ELEKTRONICZNA APARATURA DOZYMETRYCZNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ELEKTRONICZNA APARATURA DOZYMETRYCZNA"

Transkrypt

1 Dr inż. Andrzej Skoczeń KOiDC, WFiIS, AGH Rok akademicki 2018/2019 ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 5 7 czerwiec 2019 Aktywny dozymetr OSL Zjawiska SEE RADMON aktywny dozymetr w LHC Kraków, Medycynie, stopień II, semestr 1,

2 Mosimetr w kosmosie Poczynając od minimalnej wykrywalnej dawki (typowa czułość 1 mv/cgy ) pozwala na pomiar całkowitej dawki w zakresie dwóch lub trzech rzędów wielkości. Z jednej strony stałe przesuwanie się napięcia progowego umożliwia przechowywanie informacji przez cały czas lotu, Z drugiej strony monitorowanie małych przyrostów na dużym piedestale staje się coraz trudniejsze, W czasie lotu kosmicznego trzeba monitorować dawkę na każdej orbicie osobno. Potrzebne jest okresowe kasowanie dozymetru. 2

3 Jonizacja Luminescencja wzbudzana optycznie Optically Stimulated Luminescent OSL Poziom pułapkowy Wzbudzenie optyczne Pasmo przewodzenia Wzbudzone centrum rekombinacyjne Emisja widzialna Poziom rekombinacyjny Naświetlanie Odczyt Pasmo walencyjne SrS:Ce,Sm Siarczek strontu domieszkowany cezem i samarem 3

4 Sygnał stymulacyjny F Stymulacja F S OSL Foto-czujnik Foto-czujnik Stymulacja Sygnał OSL S OSL Światło zielone Długość fali [nm] Widmo stymulacyjne CaS: Ce, Sm Długość fali [nm] Widmo emisyjne CaS : Ce, Sm 4

5 LED 940nm; 50 ma przez 20 s na 2 V Warstwa CaS 500µm Fotodioda o szerokiej przerwie energetycznej z GaAsP lub GaP 5

6 Naświetlanie źródłem 60 Co Naświetlanie wiązką elektronów 6

7 Sygnał OSL W czasie naświetlania fosforu OSL N ładunków zostało złapanych. Wielkość N(D) jest funkcją dawki D. Pod wpływem stałego strumienia stymulacyjnego F na wyjściu wzmacniacza powstaje sygnał OSL S OSL (t). Czas narastania tego sygnału zależy tylko od stałej czasowej obwodu wejściowego wzmacniacza. Czas narastania luminescencji jest poniżej zakresu nanosekundowego. Przyjmujemy, że maksimum sygnału jest dla t = 0. Sygnał OSL dla dawki 4mGy promieniowania X. Zanik sygnału OSL można modelować funkcją wykładniczą: S t K N D F ( Ft) OSL ( ) = ( ) exp Stała czasowa: = 1 F Gdzie: F - strumień stumulującego światła, σ - przekrój czynny procesu stymulowanego uwalniania złapanych ładunków. 7

8 Sygnał OSL Dwa sposoby pomiaru: Maksimum S OSL ( max 0) = S = K N( D) F Wystarczy tylko pomiar wartości maksymalnej, ale wartość ta zależy od parametrów diody LED. Całkowy K S OSL ( t ) dt = N( D 0 Wymagane jest całkowanie całego sygnału, ale wynik nie jest zależny wprost od strumienia wzbudzającego. Jednak degradacja diody LED może wprowadzać także niezaniedbywalny błąd do pomiaru dawki. Niższy strumień światła wymaga dłuższego czasu odczytu i pogarsza się stosunek sygnału do szumu. ) 8

9 Uszkodzenia strukturalne diody LED Równanie Messengera-Spratta opisuje uszkodzenia strukturalne diody LED: L0 = 1+ 0K L Gdzie: L natężenie światła z diody LED po naświetleniu; L 0 natężenie światła z diody LED przed naświetleniem; τ 0 czas życia nośników mniejszościowych [s]; Φ fluencja wiązki elektronów [cm -2 ]; K τ - współczynnik uszkodzeń [cm 2 s -1 ]. Współczynnik uszkodzeń K τ zależy od: typu i energi cząstek, początkowych parametrów krzemu, poziomu wstrzykiwania i temperatury. L L 0 Fluencja [cm -2 ] Naświetlanie elektronami o energii 12 MeV 9

10 STE 8 G V LED V ref + _ I/V V OSL Wzmacniacz błędu 2 Źródło prądu sterowane napięciem Komórka sprzężenia zwrotnego 3 podczerwony LED i krzemowa fotodioda 4 Pasywny przetwornik prąd - napięcie Komórka pomiarowa 5 podczerwony LED i fotodioda GaAsP 6 Warstwa luminoforu OSL - SrS:Ce,Sm 7 Aktywny przetwornik prąd napięcie 8 Monitor prądu LED-ów 9 Klucz załączający stymulację (odczyt) 10

11 STE V ref + _ G V LED Degradację emisji diody LED można skompensować przez podnoszenie prądu przewodzenia tej diody w pętli sprzężenia zwrotnego I/V V OSL Emisja jest mierzona za pomocą drugiej diody LED połączonej szeregowo z diodą stymulacyjną. 4 3 Druga fotodioda (krzemowa) mierzy emisję dodatkowej diody LED, a jej sygnał prądowy przetworzony na napięcie jest porównywany z napięciem odniesienia V ref. Wzmacniacz błędu 1 podnosi wartość prądu 2 sterującego diodę stymulacyjną LED, aż do ponownego wyłączenia się komparatora. Pętla regulacji jest zamknięta tylko w czasie gdy sygnał żądania odczytu STE (STimulation Enable) zamknie klucz 9 na wyjściu komparatora. Rozpoczyna się odczyt, który trwa około 4s i kończy się powrotem czujnika do początkowego stanu zerowej dawki. 11

12 Znormaliozwana czułość Fluencja [cm -2 ] Porównanie stabilności czułości dozymetru prostego i odpornego na degradację diody LED przy naświetlaniu elektronami o energii 12 MeV. 12

13 Cztery skrętki łączą czujnik z układem akwizycji: Napięcie referencyjne V ref, Sygnał zezwolenia na odczyt STE, Sygnal V LED z informacją o degradacji diody LED, Sygnał V OSL z informacją o dawce. 13

14 Krzywa kalibracyjna dozymetru OSL naświetlanego promieniowaniem γ 60 Co. Dozymetr znajduje się na końcu 20 metrowego kabla i stoswane są różne moce dawki. 14

15 Ionisation Przejściowe SEE Single Event Effects Oxide Ion Silicon p+ Trapped charges Jonizacyjne TID Total Ionising Dose Interface traps e- p Oxide Silicon Strukturalne DD Displacement Damages Atomic displacement Interstitials Vacancies p+ (e-) Oxide Silicon Ion 2nd Pogorszenie parametrów Utrata funkcjonalności SET : transient SEU : upset SEL : latch-up SEB : burn-out SEGR : rupture Czas życia Bezpieczeństwo pracy Niezawodność Performances Hot pixels RTS RTS Random Telegraph Signals 15

16 Dawka Złożone pole radiacyjne Parameteryzacja i związane z tym rodzaje uszkodzeń radiacyjnych i czujników. Neutrony 1 Mev Hadrony >20 Mev TID SEE RADFET -y NIEL SRAM Diody PIN 16

17 Historia - Single Event Effects Przypadek firmy Intel opublikowany w 1996 roku. Ceramiczne obudowy były skażone radioaktywnymi domieszkami pochodzącymi z wody używanej w procesie produkcji. The package factory had been built along a river, downstream from an old uranium mine. Waste from the mine had contaminated the water and, indirectly, the packages. Serwer Enterprise flagowy produkt firmy Sun. W 1999 roku klienci zgłaszali, że serwer kraszuje i musi być rebootowany 4 razy w okresie kilku miesięcy. Po miesiącach badań ustalono, że przyczyną były błędy (soft errors) w pamięci cache serwera. 17

18 Definicja Single Event Effects SEE w elektronice obejmuje wszystkie możliwe efekty wywołane przez oddziaływanie cząstek z elementami elektronicznymi. Błędy twarde (Hard errors) bezpowrotnie uszkadzają element: Single Event Burnout (SEB) w elementach dużej mocy MOS, IGBT, BJT, Przebicie dielektryka bramki tranzystora (SEGR) lub kondensatora Przesunięcie napięcia progowego wywołane małymi dawkami (microdose-induced). Błędy miękkie (Soft errors) powodują tylko zafałszowanie lub utratę informacji lub błąd funkcjonalny. Odzyskanie sprawności urządzenia wymaga tylko kasowania (reset) lub ponownego włączenia zasilania lub uaktualnienia informacji. 18

19 Single Event Effects Błędy miękkie W układach analogowych: Single Event Transients (SET) albo Analog Single Event Transients (ASET) to przejściowe impulsy we wzmacniaczach operacyjnych, komparatorach lub źródłach napięcia odniesienia. W układach kombinacyjnych: SET to przejściowe impulsy wygenerowane w bramce logicznej i propagujące się aż do ewentualnego utrwalenia w elemencie sekwencyjnym. W układach sekwencyjnych: Single Event Upset (SEU) to odwrócenie stanu komórki. Kiedy oddziaływanie jednej cząstki powoduje zmianę stanu wielu komórek pamięci to nazywa się to Multi-Cell Upset (MCU), a gdy wiele bitów słowa zostaje zafałszowanych to nazywa się to Multi-Bit Upset (MBU). 19

20 Single Event Effects Błędy miękkie W złożonych układach scalonych: Single-Event Functional Interrupt (SEFI). Utrata funkcji układu przez przypadkową zmianę w rejestrze sterującym, sygnale zegara (clock) lub kasowania (reset) i innych. Single-Event Latch-up (SEL). Stan poboru wysokiego prądu spowodowany aktywacją pasożytniczej struktury dwóch tranzystorów bipolarnych istniejącej w każdej strukturze CMOS. Może być błędem twardym gdy dojdzie do przegrzania. 20

21 Lokalne wydarzenia jonizacyjne SEE SEE Single Event Effects SEU Single Event Upset Zmiana warunków lub przełączenie spowodowane przez cząstkę jonizującą. Błąd (soft-error) na poziomie tranzystora, który powoduje stan wykasowania (reset) lub zapisania (rewriting) elementu po czym urządzenie wraca do normalnej pracy, ale może spowodować system-crash. Szczególnie czułe są FPGA routowane za pomocą SRAM. SEL Single Event Latch-Up Aktywacja struktury p-n-p-n powoduje zwarcie między VDD i VSS, które może być niszczące dla urządzenia. Bit-flip 21

22 Single Event Latch-Up 22

23 Tyrystor 23

24 Przekrój czynny na błąd w jednym bicie Całkowity przekrój czynny na odziaływania neutronu z krzemem spada od 1,95barn dla E=40MeV do 0,6barn dla E=200MeV. Przymiemy: σ = 1barn = cm 2 dla neutronu o energii 100MeV. Objętość jednego bitu to szescian o boku 1µm czyli: V = (10-4 cm) 3 = cm 3. Gęstość krzemu: ρ = 2,33 g/cm 3. N A n = = 510 A Liczba atomów w jednym cm 3 krzemu: 3 22 atomów cm V = nv = atomów 10 3 cm 12 cm cm 2 = cm bit 2 N A = atom/mol A = g/mol (krzem) 24

25 Częstość błędów miękkich Soft Error Rate - SER Jednostka: 1 FIT (Failure In Time) = 1 błąd na 10 9 godzin. FIT = σ V Φ 10 9 σ V przekrój czynny cm 2 /bit, Φ strumień neutronów 13 n/cm 2 /h, 1Mb bitów, Czyli częstość błędów SER (Soft-Error Rate ): SER = 650 FIT/Mb lat Typowe wartości SER dla układów elektronicznych mieszczą się w przedziale od 100 (ok. jeden błąd na 1000 lat) do FIT (ok. jeden błąd na rok) 25

26 Ładunek krytyczny critical charge Minimalny ładunek potrzebny do zakłócenia poprawnej pracy układu. Iloczyn całkowitej pojemności C i w danym węźle układu i napięcia zasilania V dd układu: Q c = C i V dd. Przy założeniu, że zbieranie ładunku jest natychmiastowe i reszta układu nie ma czasu na odpowiedź. SRAM DRAM 1 2 fc fc 26

27 Symulacja ładunku krytycznego metodą analizy obwodów elektrycznych z użyciem narzędzi typu SPICE. Symulacja ładunku krytycznego metodą symulacji przestrzennych 3D fizyki elementów półprzewodnikowych. Podstawowa komórka pamięci SRAM w technologii CMOS składa się z dwóch zapętlonych inwerterów. Impuls prądu jest wstrzykiwany przy drenie tranzystora NMOS. 27

28 Single Event Effects Cząstka, która ma szanse doprowadzić do zakłócenia (upset) pracy elektroniki charakteryzuje się tym, że na bardzo krótkiej drodze w półprzewodniku deponuje dużą wartość energii czyli ma wysoki przekaz energii (Linear Energy Transfer - LET). Wtórne cząstki naładowane pochodzące z elektromagnetycznych oddziaływań mają za niskie wartości przekazu energii LET i nie są zdolne do wywołania zakłóceń (upset). 28

29 Single Event Effects Liniowy przekaz energii LET to ilość energii tracona przez cząstkę na jednostce drogi tej cząstki w materiale. Stosuje się też pojęcie zdolności hamowania (stopping power). Jest to wielkość charakteryzująca sposób w jaki cząstka traci energię. Dwie składowe: Elektronowa zderzenia z elektronami atomów materiału, prowadzące do tworzenia par e-h czyli do jonizacji. Dominuje w obszarze energii poniżej 1MeV. Jądrowa - zderzenia z jądrami atomów materiału, prowadzące do przesunięć atomów. Dominuje w obszarze energii powyżej 1MeV. LET = ΔE Δx MeV μm Wartości zwykle pochodzą z symulatora SRIM (Stopping and Range of Ions in Matter) LET zależy od rodzaju jonu, jego energii i materiału tarczy. Tarczą jest dla nasz krzem Z=14. Im wyższy ładunek jonu tym wyższy jest pik Bragga i przy wyższej energii występuje. 29

30 Single Event Effects 30

31 Całość zależności LET od energii padającego jonu opisują trzy teorie: Region w [MeV] Teoria Uwagi małe energie E i << 1MeV pośrednie energie wysokie energie E i > 1GeV LET zależy liniowo od prędkości jonu (Lindhard-Sharff) Teoria dielektryka. Przejście cząstki lokalnie modyfikuje stałą dielektryczną materiału. Powstaje zmiana pola elektrycznego w kierunku przeciwnym do ruchu cząstki. To pole spowalnia jej ruch. Kwantowa teoria Bethe ego. W przypadku nierelatywistycznym LET opisuje formuła Bethe-Bloch: de dx 2 z Z 2 v w praktyce dane doświadczalne są fitowane do potegowej zależności od energii występuje wyraźne maksimum zwane pikiem Bragga Z liczba atomowa materiału z liczba atomowa padającej cząstki v prędkość padającej cząstki 31

32 LET = ΔE Δx MeV μm LET = 1 ρ ΔE Δx MeV cm mg 2 1 MeV MeV MeV cm = 4, 31 1μm 4 mg 10 cm 2, 32 mg 3 cm 2 Gęstość krzemu: ρ = 2,32 mg cm 2 1MeV 1μm 7 1, pc 10 3, 6eV 1μm 6 ev = 0, 0446 pc μm Energia wytworzenia pary e-h w krzemie: E e-h = 3,6 ev na e=1, pc MeV cm 1 mg 2 10 fc μm 32

33 Zasięg R to długość drogii jaką musi przebyć jon w materiale aż ulegnie całkowitemu zatrzymaniu. R = E i 0 de LET Dla danej energii początkowej E i zasięg jest tym większy im lżejsza jest cząstka. Lekkie cząstki mają małe LET i duże R, a ciężkie cząstki mają duże LET i małe R. 33

34 Szkliwo BPSG Dielektryczne szkliwo (BoroPhosphorSilicate Glass - BPSG) tworzące warstwy rozdzielające metalowe ścieżki łaczące elementy układu lub zabezpieczające powierzchnie układu scalonego. Dodatek boru obniża napięcie powierzchniowe ciekłego szkliwa co zapewnia zaokraglone krawędzie. Ścieżka połączeniowa - aluminium BPSG Podłoże krzemowe 34

35 Mechanizm powstawania zakłóceń SEU indukowanych neutronami w pamięciach SRAM najczęściej polega na wychwycie neutronu przez jądro boru obecne w elementach mikroelektronicznych. Bor jest szeroko używany jako domieszka lub implantacja akceptorowa w krzemie lub jako składnik dielektrycznego szkliwa (BoroPhosphorSilicate Glass - BPSG) rozdzielającego warstwy metalu lub zabezpieczającego powierzchnie układu scalonego. Wychwyt termicznego neutronu przez jądro boru: 10 B(n,α) 7 Li, Bardzo wysoki przekrój czynny dla izotopu 10 B, który stanowi 20% boru naturalnego. Produktami tego procesu są dwie wysokojonizujące cząstki: Energia kinetyczna [MeV] Zasięg w krzemie [µm] α 1,5 2,5 7 Li 0,8 5 35

36 Projektowanie o zwiększonej odporności na SEE Stosowanie kodów korekcyjnych i detekcyjnych w kanałach transmisji danych i/lub pamięciach. ECC Error Correcting Codes Zasada potrojenia modułów. 36

37 Potrojenie układów TMR Triple Module Redundancy 37

38 Dozymetria SEE Liczba komórek pamięci, które zmieniły swój stan logiczny jest liniowo zależna od fluencji hadronów, jaką naświetlono pamięć. Dwa przykłady praktyczne: Projekt NEUTOR dla radioterapi, ALTER Technology, Hiszpania, Projekt RADMON dla LHC, CERN. 38

39 Dozymetr SRAM - medyczny Detektor SRAM w systemie radioterapeutycznym Alter Group and Hirex Engineering in the project NEUTOR; 2009 System składa się z 8 płyt PCB (10cm 9cm) każda z 16 układami SRAM (każdy zawiera 512 KB pamięci). Daje to 64 MB całkowitej pojemności. Płyta procesora systemu połączona jest do komputera poprzez łącze. Pozwala to na szybkie skanowanie całej pamieci. Zajmuje to około 20 s. Przed naświetleniem zawartość pamięci jest zapisana stałym wzorcem bitowym. Po zakończeniu naświetlania pamięć jest odczytywana i znajdujemy całkowitę liczbę błędów (upsets). Zawartość pamięci jest przywracana (reset) po każdym naświetleniu. 39

40 RADMON system monitorowania promieniowania w LHC Cel: Pomiar promieniowania w miejscu zamontowania urządzeń i dostarczenie wczesnego ostrzeżenia o podwyższonym poziomie dawek. Dostarcza bieżącego pomiaru: dawki, mocy dawki, strumienia cząstek, fluencji. W LHC zamontowano 300 takich urządzeń. Wyniki są wizualizowane w czasie rzeczywistym w sterowni LHC i gromadzone w bazie danych raz na sekundę. 40

41 Poziom odporności radiacyjnej do Pole magnetyczne do 4.6 kgauss. RADMON Zawiera 9 czujników promieniowania: 200 Gy TID, 2x10 12 n/cm 2 (1 MeV eq.), 2x10 11 h/cm 2 (E > 20 MeV). 2 PMOSFET-y do pomiaru dawki całkowitej promieniowania jonizującego (TID), 3 fotodiody połączone szeregowo do pomiaru fluencji neutronów równoważnej neutronom o energii 1 MeV 4 x 4 Mbit statycznej pamięci SRAM do pomiaru strumienia hadronów o energii powyżej 20 MeV. 41

42 RADFET-y (NMRC, Irlandia) 3 grubości tlenku of 100nm, 400nm i 1μm, które dają rozdzielczość dawki odpowiednio 100cGy/bit, 4cGy/bit i 1cGy/bit. fotodiody BPWFS34 (SIEMENS) przy zastosowaniu szeregowego połączenia 3 diod pomiar zmiany napięcia przewodzenia daje rozdzielczość fluencji neutronów n/cm 2 (1 MeV eq.) na 1 bit. 16 Mbit statyczna pamięć SRAM TC554001AF-7L (Toshiba) Urządzenie nie zawiera układów FPGA ani µc, a wszystkie użyte elementy sekwencyjne są potrojone i zaopatrzone w logikę głosującą (TMR Triple Module Redundancy) 42

43 Dozymetr SRAM - LHC Cylk odczyt-porównanie-zapis trwa 385ns, a dla całego 16Mb daje 6,16 ms. 16Mb Odczyt polega na pobraniu 8-bitów ze wskazanego adresu w pamięci i umieszczeniu go w rejestrze. Równocześnie wykonywany jest zapis wzorca do tej samej komórki. Zawartość rejestru jest sprawdzana czy wystąpił błąd poprzez porównanie z pierwotnym wzorcem w cyfrowym komparatorze. Gdy brak zgodności trzy 16-bitowe liczniki są inkrementowane. Potrojenie liczników jest konieczne dla ochrony przed SEU. 43

44 Prezentacja - prosto z LHC 44

45 Prezentacja - prosto z LHC 45

ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 6

ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 6 Dr inż. Andrzej Skoczeń KOiDC, WFiIS, AGH Rok akademicki 2015/2016 ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 6 12 kwiecień 2016 Dozymetr aktywny optycznie stymulowana luminescencja OSL Przejściowe zdarzenia

Bardziej szczegółowo

ELEKTRONICZNA APARATURA DOZYMETRYCZNA

ELEKTRONICZNA APARATURA DOZYMETRYCZNA Dr inż. Andrzej Skoczeń KOiDC, WFiIS, AGH Rok akademicki 2017/2018 ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 5 8 czerwiec 2018 Rozwiązania układowe mosimetrów Efekt powiększenia dawki Minimalna wykrywalna

Bardziej szczegółowo

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE

J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFM DE-s Punkty ECTS: 2. Kierunek: Fizyka Medyczna Specjalność: Dozymetria i elektronika w medycynie

Rok akademicki: 2013/2014 Kod: JFM DE-s Punkty ECTS: 2. Kierunek: Fizyka Medyczna Specjalność: Dozymetria i elektronika w medycynie Nazwa modułu: Elektroniczna aparatura dozymetryczna Rok akademicki: 2013/2014 Kod: JFM-2-107-DE-s Punkty ECTS: 2 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Dozymetria

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków

Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 11/04/2018, Kraków 2 Pomiary jonizacji Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka

Bardziej szczegółowo

Temat: Pamięci. Programowalne struktury logiczne.

Temat: Pamięci. Programowalne struktury logiczne. Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w

Bardziej szczegółowo

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektronika. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektronika Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Zadania elektroniki: Urządzenia elektroniczne służą do przetwarzania i przesyłania informacji w postaci

Bardziej szczegółowo

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Opisy efektów kształcenia dla modułu

Opisy efektów kształcenia dla modułu Karta modułu - Elektroniczna aparatura dozymetryczna 1 / 6 Nazwa modułu: Elektroniczna aparatura dozymetryczna Rocznik: 2012/2013 Kod: JFM-2-107-s Punkty ECTS: 2 Wydział: Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Równanie Shockley a. Potencjał wbudowany

Równanie Shockley a. Potencjał wbudowany Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Sposoby oddziaływania promieniowania Straty jonizacyjne Stopping power Krzywa Bragga cienkie absorbery energy straggling Przykłady oddziaływania

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

W książce tej przedstawiono:

W książce tej przedstawiono: Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,

Bardziej szczegółowo

Materiały używane w elektronice

Materiały używane w elektronice Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Elementy optoelektroniczne. Przygotował: Witold Skowroński

Elementy optoelektroniczne. Przygotował: Witold Skowroński Elementy optoelektroniczne Przygotował: Witold Skowroński Plan prezentacji Wstęp Diody świecące LED, Wyświetlacze LED Fotodiody Fotorezystory Fototranzystory Transoptory Dioda LED Dioda LED z elektrycznego

Bardziej szczegółowo

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki

Bardziej szczegółowo

Złożone struktury diod Schottky ego mocy

Złożone struktury diod Schottky ego mocy Złożone struktury diod Schottky ego mocy Diody JBS (Junction Barrier Schottky) złącze blokujące na powierzchni krzemu obniżenie krytycznego natężenia pola (Ubr 50 V) Diody MPS (Merged PINSchottky) struktura

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

ELEKTRONICZNA APARATURA DOZYMETRYCZNA

ELEKTRONICZNA APARATURA DOZYMETRYCZNA Dr inż. Andrzej Skoczeń KOiDC, WFiIS, AGH Rok akademicki 2018/2019 ELEKTRONICZNA APARATURA DOZYMETRYCZNA Wyk. 3 24 maj 2019 Dokończenie o jonizacyjnych uszkodzeniach radiacyjnych Radiacyjne uszkodzenia

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Zakład Fizyki Radiacyjnej i Dozymetrii Centrum Cyklotronowe Bronowice, Instytut Fizyki Jądrowej PAN

Zakład Fizyki Radiacyjnej i Dozymetrii Centrum Cyklotronowe Bronowice, Instytut Fizyki Jądrowej PAN Kraków, 21.07.2016 r. Zakład Fizyki Radiacyjnej i Dozymetrii Centrum Cyklotronowe Bronowice, Instytut Fizyki Jądrowej PAN Raport do Umowy o dzieło autorskie Nr 247 z dnia: 11.04.2016r. Opracowanie danych

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

PROJEKTOWANIE UKŁADÓW VLSI

PROJEKTOWANIE UKŁADÓW VLSI prof. dr hab. inż. Andrzej Kos Tel. 34.35, email: kos@uci.agh.edu.pl Pawilon C3, pokój 505 PROJEKTOWANIE UKŁADÓW VLSI Forma zaliczenia: egzamin Układy VLSI wczoraj i dzisiaj Pierwszy układ scalony -

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

Marek Kowalski

Marek Kowalski Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być

Bardziej szczegółowo

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne X1 X2 X3 Xn Y1 Y2 Y3 Yn Układy kombinacyjne charakteryzuje funkcja, która każdemu stanowi wejściowemu X i X jednoznacznie

Bardziej szczegółowo

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: 1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu

Bardziej szczegółowo

Pamięci RAM i ROM. R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007

Pamięci RAM i ROM. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 2 wyd. 2007 Pamięci RAM i ROM R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007 Tranzystor MOS z długim kanałem kwadratowa aproksymacja charakterystyk 2 W triodowym, gdy W zakresie

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wzmacniacze prądu stałego

Wzmacniacze prądu stałego PUAV Wykład 13 Wzmacniacze prądu stałego Idea Problem: wzmacniacz prądu stałego (lub sygnałów o bardzo małej częstotliwości, rzędu ułamków Hz) zrealizowany konwencjonalnie wprowadza błąd wynikający z wejściowego

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek

Elementy Fizyki Jądrowej. Wykład 7 Detekcja cząstek Elementy Fizyki Jądrowej Wykład 7 Detekcja cząstek Detekcja cząstek rejestracja identyfikacja kinematyka Zjawiska towarzyszące przechodzeniu cząstek przez materię jonizacja scyntylacje zjawiska w półprzewodnikach

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

spis urządzeń użytych dnia moduł O-01

spis urządzeń użytych dnia moduł O-01 Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie

Bardziej szczegółowo

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2 PUAV Wykład 11 Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Wzmacniacz operacyjny ( ) V wy = k u V we2 V we1 Komparator a wzmacniacz operacyjny

Bardziej szczegółowo

III. TRANZYSTOR BIPOLARNY

III. TRANZYSTOR BIPOLARNY 1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka

Bardziej szczegółowo

Ćwiczenie 57 Badanie absorpcji promieniowania α

Ćwiczenie 57 Badanie absorpcji promieniowania α Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Pamięci RAM i ROM. Pamięć RAM 2. R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd (C mbit.

Pamięci RAM i ROM. Pamięć RAM 2. R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 2 wyd (C mbit. Pamięci RAM i ROM R. J. Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley-IEEE Press, 2 wyd. 2007 Pamięć RAM 2 (C mbit ) C col_array DRAM cell circuit Schematic of DRAM 4 4 array-section B. El-Kareh,

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis SYMBOLE GRAFICZNE y Nazwa triasowy blokujący wstecznie SCR asymetryczny ASCR Symbol graficzny Struktura Charakterystyka Opis triasowy blokujący wstecznie SCR ma strukturę czterowarstwową pnpn lub npnp.

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

i elementy z półprzewodników homogenicznych część II

i elementy z półprzewodników homogenicznych część II Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Reakcje jądrowe. kanał wyjściowy

Reakcje jądrowe. kanał wyjściowy Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Kątowa rozdzielczość matrycy fotodetektorów

Kątowa rozdzielczość matrycy fotodetektorów WYKŁAD 24 SMK ANALIZUJĄCE PRZETWORNIKI OBRAZU Na podstawie: K. Booth, S. Hill, Optoelektronika, WKŁ, Warszawa 2001 1. Zakres dynamiczny, rozdzielczość przestrzenna miara dokładności rozróżniania szczegółów

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Oddziaływanie promieniowania jonizującego z materią Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 26 kwietnia 2017 Wykład IV Oddziaływanie promieniowania jonizującego

Bardziej szczegółowo

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał

Fotodetektory. Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał FOTODETEKTORY Fotodetektory Fotodetektor to przyrząd, który mierzy strumień fotonów bądź moc optyczną przetwarzając energię fotonów na inny użyteczny sygnał - detektory termiczne, wykorzystują zmiany temperatury

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

WPOMAGANIE PROCESU IDENTYFIKACJI RADIACYJNYCH CENTRÓW DEFEKTOWYCH W MONOKRYSZTAŁACH KRZEMU BADANYCH METODĄ HRPITS

WPOMAGANIE PROCESU IDENTYFIKACJI RADIACYJNYCH CENTRÓW DEFEKTOWYCH W MONOKRYSZTAŁACH KRZEMU BADANYCH METODĄ HRPITS WPOMAGANIE PROCESU IDENTYFIKACJI RADIACYJNYCH CENTRÓW DEFEKTOWYCH W MONOKRYSZTAŁACH KRZEMU BADANYCH METODĄ HRPITS Marek SUPRONIUK 1, Paweł KAMIŃSKI 2, Roman KOZŁOWSKI 2, Jarosław ŻELAZKO 2, Michał KWESTRARZ

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie

Bardziej szczegółowo

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności

Bardziej szczegółowo

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β. Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

Moduł wejść/wyjść VersaPoint

Moduł wejść/wyjść VersaPoint Analogowy wyjściowy napięciowo-prądowy o rozdzielczości 16 bitów 1 kanałowy Moduł obsługuje wyjście analogowe sygnały napięciowe lub prądowe. Moduł pracuje z rozdzielczością 16 bitów. Parametry techniczne

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Optyczne elementy aktywne

Optyczne elementy aktywne Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Biologiczne skutki promieniowania

Biologiczne skutki promieniowania Biologiczne skutki promieniowania Promieniowanie padające na żywe organizmy powoduje podczas naświetlania te same efekty co przy oddziaływaniu z nieożywioną materią Skutki promieniowania mogą być jednak

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo