Asymptotyczna kontrola FDR dla zaleznych testowań wielu hipotez statystycznych. Konrad Furmańczyk Wydzia Zastosowań Informatyki i Matematyki SGGW
|
|
- Wojciech Kuczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Asymptotyczna kontrola FDR dla zaleznych testowań wielu hipotez statystycznych Konrad Furmańczyk Wydzia Zastosowań Informatyki i Matematyki SGGW 1
2 PLAN REFERATU Sformuowanie zagadnienia testowania wielu hipotez; Uogólnione bedy I rodzaju dla testowania wielu hipotez: F W ER, F DP, F DR; model hierarchiczny dla testowania wielu hipotez; uogólnienia modelu hierarchicznego dla zaleznych testowań; 2
3 Klasyczne sformuowanie zagadnienia Dane X s a generowane z pewnego rozkadu prawdopodobieństwa P 2. Interesuj a nas hipotezy dotycz ace rozkadu P H i : P 2! i dla i = 1, 2,..., m, gdzie liczba testowanych hipotez m jest bardzo duza (tysi ace, miliony hipotez w analizie danych mikromacierzowych lub analizie obrazów z funkcjonalnego rezonansu magnetycznego) Problem: na podstawie statystyk testowych: T 1, T 2,..., T m (lub odpowiednich p-wartości) podj ać decyzje, które z hipotez H i s a prawdziwe, a które faszywe. W ten sposób otrzymujemy 2 m mozliwych decyzji do podjecia. 3
4 Uogólnienia bedu I rodzaju Niech R oznacza liczbe odrzuconych hipotez H i w wyniku zastosowania pewnej procedury jednoczesnego testowania. Przez V oznaczmy (nieobserwowan a zmienn a) liczbe odrzuceń prawdziwych hipotez H i, Family-wise error rate (F W ER) F W ER = P (V 1) Procedura testowania konrtoluje F W ER na poziomie gdy P (V 1) dla wszystkich P 2 4
5 False discovery proportion (F DP ) V=R gdy R > 0 F DP = 0 gdy R = 0. False discovery rate (F DR) F DR = E (F DP ). Konstruuje sie procedury, które kontroluj a uogólniony b ad I rodzaju (F W ER, F DR), tzn. takie aby bed ten nie przekracza pewnego 2 (0; 1). W przypadku miary F DP szukamy takiej procedury aby P (F DP > ) dla wszystkich P 2 dla dowolnych, 2 (0; 1). 5
6 Niech P i oznacza p-wartość dla hipotezy H i dla i = 1; :::; m oraz P (1) P (2) ::: P (m) bed a uporz adkowanymi p-wartościami. Dla ustalonego poziomu kontroli oznaczmy M := max i 2 f0; 1; :::; m + 1g : P (i) i=m, gdzie P (0) := 0, P (m+1) := 1 oraz T BH := P (M). Procedura Benjamini i Hochberga (BH) odrzuca wszystkie hipotezy H i dla których P i T BH. Gdy M = 0 to wszystkie hipotezy s a akceptowane. 6
7 W przypadku niezalezności statystyk testowych T 1, :::, T m procedura BH kontroluje F DR na poziomie. Dokadniej Benjamini i Hochberg (1995) otrzymali F DR m 0 =m, gdzie m 0 jest liczb a prawdziwych hipotez wśród hipotez H i dla i = 1; :::; m: Benjamini i Yekutieli (2001) pokazali, ze procedura BH kontroluje F DR bez zaozenia o niezalezności statystyk testowych, jeśli zamiast weźmiemy mx 1 = j. j=1 7
8 Model hierarchiczny Efron, Tibshirani, Storey i Tusher (2001) wprowadzili nastepuj acy model testowania wielu hipotez Niech H i = 0 (lub 1) gdy H i jest prawdziwa (faszywa). Zakadamy, ze (H i ) s a niezaleznymi zmiennymi losowymi o wspólnym rozkadzie Bernoulliego P (H i = 0) = 1, P (H i = 1) = oraz (P i ; H i ) s a i.i.d. takie, ze P (P i x j H i = 0) = x, P (P i x j H i = 1) = F (x) dla x 2 [0; 1], gdzie F wspóln a dystrybuant a p-wartości P i gdy hipoteza H i jest faszywa. 8
9 Wtedy dystrybuanta brzegowa G zmiennej losowej P i jest postaci G(t) = (1 )t + F (t) dla t 2 [0; 1]. False nondiscovery proportion określamy jako N=(m R) gdy R < m F NP = 0 gdy R = m, gdzie N - liczba nieodrzuconych faszywych hipotez H i. 9
10 Określmy nastepuj ace procesy stochastyczne (odpowiedniki F DR i F NR) m(t) = m (t) = P m i=1 1 fp i tg (1 H i ) P m i=1 1 fp i tg + 1 P (1) > t, P m i=1 1 fp i > tg H i P m i=1 1 fp i > tg + 1 P (m) t dla t 2 [0; 1]. 10
11 Storey (2002) pokaza, ze przy zaozeniu modelu hierarchicznego mamy dla t > 0, E ( m (t)) = Q(t) (1 (1 G(t)) m ), gdzie E ( m (t)) = Q(t) ~ (1 G(t) m ), t Q(t) = (1 ) G(t), ~Q(t) = 1 F (t) 1 G(t). 11
12 Zakadamy, ze jest znane. Oznaczmy T P I := sup f0 t 1 : Q m (t) g, gdzie t Q m (t) = (1 ) G m (t), G m (t) = 1 mx 1 fp i tg. m i=1 12
13 Zauwazmy, ze F DR(t) := E ( m (t)) Q m (t), wiec F DR(T P I ). Dokadniej Genovese i Wasserman (2004) pokazali, ze w modelu hierarchicznym E ( m (T P I )) = + o(1) dla m! 1. 13
14 Zakadamy, ze jest nieznane. Genovese i Wasserman (2004) pokazali, ze nastepuj aca procedura testowania kontroluje asymptotycznie F DR. Próg odrzucenia hipotez H i określmy jako n o ^T = sup 0 t 1 : ^Qm (t), gdzie t ^Q m (t) = (1 ^) G m (t). Zakadamy dodatkowo, ze G jest wklesa oraz estymator ^ jest taki, ze ^! P 0 <. Wtedy E m( ^T ) = + o(1) dla m! 1. 14
15 Farcomeni (2007) rozwazy uogólnienia modelu hierarchicznego. Dopuści pewne modele zalezności ci agu p-wartości (P i ). Np. ci ag (P i ) jest stacjonarnym ci agiem -mieszaj acym takim, ze 1X (k) < 1. Wtedy k=1 E ( m (T P I )) = + o(1) dla m! 1. 15
16 Oznaczmy t 0 = Q 1 () := sup f0 t 1 : Q(t) g, gdzie t Q(t) = (1 ) G(t). Niech Q i dla i = 1; :::; m 0 odpowiadaj a p-wartościom dla prawdziwych hipotez H i oraz R i dla i = 1; :::; m m 0 odpowiadaj a p-wartościom dla faszywych hipotez. 16
17 Zaózmy, ze dla m! 1 a) b1) 1 m 0 b2) 1 m m 0 Xm 0 i=1 mx m 0 i=1 c) G jest ci aga. m 0 m!p 1 1 fq i t 0 g! P t 0 1 fr i t 0 g! P F (t 0 ) 17
18 Mozna pokazać (Furmańczyk(2009)), ze przy warunkach a), b1), b2), c) (gdy jest znane) E ( m (T P I )) = + o(1) dla m! 1 E ( m (T P I )) = 1 F (t 0) +o(1) dla m! 1. 1 G(t 0 ) Gdy jest nieznane oraz ^! P to E m( ^T ) = + o(1) dla m! 1 E m ( ^T ) = 1 F (t 0) +o(1) dla m! 1. 1 G(t 0 ) 18
19 Warunek b1) otrzymujemy np. gdy istnieje taki ci ag k m0! 1, k m 0 m 0! P 0 gdy m 0! P 1 oraz sup ji jjk m0 jp (Q i t 0 ; Q j t 0 ) P (Q i t 0 )P (Q j t 0 )j Podobnie otrzymujemy b2).! 0. gdy istnieje taki ci ag k m! 1, k m m! 0 gdy m! 1 oraz sup jp (R i t 0 ; R j t 0 ) P (R i t 0 )P (R j t 0 )j ji jjk m! 0. 19
20 to oraz p m ^ Estymacja Storey (2002) zaproponowa estymator Gm (s) s ^ = 1 s dla pewnego s 2 (0; 1). Jeśli G(s) > s, ^! P G(s) s 1 s G(s) s =) N 1 s + 0; G(s)(1 G(s)) (1 s) 2. 20
21 Niech P j = 1X b j i j, j=0 gdzie j i.i.d. Niech 1X B := j jb j j < 1 j=0 oraz gestość P j jest ograniczona przez K. Oznaczmy s 2 2 := (1 + 4KB k 0 k 1 ) m ln. Poózmy a st ad G m (t) t ~ = max t 1 t Wtedy (Furmańczyk (2009)) P (~ ) 1 P (1 1 ~) 1. 21
22 Wyniki Wu (2009) Wu (2009) wprowadzi nastepuj acy wariant modelu hierarchicznego (H i ) jest 0-1 procesem stacjonarnym oraz p-wartości (P i ) s a warunkowo niezalezne pod warunkiem (H i ). Wtedy tez P (P i x j H i = 0) = x, P (P i x j H i = 1) = F (x) dla x 2 [0; 1]. Rozwazmy nastepuj ace warunki regularności na proces (H i ) 1 p m mx i=1 H i X m H i i=1 m = O( p m) 2! m dla pewnego 2 < =) N (0; 2 )
23 Oznaczmy BH := sup 0 t 1 : t G m (t) oraz t 0 := sup 0 t 1 : G(t). Wtedy przy pewnych warunkach regularności p m( m ( BH ) (1 )) =) N (0; 2 1) p m(m ( BH ) 1 F ( 0) 1 G( 0 ) ) =) N (0; 2 2) dla pewnych 2 1 < 1, 2 2 < 1. oraz ^ m( ^T ) = + + O P (m 1=2 ). 1 23
24 Przykady procesów (H i ) a) uciety proces liniowy H i = 1 fx i tg dla ustalonego t 2 R gdzie X i = 1X j= 1 b j i oraz ( j ) i.i.d. o ograniczonej gestości, E j d < 1 dla pewnego d > 0 oraz 1X jb j j min(1;d)=2 < 1. j= 1 j 24
25 b) model Isinga (pole losowe w A Z 2 ) niech L s = 2H s 1 L s = 1 (lub 1) gdy H s = 0 (lub 1) oraz s asiedztwo punktu s = (j; k) N s = f(j 0 ; k 0 ) : jj j 0 j + jk k 0 j = 1g L A = fl a ; a 2 Ag, wtedy rozkad H i spenia warunki regularności P (L s = l s jl Z2 ns = l Z2 ns) = P (L s = l s jl Ns = l Ns ) exp(l s Pt2N = s l t ) exp( P t2n s l t ) + exp( P t2n s l t ) dla 0 log(1 + p 2)=2. 25
26 Literatura [1] Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Statist. Soc. Ser. B 57 (1995), [2] Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann. Stat. 29 (2001), [3] B. Efron, R. Tibshirani, J. Storey and V. Tusher, Empirical Bayes analysis of microarray experiment, Journ. Amer. Stat. Assoc. 96 (2001), [4] A. Farcomeni, Some results on the control of the false discovery rate under dependence, Scan. Journ. Stat. 34 (2007), [5] K. Furmańczyk, On the control of the false discovery rate under dependence, preprint (2009). 26
27 [6] C. Genovese and L. Wasserman, A stochastic process approach to false discovery control, Ann. Statist. 32 (2004), [7] J. Storey, A direct approach to false discovery rates, J. R. Stat. Soc. Ser. B Stat. Meth. 64 (2002), [8] W. B. Wu, On false discovery control under dependence, Ann. Stat. 36 (2009),
O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym
O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Zagadnienie testowania zbioru hipotez (wielokrotne testowanie hip
Zagadnienie testowania zbioru hipotez (wielokrotne testowanie hipotez) 12 listopada 2008 Testowanie hipotez Λ P(x) na X Zgodnie z P(x) generowane sa wyniki eksperymentu Λ. P {P θ (x) : θ Θ} Badacza interesuje
Statystyczna analiza danych
Statystyczna analiza danych Testowanie wielu hipotez statystycznych na raz Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/31 Zdechła ryba i emocje http://www.wired.com/2009/09/fmrisalmon/
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Ekonometryczne modele nieliniowe
Ekonometryczne modele nieliniowe Wykład 10 Modele przełącznikowe Markowa Literatura P.H.Franses, D. van Dijk (2000) Non-linear time series models in empirical finance, Cambridge University Press. R. Breuning,
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Estymacja gęstości prawdopodobieństwa metodą selekcji modelu
Estymacja gęstości prawdopodobieństwa metodą selekcji modelu M. Wojtyś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Wisła, 7 grudnia 2009 Wstęp Próba losowa z rozkładu prawdopodobieństwa
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Podsadny þ jest winien. róúzne. W prawodawstwie wielu krajów przyjmuje sie, þ úze pierwszy bład þ jest bardziej dotkliwy - sady þ skazujaþ
1 Wykład 6 Przykład 1.1 Podczas rozprawy sadowej, wykorzystujac zebrane dowody i zeznania świadków, sedzia musi odpowiedzieć napytanie:czy prawda jest,úze podsadny jest winien? Zadanie to moúzna przedstawić
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Funkcje wielu zmiennych
Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Procedury jednoczesnego testowania wielu hipotez i ich zastosowania w analizie mikromacierzy DNA
MATEMATYKA STOSOWANA 8, 2007 Marcin Dudziński (Warszawa) Konrad Furmańczyk (Warszawa) Procedury jednoczesnego testowania wielu hipotez i ich zastosowania w analizie mikromacierzy DNA Streszczenie. W naszej
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X
STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA
1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Uogolnione modele liniowe
Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,
Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14
ZESTAW A IMIȨ I NAZWISKO: Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2/4 Data: 224 Egzaminar: Ryszard Szekli INSTRUKCJE: Rozwiązując test zakreślamy literką X POPRAWNE ODPOWIEDZI W TABELCE
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Proces Poissona. Wykład 4. 4.1 Proces zliczajacy
Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Matematyka ubezpieczeń majątkowych 6.04.2009 r.
Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Statystyczna analiza danych
Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Uogólniona Metoda Momentów
Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne
Odporność statystyk według Ryszarda Zielińskiego a porządki stochastyczne Jarosław Bartoszewicz Uniwersytet Wrocławski Zieliński (1977) wprowadził następującą definicję odporności statystycznej. M 0 =
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Statystyka, Ekonometria
Statystyka, Ekonometria Wykład dla Geodezji i Kartografii 11 kwietnia 2011 () Statystyka, Ekonometria 11 kwietnia 2011 1 / 31 LITERATURA J. Hozer, S.Kokot, W. Kuźmiński metody analizy statystycznej w wycenie
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
3. Generacja liczb losowych o różnych rozkładach
3. Generacja liczb losowych o różnych rozkładach 1. Jak uzyskać liczby pseudolosowe za pomocakomputera?[zieliński] nieliniowe sprzężenie zwrotne x k = F(x k 1,x k 2,..., x k q ) Postulaty dotyczace F:
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Testowanie zbioru hipotez z zadaną relacją hierarchii wraz z przykładami zastosowań w genetyce
Politechnika Wrocławska Instytut Matematyki i Informatyki Testowanie zbioru hipotez z zadaną relacją hierarchii wraz z przykładami zastosowań w genetyce Przemysław Biecek Rozprawa doktorska przygotowana
Własności porządkowe w modelu proporcjonalnych szans
Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f
Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
TESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
PROBABILISTYKA - test numery zestawów 1,3,5,7,9,...,41
1 numery zestawów 1,3,5,7,9,...,41 (a) Jeśli P (A) = 0.5 oraz P (B) = 0.3 oraz B A, to P (B \ A) = 0.2. (b) Przy jednokrotnym rzucie kostk a prawdopodobieństwo, że wypadnie szóstka pod warunkiem, że wypad
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Statystyka w analizie i planowaniu eksperymentu
19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago
Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Rozwini cia asymptotyczne dla mocy testów przybli»onych
Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są