BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego
|
|
- Małgorzata Lisowska
- 10 lat temu
- Przeglądów:
Transkrypt
1 BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne przeznaczone są wyłącznie do indywidualnego użytku studiujących. Rozpowszechnianie kopii bez pisemnej zgody autora jest zabronione. Literatura [1] Poe, Klauer, Brobst: Tworzenie hurtowni danych, WNT 1999 [2] Garcia-Molina, Ullman, Widom: Implementacja systemów baz danych, WNT
2 Systemy przetwarzania analitycznego Cele przetwarzania analitycznego Chęć wykorzystania zgromadzonych danych w procesie decyzyjnym Potrzeba tworzenia analiz obejmujących całość działań organizacji Pożądane cechy Scalenie danych z różnych źródeł Duża wydajność analizy (możliwe analizy interaktywne) Przechowywanie i udostępnianie historii (np. do porównań) Typowe zastosowania danych analitycznych OLAP(On Line Analytical Processing) interaktywne analizowanie trendów i zależności weryfikacja hipotez głównie analiza wielowymiarowa Eksploracja danych(data mining) pozyskiwanie z danych nowych, nieznanych przedtem informacji i zależności Systemy informowania kierownictwa (EIS Executive Information Systems) prezentacja informacji syntetycznych, do zarządzania strategicznego interaktywna, z dużym udziałem grafiki 2
3 Operacyjne i zbiorcze bazy danych Dane operacyjne Rozproszone Heterogeniczne W niewłaściwym układzie Trudne do wydajnej analizy Bez historii(dane aktualne) Zwykle niezbyt wielkie(mb..gb) Transakcyjne ³ Zwykle znormalizowane Nie nadają się do celów analitycznych Zbiorcza baza danych hurtownia danych Scentralizowana baza danych Oddzielona od baz operacyjnych Scala informację z wielu źródeł Utrzymuje wielką ilość informacji(gb..tb) Gromadzi dane historyczne Dostosowana do przetwarzania analitycznego Agreguje informację zdenormalizowana Hurtownia danych(data warehouse, magazyn danych) Cechy hurtowni Zorientowana tematycznie(subject oriented) Zintegrowana(integrated) Trwała(nonvolatile) Przechowująca historię(time variant) 3
4 Hurtownie i składnice danych Hurtownia danych(data warehouse) Niezależna od zastosowania Scentralizowana Zawiera historię Dane mało zagregowane Dane mało zdenormalizowane Wiele źródeł danych: dane operacyjne i zewnętrzne ³ Składnice danych (data marts, tematyczne h.d.) Specyficzne dla zastosowania Przeznaczone dla określonych użytkowników Dane silnie zagregowane Dane silnie zdenormalizowane Dane w różnych składnicach powtarzają się Niewiele źródeł danych (albo jedno: centralna hurtownia) Architektura systemu analitycznego Przykład System z centralną hurtownią i składnicami danych Hurtownia danych Składnica danych Transformacja Składnica danych Ekstrakcja Ekstrakcja OLTP OLTP 4
5 Dane w hurtowni Rodzaje danych w hurtowni Elementarne(kopie źródłowych) Historyczne Agregaty różne stopnie agregacji Metadane opisują np. strukturę i znaczenie danych zastosowane agregacje źródła danych(i/lub transformację) historię ładowania danych uwzględniają zmienność wykorzystywane m.in. do sterowania procesami zasilania zarządzania zmianami ³ Cykl życia danych w hurtowni Zasilanie danymi wsadowo przyrostowo Agregacja tworzenie zmaterializowanych agregatów Archiwizacja przeniesienie do historii zwijanie(rolling aggregates) Usuwanie danych tylko wyjątkowo Proces ETL (Extraction Transformation Loading) Ekstrakcja z baz operacyjnych Transport Transformacja: czyszczenie, konwersja, scalanie Ładowanie do hurtowni Analiza wielowymiarowa Dane wielowymiarowe Wymiary dyskretne hierarchiczne przykłady: czas, produkt, sprzedawca Fakty zawierają miary przykłady miar: wielkość sprzedaży, wartość sprzedaży,% reklamacji Przykład Analiza sprzedaży Produkt Czas Wielkość sprzedaŝy Typowe operacje Obracanie(pivoting) zmiana perspektywy oglądania danych Selekcja wybór interesujących elementów wymiarów Wycinanie(slice and dice) selekcja elementów wybranych wymiarów(wycięcie plastra ) zmniejszenie liczby wymiarów projekcja danych w pozostałych wymiarach(z agregacją) Zwijanie(roll-up) i rozwijanie(drill-down) nawigacja po hierarchii wymiaru z agregacją/dezagregacją Ranking uszeregowanie elementów wymiaru wg wzrostu/spadku agregatu miary 5
6 Typowe struktury wymiarów Struktura gwiaździsta(starnet) Struktura płatek śniegu(snowflake) Region Oddział Sprzedawca Produkt Rodzaj StaŜ Cena Region Kolor Oddział Rodzaj Sprzedawca Produkt Kraj ³ Rynek SprzedaŜ Dzień Miesiąc Kwartał Rok Płeć Zawód Kraj SprzedaŜ Dzień Rynek Miesiąc Tydzień Kwartał Rok Przykład Tabela przestawna(pivot table) Operacje wielowymiarowe Dane źródłowe Projekcja Semestr Przedmiot Wariant Liczba Kierunek chętnych 04L BD3 A SI 12 04L BD3 A WD 60 04L BD3 B SI 59 04L BD3 B WD 6 04L KBD3 A SI 15 04L KBD3 A WD 20 04L KBD3 B SI 44 04L KBD3 B WD 4 04Z BD3 A SI 7 04Z BD3 A WD Wycinanie Semestr 04L Liczba chętnych Kierunek Przedmiot Wariant SI WD Suma BD3 A B KBD3 A B Suma Semestr (Wszystkie) Liczba chętnych Kierunek Przedmiot Wariant SI WD Suma BD3 A B KBD3 A B Suma Zwijanie Semestr 04L Liczba chętnych Kierunek Przedmiot Wariant SI WD Suma BD KBD Suma
7 OLAP(On-line Analytical Processing) Zadania OLAP Prezentacja wielowymiarowych widoków danych Interaktywne zapytania i analizy Obliczanie agregatów Analiza statystyczna, analiza trendów, prognozowanie, modelowanie Wykresy ³ Duża szybkość działania Wymagania wobec analitycznej b.d. Efektywne przetwarzanie analityczne wielkiej ilości danych Efektywne przetwarzanie wielowymiarowe Narzędzia OLAP Arkusze kalkulacyjne, np. Excel Narzędzia do budowy aplikacji analitycznych, np. Business Objects, Oracle Discoverer, Oracle Express Gotowe rozwiązania dla typowych problemów, np. Oracle Sales Analyzer Rozwiązania techniczne systemów OLAP ROLAP(Relational OLAP) Zbudowane w relacyjnej b.d. Wielka objętość danych(tb) Złożone struktury Problemy z wydajnością Łatwa modyfikacja danych Stosowane dla centralnych hurtowni MOLAP(Multidimensional OLAP) Specjalne serwery wielowymiarowe Mniejsze objętości danych(gb) Naturalna reprezentacja struktur wielowymiarowych Modyfikacje danych kosztowne Stosowane często dla składnic danych HOLAP(Hybrid OLAP) Integracja rozwiązań ROLAP i MOLAP współdziałające bazy: relacyjna i wielowymiarowa włączenie rozwiązań MOLAP do relacyjnego DBMS 7
8 Denormalizacja w bazach analitycznych Denormalizacja wymiarów Hierarchię wymiarów zwija się do jednej tabeli Znacznie ogranicza to liczbę złączeń Przykład Denormalizacja wymiaru ³ PRZEDMIOTY NAZWA WAR_PRZ_FK WARIANTY_PRZEDMIOTOW KOD_WARIANTU NAZWA PROWADZACY WARIANTY KOD_WARIANTU PROWADZACY Materializacja agregatów Przechowywanie agregatów(sum, średnich itp.) często używanych w analizach w dodatkowych kolumnach lub tabelach w zmaterializowanych perspektywach Wyliczanie agregatów asynchronicznie okresowo synchronicznie Ziarnistość agregacji graniczna wgrupach Użycie agregatów zmaterializowanych zamiast wyliczanych na bieżąco przez narzędzia OLAP przez optymalizator zapytań Zalecenie projektowe 14.1 Projektując struktury relacyjne do celów analitycznych należy śmiało stosować denormalizację. Struktury danych baz analitycznych Struktury danych w bazach ROLAP Schemat gwiaździsty bardzo typowy dla ROLAP z denormalizacją wymiarów kluczgłównywtabelifaktówjest złożeniem kluczy obcych do tabel wymiarów Schemat wielogwiaździsty klucz główny w tabeli faktów zawiera klucze obce do tabel wymiarów dodatkowe kolumny możezatemistniećwielefaktówdlatej samej kombinacji wartości wymiarów Płatek śniegu bez denormalizacji wymiarów Wielokrotne tabele faktów wiele tabel faktów wspólne wymiary Konstelacja wiele schematów gwiaździstych Przykład Gwiazda WARIANTY_PRZEDMIOTOW SEMESTRY KOD_WARIANTU NAZWA PROWADZACY ZAP_WPR_FK ZAP_SEM_FK ZAPISY KOD_WARIANTU ID_SEMESTRU ID_KIERUNKU LICZBA_CHETNYCH LICZBA_ZAPISANYCH ZAP_KIE_FK KIERUNKI ID_KIERUNKU NAZWA ID_SEMESTRU 8
9 Problemy budowy struktur hurtowni danych Problemy modelowania Trudność ustalenia celu biznesowego hurtowni Problemy zmienności Zmiany w schematach baz operacyjnych Ewolucja schematu hurtowni Ewolucja słowników ³ Problemy wydajności VLDB Analiza wielowymiarowa zapytania gwiaździste Zalecenie projektowe 14.2 Projektując struktury hurtowni danych należy korzystać z dostępnych w użytym DBMS środków technicznych dedykowanych dla VLDB i baz analitycznych. Środki techniczne dla ROLAP Ładowanie danych Instrukcje INSERT ALL FIRST i MERGE (z warunkami) Tabele zewnętrzne Partycjonowanie danych Partycjonowanie tabel i indeksów automatyczny zapis do partycji optymalizacja zapytań z użyciem partycji Materializowanie agregatów Zmaterializowane perspektywy (materialized views) Przepisywanie zapytań(query rewrite) Specjalne techniki indeksowania Indeksy bitowe Indeksy złączeniowe Wykonywanie zapytań Optymalizacja zapytań gwiaździstych Zarządzanie zasobami DBMS przeciwdziałanie runaway queries Ograniczenia integralności Dane ładowane do hurtowni są sprawdzane w procesie ETL Nie ma potrzeby utrzymywania spójności za pomocą więzów w bazie danych Stosowanie ograniczeń integralności po stronie DBMS można poważnie ograniczyć klucze główne ewentualnie klucze obce Ograniczenia typu RELY widziane przez aplikacje analityczne jako obowiązujące używane przez optymalizator do przepisywania zapytań(mogą dotyczyć także perspektyw) niesąwalidowaneprzezdbms ( zawierza się procesowi ETL) 9
Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Hurtownie danych. 31 stycznia 2017
31 stycznia 2017 Definicja hurtowni danych Hurtownia danych wg Williama Inmona zbiór danych wyróżniający się następującymi cechami uporządkowany tematycznie zintegrowany zawierający wymiar czasowy nieulotny
Hurtownie danych a transakcyjne bazy danych
Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,
Modele danych - wykład V
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie
Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)
Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni
Modele danych - wykład V. Zagadnienia. 1. Wprowadzenie 2. MOLAP modele danych 3. ROLAP modele danych 4. Podsumowanie 5. Zadanie fajne WPROWADZENIE
Modele danych - wykład V Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Zagadnienia 1. Wprowadzenie 2. MOLAP modele danych 3. modele danych 4. Podsumowanie 5. Zadanie fajne
Wprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Wstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych
Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje
4. Znaczenie czasu w modelowaniu i strukturalizacji danych
Temat1- Geneza 1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Spis tre±ci. Przedmowa... Cz ± I
Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego
HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.
Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą
Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Plan wykładu. Hurtownie danych. Problematyka integracji danych. Cechy systemów informatycznych
1 Plan wykładu 2 Hurtownie danych Integracja danych za pomocą hurtowni danych Przetwarzanie analityczne OLAP Model wielowymiarowy Implementacje modelu wielowymiarowego ROLAP MOLAP Odświeżanie hurtowni
Wielowymiarowy model danych
Plan wykładu Wielowymiarowy model danych 1. Model danych 2. Analiza wielowymiarowa 3. Model wielowymiarowy: koncepcja wymiarów i faktów 4. Operacje modelu wielowymiarowego 5. Implementacje modelu wielowymiarowego:
Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU
Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Schematy logiczne dla hurtowni danych
Schematy logiczne dla hurtowni danych 26 Plan rozdziału 27 Model biznesowy, logiczny i fizyczny hurtowni danych Podstawowe pojęcia w modelu logicznym, logiczny model wielowymiarowy Implementacje ROLAP/MOLAP
Bazy analityczne (hurtownie danych, bazy OLAP)
Bazy analityczne (hurtownie danych, bazy OLAP) Materiały pomocnicze. Bazy produkcyjne (transakcyjne) i analityczne Większość systemów baz danych to systemy produkcyjne, inaczej nazywane transakcyjnymi,
Część I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2007/08 Studia uzupełniajace magisterskie
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Usługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Systemy OLAP I. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Systemy OLAP I Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2008/09 Studia
Systemy OLAP II. Krzysztof Dembczyński. Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2006/07 Plan wykładu Systemy baz
Ewolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Zaawansowane systemy baz danych - ZSBD. Hurtownie danych 1. Problematyka hurtowni danych. Wykład przygotował: Robert Wrembel. ZSBD wykład 12 (1)
Hurtownie danych 1 Problematyka hurtowni danych Wykład przygotował: Robert Wrembel ZSBD wykład 12 (1) 1 Plan wykładu Problematyka integracji danych Integracja danych za pomocą hurtowni danych Przetwarzanie
Hurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania
Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu
OLAP i hurtownie danych c.d.
OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji
Hurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL
Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni
Hurtownia danych praktyczne zastosowania
Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia
PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO OPIS PRZEDMIOTU. Rozproszone Systemy Baz Danych
OPIS PRZEDMIOTU Nazwa przedmiotu Rozproszone Systemy Baz Danych Kod przedmiotu Wydział Instytut/Katedra Kierunek Specjalizacja/specjalność Wydział Matematyki, Fizyki i Techniki Instytut Mechaniki i Informatyki
Pierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
HURTOWNIE DANYCH. Krzysztof Goczyła. Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska. kris@eti.pg.gda.pl. K.
HURTOWNIE DANYCH Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl # 1 Część I. Tworzenie hurtowni danych 1. Co to jest hurtownia danych? 2. Model
Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL
Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Business Intelligence (BI) Hurtownie danych, Eksploracja danych. Business Intelligence (BI) Mnogość pojęć z okolic BI
Business Intelligence (BI) Hurtownie danych, Eksploracja danych Na początek tłumaczenie inteligencja biznesowa (fatalnie!) analityka biznesowa (lepiej?) usługi biznesowe (lepiej?) przetwarzanie analityczne
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl PROJEKTOWANIE WARSTWY DANYCH DETALICZNYCH - ZAGADNIENIA Partycjonowanie Partycja jest wydzielonym miejscem na dysku, w którym przechowywane
1. Ewolucja systemów opartych na bazach danych 2. Czym się rożni modelowanie od strukturalizacji danych? Model danych Struktury (danych)
1. Ewolucja systemów opartych na bazach danych Początki to np. ręczne spisy danych na papirusie w Egipcie. Ręczne zapisywanie danych trwało aż do końca XIX wieku. W XIX wieku stworzone zostały urządzenia,
PODSTAWOWE POJECIA ZWIAZANE Z HURTOWNIAMI DANYCH Najczęściej decyzja o stworzeniu hurtowni nadchodzi, gdy dana organizacja upora się z informatyzacją
HURTOWNIE DANYCH WSTĘP Fundamentem funkcjonowania dużej części współczesnych firm są systemy informatyczne. Bez nich żadna firma (szczególnie średnia lub duża) nie jest w stanie dobrze prowadzić swojej
Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI
Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co
Hurtownie danych wykład 3
Hurtownie danych wykład 3 dr Sebastian Zając SGH Warszawa 7 lutego 2017 Architektura relacyjna i wielowymiarowa Ze względu na przechowywanie danych na serwerze możemy zdecydować się na relacyjną bazę danych
Rozwiązania wspomagające przetwarzanie wielkich zbiorów danych (VLDB) we współczesnych systemach zarządzania bazami danych
Rozwiązania wspomagające przetwarzanie wielkich zbiorów danych (VLDB) we współczesnych systemach zarządzania bazami danych Tomasz Traczyk ttraczyk@ia.pw.edu.pl Wydział Elektroniki i Technik Informacyjnych
Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.
PI-14 01/12 Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.! Likwidacja lub znaczne ograniczenie redundancji (powtarzania się) danych! Integracja danych!
Oracle11g: Wprowadzenie do SQL
Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom
Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services
Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...
Business Intelligence
Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Plan. Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP
WYKŁAD 12: OLAP Plan Inteligencja bisnesowa (Bussiness Intelligence) Hurtownia danych OLAP Motywacja: Zaawansowane metody ekstrakcji danych i techniki przechowywania danych Rozwój wielu dziedzin zastosowań
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
OdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie
OdświeŜanie hurtownie danych - wykład IV Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006/2007 Zagadnienia do omówienia 1. Wprowadzenie 2. Klasyfikacja źródeł danych 3. Wymagania
Hurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence
Realizacja hurtowni danych dla administracji publicznej na przyk³adzie budowy systemu IACS
IX Konferencja PLOUG Koœcielisko PaŸdziernik 2003 Realizacja hurtowni danych dla administracji publicznej na przyk³adzie budowy systemu IACS Mariusz Muszyñski Pentacomp Systemy Informatyczne Prace nad
Integracja systemów transakcyjnych
Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Problematyka i architektury integracji danych
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Wprowadzenie do projektowania i wykorzystania baz danych Relacje i elementy projektowania baz
Wprowadzenie do projektowania i wykorzystania baz danych Relacje i elementy projektowania baz Katarzyna Klessa RELACJE dwa sposoby tworzenia Tworzenie relacji: ręcznie za pomocą odpowiednich zapytań (ALTER
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium BAZY DANYCH Databases Forma studiów: Stacjonarne
Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Matematyka kodem nowoczesności. Zaproszenie do składania ofert
Uniwersytet Śląski Dział Logistyki ul. Bankowa 12 40-007 Katowice tel. (32) 359 19 07 mail: joanna.kozbial@us.edu.pl; Katowice 7.02.2014 r Zaproszenie do składania ofert Niniejsze postępowanie jest prowadzone
Problematyka hurtowni danych
Plan wykładu Problematyka hurtowni 1. Bibliografia 2. Systemy klasy Business Intelligence 3. Podejścia do integracji 4. Definicja hurtowni 5. Architektury hurtowni Hurtownie, wykład Bartosz Bębel E-mail:
Systemy baz danych i hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie
Informatyka I BAZY DANYCH. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2017
Informatyka I BAZY DANYCH dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2017 Plan wykładu Definicja systemu baz danych Modele danych Relacyjne bazy danych Język SQL Hurtownie danych
Spis treści. O autorach... 12
Księgarnia PWN: Rick Greenwald, Robert Stackowiak, Jonathan Stern - Oracle Database 11g. To co najważniejsze Spis treści O autorach... 12 Wstęp... 13 Cele książki... 14 Czytelnicy książki... 15 O czwartym
Hurtownie danych - opis przedmiotu
Hurtownie danych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Hurtownie danych Kod przedmiotu 11.3-WI-INFD-HD Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Zintegrowane
Co to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych
Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.
Ewolucja systemów baz danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr letni 2004/05 Plan wykładu Relacyjne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba
Hurtownie Danych. Dariusz Dymek
Dariusz Dymek 2013-15 1 Definicja Hurtownia danych to tematyczna baza danych, która trwale przechowuje zintegrowane dane opisane wymiarem czasu [Inmon96] Hurtownie danych są ukierunkowane na realizację
Spojrzenie na systemy Business Intelligence
Marcin Adamczak Nr 5375 Spojrzenie na systemy Business Intelligence 1.Wprowadzenie. W dzisiejszym świecie współczesna organizacja prędzej czy później stanie przed dylematem wyboru odpowiedniego systemu
Bazy danych i ich aplikacje
ORAZ ZAPRASZAJĄ DO UDZIAŁU W STUDIACH PODYPLOMOWYCH Celem Studiów jest praktyczne zapoznanie słuchaczy z podstawowymi technikami tworzenia i administrowania bazami oraz systemami informacyjnymi. W trakcie
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARIANTY BUDOWY HURTOWNI DANYCH Literatura R. Kimball, The Data Warehouse Lifecycle, Wiley, 2013 W. Inmon, Building the Data Warehouse,
Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g
XI Konferencja PLOUG Kościelisko Październik 2005 Porównanie wydajności hurtowni danych ROLAP i MOLAP w Oracle 10g Bartosz Bębel, Julusz Jezierski, Robert Wrembel Politechnika Poznańska, Instytut Informatyki
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana
RELACYJNE BAZY DANYCH
RELACYJNE BAZY DANYCH Aleksander Łuczyk Bielsko-Biała, 15 kwiecień 2015 r. Ludzie używają baz danych każdego dnia. Książka telefoniczna, zbiór wizytówek przypiętych nad biurkiem, encyklopedia czy chociażby
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Bazy danych 2 Nazwa modułu w języku angielskim Databases 2 Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Hurtownie danych i systemy wspomagania decyzji. Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa
Hurtownie danych i systemy wspomagania decyzji Olaf Morawski Hewlett-Packard Polska Sp. z o.o., ul. Szturmowa 2A, 02-678 Warszawa Poniższy tekst opisuje architekturę systemów wspomagania decyzji, z uwzględnieniem
Rola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko
Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych
Spis treści. 1 Modelowanie logiczne. Plan wykładu. 1 Modelowanie logiczne 1
Plan wykładu Spis treści 1 Modelowanie logiczne 1 2 Transformacja modelu pojęciowego do logicznego 2 2.1 Transformacja własności............................ 3 2.2 Transformacja związków............................
Szkolenie autoryzowane. MS Wdrażanie hurtowni danych w Microsoft SQL Server 2012
Szkolenie autoryzowane MS 10777 Wdrażanie hurtowni danych w Microsoft SQL Server 2012 Strona szkolenia Terminy szkolenia Rejestracja na szkolenie Promocje Opis szkolenia Szkolenie przeznaczone jest dla
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 204/5 Nazwa Bazy danych Nazwa jednostki prowadzącej przedmiot Wydział Matematyczno - Przyrodniczy Kod Studia Kierunek studiów Poziom
Modelowanie hurtowni danych
Modelowanie hurtowni danych Zbyszko Królikowski Instytut Informatyki Dane w hurtowniach danych pojęcia podstawowe Hurtowniadanychjestkolekcją:zintegrowanych, zorientowanych tematycznie, zmiennych w czasie,
Grupa kursów: Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30
Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZĄRZADZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Wprowadzenie do SQL Nazwa w języku angielskim: Introduction to SQL Kierunek studiów (jeśli dotyczy): Zarządzanie
Egzamin / zaliczenie na ocenę* 0,5 0,5
Zał. nr 4 do ZW 33/01 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim: Technologia przetwarzania danych Nazwa w języku angielskim: Data processing technology Kierunek studiów
Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com
Media Partners Procesowanie i partycjonowanie Analysis Services od podszewki (300) Adrian Chodkowski Adrian.Chodkowski@outlook.com Adrian Chodkowski Konsultant Business Intelligence w Jcommerce S.A Certyfikowany
Migracja Business Intelligence do wersji 2013.3
Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Projektowanie hurtowni danych
Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2004/05 Plan wykładu Ewolucja
Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot
Microsoft Excel 2013: Budowanie modeli danych przy użyciu PowerPivot Alberto Ferrari i Marco Russo Przekład: Marek Włodarz APN Promise Warszawa 2014 Spis treści Wprowadzenie............................................................
Usługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.
Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA