się zmieniać w czasie (np. w latach zanikł południowy pas równikowy) powyżej 50 równoleżnika dominuje marmurkowy rozkład czerwono-brązowych chmur, często w postaci rotujących komórek prędkość wiatrów w strefie równikowej sięga 180 m/s

10 Struktura chmur układ pasów może się zmieniać w czasie (np. w latach zanikł południowy pas równikowy) powyżej 50 równoleżnika dominuje marmurkowy rozkład czerwono-brązowych chmur, często w postaci rotujących komórek prędkość wiatrów w strefie równikowej sięga 180 m/s Źródło: Vasada & Snowman 2005, Rep.Prog.Physics 68, 1935

11 Skład i budowa atmosfery Próbnik sondy Galileo zaobserwował strukturę nieco odstającą od przewidywań: chmury cieńsze, niejednorodne brak H 2 O Czym głębiej tym silniejsze wiatry! kryształki amoniaku kryształki wodorosiarczku amonu gazowe; wodór, hel, metan, amoniak, woda chmury lodu wodnego

12 Struktura chmur ciemne pasy i jasne strefy to efekt konwekcji w górnej części atmosfery pasy to obszary opadania chłodnej materii strefy to obszary cieplejszej materii wynoszonej przez konwekcję z wnętrza kolory są nadawane w zależności od warunków przez siarkę i fosforowodór

13 Struktura chmur Obszar między 10 a 50 N, mozaika obrazów wykonanych w podczerwieni jasnoniebieskie i białawe obszary to chmury wysokie czerwonawo-brązowe obszary to chmury nisko położone obszary purpurowo-fioletowe to prawdopodobnie zamglenia w górnej części atmosfery dwa wpływające na siebie owale mają średnicę ok km widoczne także jaśniejsze i ciemniejsze plamy

14 Wielka Czerwona Plama Układ wysokiego ciśnienia (antycyklon), obserwowany od 1664 r. (Robert Hook) Obecnie tys. km, 100 lat temu była 2 razy większa Położenie stabilne względem równika, dryf w długości zeograficznej Czerwonawy kolor (w VIS) pozostaje zagadką (fosfor i siarka?) Źródło: Caltech Mozaika obrazów wykonanych w podczerwieni wysokie i grube chmury są białe wysokie i cienkie chmury są różowe chmury niskie są niebieskie i brązowe Różnica w położeniu chmur sięga 30 km Cały obszar jest położony 8 km powyżej otoczenia Ciemny pierścień wokół plamy stanowi lokalną depresję

15 Wielka Czerwona Plama Źródło: HST

16 Łączenie się antycyklonów Źródło: HST Źródło: Youssef & Marcus 2003, Icarus 162, 74 jeden z antycyklonów obserwowany był od 90 lat proces łączenia się FA i BE trwał 3 tygodnie, powstały BA ma średnicę 12 tys. km mergingi prawdopodobnie doprowadziły do powstania Wielkiej Czerwonej Plamy

17 Mała Czerwona Plama Źródło: Univ. of Alaska Źródło: HST plama powstała w 2000 r. zmieniła kolor na czerwonawy 5 lat później w lipcu 2006 plama ta minęła wielką czerwoną plamę w bezpiecznej odległości

18 Wyładowania atmosferyczne 3-10 razy rzadsze lecz setki razy silniejsze niż na Ziemi

19 Pierścienie pierścienie ażurowe główny pierścień Źródło: Cornell Univ. własności optyczne wskazują, że składają się głównie z drobnego pyłu (kilka µm)

20 Io Europa Ganimedes Kallisto półoś wielka km (6,1 R J ) km (9,7 R J ) km (15,5 R J ) km (27,2 R J ) okres orbitalny 1,77 d 3,55 d 7,16 d 16,69 d mimośród 0,0041 0,0094 0,0011 0,0074 średnica 3640 km (1,05 D K ) 3120 km (0,90 D K ) 5260 km (1,51 D K ) 4820 km (1,39 D K ) masa 8, kg (1,21 M K ) 4, kg (0,65 M K ) 14, kg (2,0 M K ) 10, kg (1,5 M K ) śr. gęstość 3,5 g cm - 3 3,0 g cm - 3 1,9 g cm - 3 1,8 g cm - 3 albedo 0,63 0,67 0,43 0,22 I/(MR 2 ) 0,377 0,346 0,312 0,358

21 Budowa wewnętrzna Io: rozmiar jądra zależy od przyjętego w modelu składu chemicznego Europa, Kallisto: detekcja zaburzeń pola magnetycznego Jowisza wskazuje na podpowierzchniowy słony ocean Ganimedes: własne pole magnetyczne Kallisto: mieszanina skał i lodu wodnego Źródło: Planetary Sciences, Cambridge 2010

22 Io Pióropusze sięgają do 300 km ponad powierzchnię księżyca. Składają się głównie z SO 2. Siarka w zależności od temperatury przybiera kolor żółty, pomarańczowy, czerwony lub czarny. Np. czarne obszary są tworzone przez stopioną, a następnie zestaloną siarkę. Białawe obszary są tworzone przez szron lub śnieg SO 2. Praktycznie brak kraterów uderzeniowych młoda powierzchnia nieustannie odnawiana 1 cm grubości rocznie.

23 Io Obserwacje w podczerwieni dobitnie ujawniają gorące obszary skorupy bezpośrednio związane z największymi wulkanami (L-K Lei-Kung, L Loki, Pi Pillan, M Marduk, Pe Pele). Kolor niebieskawy to temperatura ok. 90 K ( 183 C), żółty powyżej 170 K ( 103 C). Małe obszary aktywności wulkanicznej (o rozmiarach poniżej zdolności rozdzielczej zdjęcia) przekraczają 1500 K (1227 C)

24 Io Zaobserwowano ok. 120 centrów aktywności wulkanicznej. Powyżej pojawienie się nowego wulkanu między 4 kwietnia a 19 września Pióropusz sięgał 120 km wysokości.

25 Io Obszar wypływu lawy o długości ok. 500 km i szerokości ok. 180 km. Ślady po wielu epizodach, najświeższy wypływ jest najciemniejszy, widocznych wiele źródeł w centrum i na północy.

26 Io Jak poprzednio, szersze pole wzbogacone o obraz w podczerwieni na 5 µm.

27 Io Wypływ lawy z kalder Łańcucha Tvashtar. Lewe zdjęcie wykonano 25 listopada 1999, fontanna lawy sięga 1,5 km, czarne obszary to świeże depozyty. Prawe zdjęcie z 22 lutego 2000, ślad po wcześniejszym wypływie przypomina L, żółto-pomarańczowy obszar to świeża, gorąca lawa, dwa jasne punkty znaczą koniec strumienia lawy.

28 Io Obszary górzyste (ok. 2% powierzchni) są świadectwem występowania ruchów pionowych fragmentów skorupy. Powyżej podłużne góry w pobliżu kaldery Hi iaka (ciemny obszar pośrodku). Wysokość płaskowyżu to ok. 3,5 km, maks. 11 km. Obie formacje do siebie pasują wskazując na ryft między nimi. Pochodzenie nie jest jasne: skutek naporu bąbli magmy efekt naprężeń powstałych w czasie tonięcia ciągle przyrastającej na grubość skorupy

29 Siły pływowe Rozważmy sferyczne ciało o promieniu R, położone w środku układu współrzędnych, które doświadcza oddziaływania grawitacyjnego od punktowej masy m położonej w r o, przy czym r 0 >> R. W dowolnym punkcie r zawierającym element masy ciała siła oddziaływania pływowego na jednostkę masy jest różnicą oddziaływania grawitacyjnego w r i w środku masy ciała F T ( r) = Gm r 0 r 3 ( r 0 r) + Gm r r Jeśli ograniczymy się do punktów leżących na linii łączącej środek rozważanego ciała i położenie m, to możemy pominąć notację wektorową F T ( x) = Gm ( x 0 x) + Gm 2 2 x 0 2x Gm x 0 3. Dla Io wielkość pływów od Jowisza, ale także innych księżyców wynosi 100 m. Źródło: Planetary Sciences, Cambridge 2010

30 Io Źródło:Lellouch et al Źródło:Pater et al Śladowa atmosfera składająca się z SO 2 i SO (efekt fotodysocjacji) oraz O, S, Na, K, Cl. Po lewej: emisja radiowa SO 2. Po prawej: emisja w bliskiej podczerwieni SO, model o wysokiej temperaturze najlepiej opisuje obserwacje, co świadczy o wulkanicznym pochodzeniu molekuły.

31 Europa

32 Europa Pęknięcia lodowe skorupy mają często charakter podwójnych grzbietów. Na zdjęciu powstała dolina na ok. 1,5 km szerokości. Grzbiety sięgają 300 m względem otoczenia. Jaśniejszy obszar to prawdopodobnie czysty lód wodny, ciemniejszy to lód domieszkowany krzemianami i solami. Pochodzenie nieznane zgniatanie skorupy lub pęknięcia i wypływ świeżego lodu Stosunkowo nowy krater uderzeniowy (26 km średnicy), biel wyrzuconego (na 1000 km) materiału sugeruję lód. Środkowa górka (niewidoczna na zdjęciu) ma 600 m wysokości

33 Europa Źródło: Pappalardo et al. 1998, Nature 391, 365 Struktury nazwane piegami (kopuły i depresje) wskazują na obszary silnej podpowierzchniowej konwekcji (diapiry) deformującej powierzchnię

34 Europa Struktura przypominająca pole zamarzniętych kier na oceanie. Widocznych także kilka kraterów uderzeniowych o średnicach ok 500 m. Tu grubość skorupy szacuje się na 4-6 km Mozaika zdjęć obszaru chaotycznego ( km)

35 Europa ciepły lód słony ocean konwekcja lokalne roztopy skalny płaszcz Płaszcz i jądro rotują nieco wolniej niż skorupa, która dokonuje jednego dodatkowego obrotu raz na lat Źródło: Exploring the Solar System, Willey-Blackwell 2010

36 Ganimedes 1/3 powierzchni pokryta przez ciemne obszary gęsto pokryte kraterami Obszary jasne wydają się w wielu przypadkach młodsze Uskoki o wysokości do kilkuset metrów są związane z naprężeniami skorupy Aktywność tektoniczna skończyła się ok. 3,5 mld lat temu

37 Ganimedes Pole widzenia km, struktura ciemnego obszaru to efekt wysycenia kraterami uderzeniowymi, jasne pasma są pochodzenia tektonicznego w połączeniu z lodowym wulkanizmem (lód zamiast lawy)

38 Ganimedes Struktura położona na skraju ciemnego obszaru, powstała wskutek ścinania, przesuwania i obracania się fragmentu skorupy - ruchów wymuszonych przez zachodzące w pobliżu procesy tektoniczne. Pole km

39 Ganimedes Kratery łańcuchowe na granicy ciemnego i jasnego obszaru efekt spadku komety, która rozpadła się tuż przed zderzeniem. Pole km

40 Kallisto Powierzchnia w nienaruszonej formie pierwotnej Nie wiadomo, czym jest ciemny materiał pokrywający glob Widoczna struktura uderzeniowa Valhalla jasny obszar o średnicy 600 km i koncentryczne pęknięcia do 1300 od centrum

41 Kallisto

42 Kallisto

43 Układ Jowisza Większość spośród 57 księżyców poza orbitą Kallisto skupia się w 5 grupach (1-2 duże obiekty do kilkudziesięciu km średnicy, reszta o rozmiarach 2 4 km) Ich łączna masa to 0,1% masy Europy Część obiega planetę w kierunku przeciwnym niż jej rotacja Są to pozostałości po przechwyconych, a następnie rozdrobnionych planetoidach sprzed 4,5 mld lat. Obecnie brak jest wydajnego mechanizmu przechwytywania

Fizyka układów planetarnych. Wenus. Wykład 3

Fizyka układów planetarnych. Wenus. Wykład 3 Fizyka układów planetarnych Wenus Wykład 3 parametr wartość okres synodyczny 583 d (1 rok i 7 mies) rozm. kątowy 10 66 WENUS MERKURY HORYZONT Słońce pod horyzontem Źródło: NASA Źródło: NASA Źródło: Wordpress

Bardziej szczegółowo

Fizyka układów planetarnych II. Uran i Neptun. Wykład 1

Fizyka układów planetarnych II. Uran i Neptun. Wykład 1 Fizyka układów planetarnych II Uran i Neptun Wykład 1 Uran Neptun Ziemia półoś wielka 19,2 j.a. 30,1 j.a. 1,0 j.a. okres orbitalny 84,0 lata 164,8 roku 1 rok mimośród 0,046 0,011 0,017 inklinacja 0,77

Bardziej szczegółowo

Fizyka układów planetarnych. Merkury. Wykład 5

Fizyka układów planetarnych. Merkury. Wykład 5 Fizyka układów planetarnych Merkury Wykład 5 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Merkury Ziemia półoś wielka 0,387 j.a. 1,0 j.a. okres orbitalny 0,24 roku 1 rok okres synodyczny

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny

Układ Słoneczny. Powstanie Układu Słonecznego. Dysk protoplanetarny Układ Słoneczny Powstanie Układu Słonecznego Układ Słoneczny uformował się około 4,6 mld lat temu w wyniku zagęszczania się obłoku materii składającego się głównie z gazów oraz nielicznych atomów pierwiastków

Bardziej szczegółowo

Układ słoneczny. Rozpocznij

Układ słoneczny. Rozpocznij Układ słoneczny Rozpocznij Planety układu słonecznego Mapa Merkury Wenus Ziemia Mars Jowisz Saturn Neptun Uran Sprawdź co wiesz Merkury najmniejsza i najbliższa Słońcu planeta Układu Słonecznego. Jako

Bardziej szczegółowo

Saturn i jego pierścienie

Saturn i jego pierścienie Fizyka układów planetarnych Saturn i jego pierścienie Wykład 7 Saturn Ziemia półoś wielka 9,6 j.a. 1,0 j.a. okres orbitalny 29,4 roku 1 rok mimośród 0,057 0,017 inklinacja (kąt nachylenia płaszczyzny orbity

Bardziej szczegółowo

Fizyka układów planetarnych. Mars. Wykład 4

Fizyka układów planetarnych. Mars. Wykład 4 Fizyka układów planetarnych Mars Wykład 4 parametr wartość jasność obserwowana od +1.6 do 2.9 mag rozm. kątowy 3,5 25,1 101 10 6 km -1,4 mag, 14 55,8 10 6 km -2,9 mag, 25 parametr Mars Ziemia półoś wielka

Bardziej szczegółowo

Układ Słoneczny. Pokaz

Układ Słoneczny. Pokaz Układ Słoneczny Pokaz Rozmiary planet i Słońca Orbity planet Planety typu ziemskiego Merkury Najmniejsza planeta U.S. Brak atmosfery Powierzchnia podobna do powierzchni Księżyca zryta kraterami część oświetlona

Bardziej szczegółowo

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org

ENCELADUS KSIĘŻYC SATURNA. Wojciech Wróblewski Źródło: en.wikipedia.org ENCELADUS KSIĘŻYC SATURNA Źródło: en.wikipedia.org Wojciech Wróblewski 2017 PODSTAWOWE DANE DOTYCZĄCE ENCELADUSA Odkryty w 1789 r. Przez Williama Herschela Odległość od Saturna (perycentrum): 237378 km

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

Fizyka układów planetarnych. Ziemia, Księżyc. Wykład 2

Fizyka układów planetarnych. Ziemia, Księżyc. Wykład 2 Fizyka układów planetarnych Ziemia, Księżyc Wykład 2 Voyager 1, 1990 Źródło: NASA parametr śr. promień masa śr. gęstość śr. przyspiesz. graw. wartość 6370 km 6 10 24 kg 5,5 g cm - 3 9,8 m s - 2 albedo

Bardziej szczegółowo

Pola Magnetyczne w Układzie Słonecznym

Pola Magnetyczne w Układzie Słonecznym Pola Magnetyczne w Układzie Słonecznym MAGNETOSFERA SŁOŃCA 2 Magnetosfera słońca Szybki wiatr (do 900 km/s) wypływa z niemal nieaktywnych rejonów biegunowych Powolny wiatr (od 200 km/s) z obszarów aktywniejszych,

Bardziej szczegółowo

Saturn. Voyager 2, 21 lipiec1981

Saturn. Voyager 2, 21 lipiec1981 Saturn Voyager 2, 21 lipiec1981 Parametry i dane orbitalne Parametry Saturna Masa 568.46 10^24 kg 9 515 % MZ Gęstość 0.687 g/cm^3 12.5 % GZ Promień równikowy (1 bar) 60 268 km 945 % RZ Promień biegunowy

Bardziej szczegółowo

PARAMETRY I DANE ORBITALNE

PARAMETRY I DANE ORBITALNE Jowisz PARAMETRY I DANE ORBITALNE Parametry Jowisza Masa 1 898.6 10^24 kg 31 783% MZ Gęstość 1 326 kg/m^3 24% GZ Promień równikowy (1 bar) 71 492 km 1 120% RZ Promień biegunowy 66 854 km 1 051% BZ g na

Bardziej szczegółowo

Księżyc to ciało niebieskie pochodzenia naturalnego.

Księżyc to ciało niebieskie pochodzenia naturalnego. 2b. Nasz Księżyc Księżyc to ciało niebieskie pochodzenia naturalnego. Obiega on największe ciała układów planetarnych, tj. planeta, planeta karłowata czy planetoida. W niektórych przypadkach kiedy jest

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Układ słoneczny, jego planety, księżyce i planetoidy

Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny, jego planety, księżyce i planetoidy Układ słoneczny składa się z ośmiu planet, ich księżyców, komet, planetoid i planet karłowatych. Ma on około 4,6 x10 9 lat. W Układzie słonecznym wszystkie

Bardziej szczegółowo

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2

Układ Słoneczny. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 2 Rok 2019 1. Wstęp teoretyczny Wszyscy ludzie zamieszkują wspólną planetę Ziemię. Nasza planeta, tak jak siedem pozostałych, obiega Słońce dookoła.

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY

PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun

Bardziej szczegółowo

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ

Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku

Bardziej szczegółowo

Tajemnice Srebrnego Globu

Tajemnice Srebrnego Globu Tajemnice Srebrnego Globu Teorie powstania Księżyca Księżyc powstał w wyniku zderzenia pra Ziemi z ciałem niebieskim o rozmiarach zbliżonych do ziemskich Ziemia i Księżyc powstały równocześnie, na początku

Bardziej szczegółowo

Ciała drobne w Układzie Słonecznym

Ciała drobne w Układzie Słonecznym Ciała drobne w Układzie Słonecznym Planety karłowate Pojęcie wprowadzone w 2006 r. podczas sympozjum Międzynarodowej Unii Astronomicznej Planetą karłowatą jest obiekt, który: znajduje się na orbicie wokół

Bardziej szczegółowo

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski

ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos

Bardziej szczegółowo

W poszukiwaniu życia pozaziemskiego

W poszukiwaniu życia pozaziemskiego W poszukiwaniu życia pozaziemskiego Czy istnieje życie we Wszechświecie? 1473 1543 r. TAK, bo: zasada kopernikaoska mówi, że Ziemia nie jest wyróżnionym miejscem we Wszechświecie Biblioteka Uniwersytetu

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2

Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2 Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące

Bardziej szczegółowo

Ziemia jako planeta w Układzie Słonecznym

Ziemia jako planeta w Układzie Słonecznym Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta w Układzie Słonecznym Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Rys. 1 Przekrój Saturna

Rys. 1 Przekrój Saturna O UKŁADZIE SŁONECZNYM. Siedem planet krążących wokół Słońca obraca się w jedną stronę, a dwie w drugą stronę. Każda z nich nachylona jest pod innym kątem. Uran wręcz turla się po płaszczyźnie orbity. Pluton

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

O aktywności słonecznej i zorzach polarnych część I

O aktywności słonecznej i zorzach polarnych część I O aktywności słonecznej i zorzach polarnych część I dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Słooce Protuberancja Fotosfera Plama Chromosfera Włókno Dziura koronalna Proporzec koronalny

Bardziej szczegółowo

Układ Słoneczny Układ Słoneczny

Układ Słoneczny Układ Słoneczny Fizyka i Chemia Ziemi Układ Słoneczny we Wszechświecie Układ Słoneczny cz. 1 T.J. Jopek jopek@amu.edu.pl IOA UAM 1 2 Układ Słoneczny Układ Słoneczny stanowią: Układ Planetarny Słońce, planety, Obłok Oorta

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Prezentacja. Układ Słoneczny

Prezentacja. Układ Słoneczny Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców

Bardziej szczegółowo

Życie w Układzie Słonecznym I

Życie w Układzie Słonecznym I Astrobiologia Życie w Układzie Słonecznym I Wykład 4 Wczesne Słońce Moc promieniowania Słońca rośnie wraz z wiekiem Wczesne Słońce Ilość energii, jaką otrzymuje Ziemia w jednostce czasu P in = π R 2 S(1

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Uogólniony model układu planetarnego

Uogólniony model układu planetarnego Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Nasza Galaktyka

Nasza Galaktyka 13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Astronomiczny elementarz

Astronomiczny elementarz Astronomiczny elementarz Pokaz dla uczniów klasy 5B Szkoły nr 175 Agnieszka Janiuk 25.06.2013 r. Astronomia najstarsza nauka przyrodnicza Stonehenge w Anglii budowla z okresu 3000 lat p.n.e. Starożytni

Bardziej szczegółowo

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca) Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

Małe ciała Układu Słonecznego

Małe ciała Układu Słonecznego Fizyka układów planetarnych II Małe ciała Układu Słonecznego Wykład 2 Fizyka układów planetarnych II 2. Małe ciała Układu Słonecznego Planeta 1. ciało niebieskie okrążające gwiazdę (w różnych etapach ewolucji),

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Teoria tektoniki płyt litosfery

Teoria tektoniki płyt litosfery Teoria tektoniki płyt litosfery Pytania i odpowiedzi 1. Podaj przyczynę przemieszczania się płyt litosferycznych Przyczyną przemieszczania się płyt litosfery jest najprawdopodobniej ruch materii (prądy

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Modelowanie rzek pozaziemskich dr hab. Leszek Czechowski

Modelowanie rzek pozaziemskich dr hab. Leszek Czechowski Modelowanie rzek pozaziemskich dr hab. Leszek Czechowski Uniwersytet Warszawski; Wydział Fizyki; Instytut Geofizyki; Zakład Fizyki Litosfery Animacja: strumień magmy (USGS). Badania nasze prowadzimy w

Bardziej szczegółowo

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego Wenus na tle Słońca Sylwester Kołomański Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Instytut Astronomiczny UWr Czym się zajmujemy? uczymy studentów, prowadzimy badania naukowe (astrofizyka

Bardziej szczegółowo

Ewolucja w układach podwójnych

Ewolucja w układach podwójnych Ewolucja w układach podwójnych Tylko światło Temperatura = barwa różnica dodatnia różnica równa 0 różnica ujemna Jasnośd absolutna m M 5 log R 10 pc Diagram H-R Powstawanie gwiazd Powstawanie gwiazd ciśnienie

Bardziej szczegółowo

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Od Wielkiego Wybuchu do Gór Izerskich. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Od Wielkiego Wybuchu do Gór Izerskich Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie Góry Izerskie

Bardziej szczegółowo

Układ Słoneczny (nie zachowano proporcji odległości i wielkości obiektów) Prawie cała masa US (99,87%) skupiona jest w centrum układu,tj. w Słońcu.

Układ Słoneczny (nie zachowano proporcji odległości i wielkości obiektów) Prawie cała masa US (99,87%) skupiona jest w centrum układu,tj. w Słońcu. 2a. Układ Słoneczny UKŁAD SŁONECZNY stanowi zespół ciał niebieskich złożony z gwiazdy (Słońce) i związanych z nią siłami grawitacji: planet, księżyców, planetoid, komet, meteoroidów oraz materii międzyplanetarnej.

Bardziej szczegółowo

Tektonika Płyt. Prowadzący: dr hab. Leszek Czechowski

Tektonika Płyt. Prowadzący: dr hab. Leszek Czechowski 1 Tektonika Płyt Wykład z ćwiczeniami dla 2 roku Geofizyki w Geologii w semestrze letnim: 30 godzin wykładu i 30 godzin ćwiczeń. Wykłady będą prowadzone przez Internet, ćwiczenia tradycyjnie w sali. ECTS

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone).

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Promieniowanie termiczne emitowane z powierzchni planety nie może wydostać się bezpośrednio

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna

Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Temat: Elementy astronautyki (mechaniki lotów kosmicznych) asysta grawitacyjna Załóżmy, że sonda kosmiczna mając prędkość v1 leci w kierunku planety pod kątem do toru tej planety poruszającej się z prędkością

Bardziej szczegółowo

Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m

Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m Ruchy wód morskich Falowanie Falowanie czyli pionowy ruch cząsteczek wody, wywołany rytmicznymi uderzeniami wiatru o powierzchnię wody. Fale wiatrowe dochodzą średnio do 2-6 m wysokości i 50-100 m długości.

Bardziej szczegółowo

Jak możemy obliczyć odległość burzy od Nas? W jaki sposób możemy ocenić, widząc błyskawicę i słysząc grzmot jak daleko od Nas uderzył piorun? Licząc s

Jak możemy obliczyć odległość burzy od Nas? W jaki sposób możemy ocenić, widząc błyskawicę i słysząc grzmot jak daleko od Nas uderzył piorun? Licząc s CIEKAWOSTKI Z FIZYKI Jak możemy obliczyć odległość burzy od Nas? W jaki sposób możemy ocenić, widząc błyskawicę i słysząc grzmot jak daleko od Nas uderzył piorun? Licząc sekundy między grzmotem, a błyskiem.

Bardziej szczegółowo

Teoria ruchu Księżyca

Teoria ruchu Księżyca Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów

Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów Zorza polarna- zjawisko świetlne obserwowane w górnej atmosferze w pobliżu biegunów magnetycznych planty, która posiada silne pole magnetyczne o charakterze dipolowym (dwubiegunowym). Na Ziemie zorze występują

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga

Bardziej szczegółowo

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak

Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Plan wystąpienia Troszkę niedalekiej historii. Dlaczego wokół podwójnych? Pobieżna statystyka. Typy planet w układach podwójnych. Stabilność

Bardziej szczegółowo

Cząstki elementarne z głębin kosmosu

Cząstki elementarne z głębin kosmosu Cząstki elementarne z głębin kosmosu Grzegorz Brona Zakład Cząstek i Oddziaływań Fundamentalnych, Uniwersytet Warszawski 24.09.2005 IX Festiwal Nauki Co widzimy na niebie? - gwiazdy - planety - galaktyki

Bardziej szczegółowo

Powstanie i ewolucja Układu Słonecznego I

Powstanie i ewolucja Układu Słonecznego I Astrobiologia Powstanie i ewolucja Układu Słonecznego I Wykład 2 Chondryty węgliste Meteoryty te mają skład chemiczny najbardziej zbliżony do materii pierwotnej, z której powstał Układ Słoneczny. Zawierają:

Bardziej szczegółowo

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski

Aktywne Słońce. Tomasz Mrozek. Instytut Astronomiczny. Uniwersytet Wrocławski Aktywne Słońce Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Heliofizyka XXI w Źródło energii słonecznej 600 mln ton wodoru zamienia się w hel w każdej sekundzie 4 mln ton jest przekształcane

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXIII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZEŚĆ TEORETYCZNA Za każde z trzech zadań można otrzymać maksymalnie 20 punktów. Zadanie 1. Zaobserwowano zbliżajac a się do Ziemi kulist a planetoidę o średnicy

Bardziej szczegółowo

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3

Bardziej szczegółowo

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m. 1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie

Bardziej szczegółowo

Aktywność magnetosfery i zaburzenia w wietrze słonecznym.

Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Aktywność magnetosfery i zaburzenia w wietrze słonecznym. Piotr Koperski Obserwatorium Astronomiczne (Zakład Fizyki Wsokich Energii) Uniwersytet Jagielloński, Kraków 1 Zagadnienia Zródła i charakterystyka

Bardziej szczegółowo

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY. (od początku do prądu elektrycznego) Zadania zamknięte

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY. (od początku do prądu elektrycznego) Zadania zamknięte Włodzimierz Wolczyński 25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do prądu elektrycznego) Zadania zamknięte Zadanie 1 5 4 a[m/s 2 ] Wykres przedstawia zależność

Bardziej szczegółowo

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Nazywamy Cię Merkury

Nazywamy Cię Merkury Słońce Jesteś Słońce Nasza najbliższa gwiazda. Stanowisz centrum układu planetarnego, który na Twoją cześć nazywamy Układem Słonecznym. Wokół Ciebie, jak na wielkiej karuzeli, krążą planety ze swoimi księżycami.

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 9 Tomasz Kwiatkowski 1 grudnia 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 9 1/1 Plan wykładu Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 9 2/1 Odkrycie

Bardziej szczegółowo

ARCHIWALNE OBSERWACJE NIEBA BARTEK PILARSKI

ARCHIWALNE OBSERWACJE NIEBA BARTEK PILARSKI ARCHIWALNE OBSERWACJE NIEBA BARTEK PILARSKI 1997 2 kwietnia, ŚR (2258 0033) monolornetka 20x60 / 10 / 7 C M 68 (?), M 81, M 82, NGC 2403 (+), NGC 1502 ( gw.podwójna pośrodku tej gromady) IC 342 (-), M52,

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo