Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do"

Transkrypt

1 Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć rozszerzających z matematyki w ramach projektu Młodzieżowe Uniwersytety Matematyczne na okres od r. do r w szkole I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie Projekt realizowany przez Uniwersytet Rzeszowski w partnerstwie z Uniwersytetem Jagiellońskim oraz Państwową Wyższą Szkołą Zawodową w Chełmie Centralne Biuro Projektu, Uniwersytet Rzeszowski ul. Rejtana 16a, Rzeszów tel , faks

2 I. WSTĘP Statystyczny uczeń klasy trzeciej gimnazjum z województwa lubelskiego rozwiązujący arkusz standardowy uzyskał na egzaminie gimnazjalnym w części matematyczno-przyrodniczej 3,85 punktu, co stanowi 7,70% punktów możliwych do uzyskania. Środkowy uczeń rozkładu uporządkowanego rosnąco uzyskał 3 punkty (mediana). Najczęstszy wynik (modalna) to 19 punktów. Najniższy wynik na egzaminie to 1 punkt, a najwyższy to 50 punktów. W rekrutacji do zajęć rozszerzających w ramach projektu Młodzieżowe Uniwersytety Matematyczne w I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie wzięło udział 58 osób. Uczniowie ci uzyskali na egzaminie gimnazjalnym w części matematyczno-przyrodniczej średnio 33,78 punktów, co stanowi 67,56% punktów możliwych do uzyskania. Jest to wynik nieznacznie wyższy od wyniku województwa lubelskiego. Środkowy uczeń rozkładu uporządkowanego rosnąco uzyskał 33,5 punkty (mediana). Najniższy wynik na egzaminie to punktów, a najwyższy to 8 punktów. Tabela 1. Podstawowe miary statystyczne dotyczące części matematyczno-przyrodniczej egzaminu gimnazjalnego. Podstawowe miary statystyczne Województwo lubelskie I Liceum Ogólnokształcące we Włodawie punkty procent punkty procent Średni wynik 3,85 7,70 33,78 67,56 Mediana ,5 67 Wynik najniższy 1 Wynik najwyższy Odchylenie standardowe 9,59 19,19 7,17 1,3 Rysunek 1 przedstawia liczbę uczniów I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie, którzy uzyskali na egzaminie gimnazjalnym w części matematyczno-przyrodniczej określoną liczbę punktów, od do 8.

3 Liczba osób liczba punktów Rysunek 1. Rozkład wyników gimnazjalistów I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie rozwiązujących arkusz GM Rozkład wyników uczniów z I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie jest asymetryczny lewostronnie, lekko przesunięty w stronę wyższych wyników, z modalną wynoszącą 38 punktów. Uczniowie biorący udział w rekrutacji do zajęć rozszerzających w ramach projektu Młodzieżowe Uniwersytety Matematyczne w I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie byli oceniani także pod względem ocen końcowych z matematyki w gimnazjum. Średnia ocena dla tych uczniów to,83. Nie było uczniów, którzy otrzymali ocenę dopuszczającą. 3 osoby otrzymały ocenę dostateczną, 13 uczniów uzyskało ocenę dobrą, 33 uczniów uzyskało ocenę bardzo dobrą i 9 uczniów otrzymało ocenę celującą.

4 Liczba osób oceny Rysunek. Rozkład ocen koocowych z gimnazjum uczniów I Liceum Ogólnokształcącego im. Tadeusza Kościuszki we Włodawie. Rozkład końcowych ocen gimnazjalnych uczniów z I Liceum Ogólnokształcącym im. Tadeusza Kościuszki we Włodawie jest asymetryczny lewostronnie, lekko przesunięty w stronę wyższych ocen, z modalną wynoszącą 5 (Rysunek ). Powyższa analiza wyników egzaminu gimnazjalnego uczestników zajęć, a także ocena końcoworoczna w trzeciej klasie gimnazjum spowodowała, iż zakwalifikowali się oni na zajęcia rozszerzające, ze względu na dużą ilość zdobytych punktów na egzaminie gimnazjalnym i przy wysokich ocenach z matematyki.

5 II. CELE EDUKACYJNE l. Cele ogólne: Wyposażenie przyszłego absolwenta w umiejętności matematyczne niezbędne do sprostania wymogom egzaminu maturalnego z matematyki na poziomie rozszerzonym Opracowany program: a) Wykształcenie umiejętności budowania modeli matematycznych dla różnorodnych sytuacji z życia codziennego oraz ich wykorzystania do rozwiązywania problemów praktycznych b) Wykształcenie umiejętności projektowania obliczeń i ich wykonywania c) Poznanie podstawowych elementów myślenia matematycznego d) Wdrażanie do uzasadnień. Dbałość o kulturę i precyzje wypowiedzi. Cele szczegółowe: działy. Szczegółowe cele edukacyjne (uczeń wie, umie, potrafi) z rozbiciem na 1) liczby rzeczywiste a) planuje i wykonuje obliczenia na liczbach rzeczywistych, w szczególności oblicza pierwiastki, w tym pierwiastki nieparzystego stopnia z liczb ujemnych, b) bada, czy wynik obliczeń jest liczbą wymierną, c) wyznacza rozwinięcia dziesiętne; znajduje przybliżenia liczb; wykorzystuje pojęcie błędu przybliżenia, d) stosuje pojęcie procentu i punktu procentowego w obliczeniach,

6 e) posługuje się pojęciem osi liczbowej i przedziału liczbowego; zaznacza przedziały na osi liczbowej, f) wykorzystuje pojęcie wartości bezwzględnej i jej interpretację geometryczną, zaznacza na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: x - a = b, x - a >b, x - a < b, g) oblicza potęgi o wykładnikach wymiernych oraz stosuje prawa działań na potęgach o wykładnikach wymiernych i rzeczywistych, h) zna definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym, i) stosuje twierdzenie o rozkładzie liczby naturalnej na czynniki pierwsze; wyznacza największy wspólny dzielnik i najmniejszą wspólną wielokrotność pary liczb naturalnych, j) stosuje wzór na logarytm potęgi i wzór na zamianę podstawy logarytmu, ) wyrażenia algebraiczne: a) posługuje się wzorami skróconego mnożenia: (a + b), (a - b), (a + b) 3, (a - b) 3, a - b, a 3 + b 3, a 3 + b 3, b) rozkłada wielomian na czynniki stosując wzory skróconego mnożenia, grupowanie wyrazów, wyłączanie wspólnego czynnika poza nawias, c) dodaje, odejmuje i mnoży wielomiany, d) wyznacza dziedzinę prostego wyrażenia wymiernego z jedną zmienną, w którym w mianowniku występują tylko wyrażenia dające się sprowadzić do iloczynu wielomianów liniowych i kwadratowych za pomocą przekształceń opisanych w punkcie b), e) oblicza wartość liczbową wyrażenia wymiernego dla danej wartości zmiennej, f) dodaje, odejmuje, mnoży i dzieli wyrażenia wymierne; skraca i rozszerza wyrażenia wymierne,

7 g) posługuje się wzorem (a - 1)(1 + a a n-1 ) = a n - 1, h) wykonuje dzielenie wielomianu przez dwumian x-a; stosuje twierdzenie o reszcie z dzielenia wielomianu przez dwumian x-a, i) stosuje twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych, 3) równania i nierówności: a) rozwiązuje równania i nierówności kwadratowe; zapisuje rozwiązanie w postaci sumy przedziałów, b) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do równań i nierówności kwadratowych, c) rozwiązuje układy równań, prowadzące do równań kwadratowych, d) rozwiązuje równania wielomianowe metodą rozkładu na czynniki, e) rozwiązuje proste równania wymierne, prowadzące do równań liniowych lub kwadratowych, np., f) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do prostych równań wymiernych, g) wzory Viéte a, h) rozwiązuje równania i nierówności kwadratowe z parametrem, przeprowadza dyskusję i wyciąga z niej wnioski, i) rozwiązuje równania i nierówności wielomianowe, j) rozwiązuje proste równania i nierówności wymierne, np.:, k) rozwiązuje proste równania i nierówności z wartością bezwzględną, typu: x > 3 i x x + <3,

8 ) funkcje: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których funkcja rośnie, maleje, ma stały znak, c) sporządza wykres funkcji spełniającej podane warunki, d) potrafi na podstawie wykresu funkcji y=f(x) naszkicować wykresy funkcji y=f(x+a), y=f(x) +a, y= -f(x), y=f(-x), e) sporządza wykresy funkcji liniowych, f) wyznacza wzór funkcji liniowej, g) wykorzystuje interpretację współczynników we wzorze funkcji liniowej, h) sporządza wykresy funkcji kwadratowych, i) wyznacza wzór funkcji kwadratowej, j) wyznacza miejsca zerowe funkcji kwadratowej, k) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym, l) rozwiązuje zadania (również umieszczone w kontekście praktycznym), prowadzące do badania funkcji kwadratowej, m) sporządza wykres, odczytuje własności i rozwiązuje zadania umieszczone w kontekście praktycznym związane z proporcjonalnością odwrotną, n) sporządza wykresy funkcji wykładniczych dla różnych podstaw i rozwiązuje zadania umieszczone w kontekście praktycznym, o) wykres funkcji y= f(x), p) wykresy funkcji y=c f(x), y=f(cx), gdzie f jest funkcją trygonometryczną, r) wykres będący efektem wykonania kilku operacji, na przykład y= f(x+) - 3, s) wykresy funkcji logarytmicznych dla różnych podstaw,

9 t) rozwiązuje zadania (również umieszczone w kontekście praktycznym) z wykorzystaniem takich funkcji, 5) ciągi liczbowe: a) wyznacza wyrazy ciągu określonego wzorem ogólnym, b) bada, czy dany ciąg jest arytmetyczny lub geometryczny, c) stosuje wzory na n-ty wyraz i sumę n początkowych wyrazów ciągu arytmetycznego i ciągu geometrycznego, również umieszczone w kontekście praktycznym, d) wyznacza wyrazy ciągów zdefiniowanych rekurencyjnie, 6) trygonometria: a) wykorzystuje definicje i wyznacza wartości funkcji trygonometrycznych dla kątów ostrych, b) rozwiązuje równania typu sinx = a, cos x = a, tgx = a, dla 0 o < x < 90 o, c) stosuje proste związki między funkcjami trygonometrycznymi kąta ostrego, d) znając wartość jednej z funkcji trygonometrycznych, wyznacza wartości pozostałych funkcji tego samego kąta ostrego, e) stosuje miarę łukową i miarę stopniową kąta, f) wyznacza wartości funkcji trygonometrycznych dowolnego kąta, przez sprowadzenie do przypadku kąta ostrego, g) posługuje się wykresami funkcji trygonometrycznych przy rozwiązywaniu nierówności typu sinx < a, cos x > a, tgx > a, h) stosuje związki: sin x + cos x = 1, oraz wzory na sinus i cosinus sumy i różnicy kątów w dowodach tożsamości trygonometrycznych,

10 e) rozwiązuje równania i nierówności trygonometryczne, na przykład:,,. 7) planimetria: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych w kontekście praktycznym, c) znajduje związki miarowe w figurach płaskich, także z zastosowaniem trygonometrii, również w zadaniach umieszczonych w kontekście praktycznym, d) określa wzajemne położenie prostej i okręgu, e) stosuje twierdzenia charakteryzujące czworokąty wpisane w okrąg i czworokąty opisane na okręgu, f) stosuje twierdzenie o związkach miarowych między odcinkami stycznych i siecznych, g) stosuje własności figur podobnych i jednokładnych w zadaniach, także umieszczonych w kontekście praktycznym, h) znajduje związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów. 8) geometria na płaszczyźnie kartezjańskiej: a) wykorzystuje pojęcie układu współrzędnych na płaszczyźnie, b) podaje równanie prostej w postaci Ax +By +C = 0 lub y=ax+b, mając dane dwa jej punkty lub jeden punkt i współczynnik a w równaniu kierunkowym,

11 c) bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych, d) interpretuje geometrycznie układ dwóch równań liniowych z dwiema niewiadomymi, e) oblicza odległości punktów na płaszczyźnie kartezjańskiej, f) wyznacza współrzędne środka odcinka, g) posługuje się równaniem okręgu (x - a) + (y - b) = r, h) interpretuje geometrycznie nierówność liniową z dwiema niewiadomymi i układy takich nierówności, i) rozwiązuje zadania dotyczące wzajemnego położenia prostej i okręgu, oraz dwóch okręgów na płaszczyźnie kartezjańskiej, j) oblicza odległość punktu od prostej, k) opisuje koła za pomocą nierówności, l) oblicza współrzędne oraz długość wektora; dodaje i odejmuje wektory oraz mnoży je przez liczbę, m) interpretuje geometrycznie działania na wektorach, n) stosuje wektory do rozwiązywania zadań, a także do dowodzenia własności figur, o) stosuje wektory do opisu przesunięcia wykresu funkcji, 9) stereometria: a) wskazuje i oblicza kąty między ścianami wielościanu, między ścianami i odcinkami oraz między odcinkami takimi jak krawędzie, przekątne, wysokości, b) wyznacza związki miarowe w wielościanach i bryłach obrotowych z zastosowaniem trygonometrii, c) wyznacza przekroje wielościanów płaszczyzną,

12 d) stosuje twierdzenie o trzech prostych prostopadłych, 10) elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosuje zasadę mnożenia, c) wykorzystuje sumę, iloczyn i różnicę zdarzeń do obliczania prawdopodobieństw zdarzeń, d) wykorzystuje własności prawdopodobieństwa i stosuje twierdzenie znane jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń, e) wykorzystuje wzory na liczbę permutacji, kombinacji i wariacji do zliczania obiektów w sytuacjach kombinatorycznych. III. ZAŁOŻENIA PROGRAMU Zakres merytoryczny zajęć będzie obejmował kształcenie w zakresie rozszerzonym z matematyki przewidzianym programem nauczania liceum.

13 IV. REALIZACJA ZAŁOŻEŃ PROGRAMOWYCH l. Organizacja zajęć Zajęcia będą odbywały się 1 raz w tygodniu. Będą trwały godz. lekcyjne (1,5 godz. zegarowe).. Pomoce naukowe: podręcznik, materiały przygotowane przez nauczyciela, komputer. 3. Procedury osiągania celów a) zasada stopniowania trudności, b) stosowanie różnorodnych i ciekawych metod budzących zainteresowania uczniów, c) wykorzystanie różnorodnych pomocy i środków dydaktycznych, d) praca w grupach skłaniająca do samodzielnej pracy.

14 V. TREŚCI NAUCZANIA Klasa I Lp. Tematyka zajęć Forma kształcenia Liczba godzin I Elementy logiki. Prawa logiczne wraz z dowodami oraz ich zastosowanie Dziedzina formy zdaniowej jednej zmiennej Forma zdaniowa dwóch zmiennych konwersatoria 6 II Zbiór liczb rzeczywistych Zbiór liczb wymiernych i niewymiernych zadania na dowodzenie Przekształcanie wyrażeń zawierających wzory skróconego mnożenia Działania na potęgach o wykładniku całkowitym i wymiernym Własności wartości bezwzględnej wraz z dowodami Równania z wartością bezwzględną Nierówność z wartością bezwzględną konwersatoria III Funkcja i jej własności Wyznaczanie dziedziny i zbioru wartości funkcji Ćwiczenia w opisywaniu własności funkcji (różnowartościowość, monotoniczność, parzystość, okresowość) Przekształcanie wykresów funkcji konwersatoria 6 IV Trygonometria Dowodzenie tożsamości trygonometrycznych Wykresy funkcji trygonometrycznych Równania i nierówności trygonometryczne konwersatoria 6 V Funkcja liniowa Funkcja liniowa we wzorze, której występuje parametr Szkicowanie wykresów funkcji z wartością bezwzględną Równania liniowe z parametrem Równania liniowe z parametrem i wartością bezwzględną Układy równań I stopnia z dwiema niewiadomymi z parametrem Równania oraz układy równań I stopnia z dwiema niewiadomymi z wartością bezwzględną Nierówności oraz układy nierówności I stopnia z dwiema niewiadomymi z wartością bezwzględną konwersatoria 1 VI Funkcja kwadratowa Równania kwadratowe z parametrem Równania i nierówności kwadratowe z wartością bezwzględną Wykresy funkcji kwadratowej z wartością bezwzględną Równania kwadratowe z wartością bezwzględną i parametrem konwersatoria 8

15 Klasa II Lp. Tematyka zajęć Forma kształcenia Liczba godzin I. Okrąg i koło w układzie współrzędnych 1. Równanie okręgu, styczna do okręgu, odległość punktu od prostej zadania z parametrem. Wzajemne położenie dwóch okręgów zadania z parametrem konwersatoria II. Wielomiany 1. Równania wielomianowe z wartością bezwzględną. Nierówności wielomianowe z wartością bezwzględną konwersatoria 3. Równania wielomianowe z parametrem. Zadania tekstowe prowadzące do równań wielomianowych 8 III. Funkcje wymierne 1. Równania wymierne z wartością bezwzględną 3. Równania wymierne z parametrem konwersatoria 3 3. Nierówności wymierne z wartością bezwzględną. Zastosowanie wiadomości o funkcjach wymiernych w zadaniach 10 IV. Indukcja matematyczna, dwumian Newtona 1. Zadania na dowodzenie metodą indukcji konwersatoria. Dwumian Newtona 6 V. Ciągi 1. Ciąg zdefiniowany rekurencyjne. Własności ciągów zbieżnych 3. Ćwiczenia w obliczaniu granic ciągów zbieżnych (w tym liczba e) 5. Ciągi rozbieżne do nieskończoności konwersatoria 7. Ciąg arytmetyczny i geometryczny zadania łączone 8. Szereg geometryczny 1 VI. Twierdzenie sinusów i cosinusów 1. Rozwiązywanie zadań z zastosowaniem tw. sinusów i cosinusów konwersatoria. Iloczyn skalarny wektorów i jego własności wraz z dowodami VII. Rozwiązywanie wybranych zadań z arkuszy maturalnych z poziomu rozszerzonego materiał programowy kl. II konwersatoria

16 Klasa III Lp. Tematyka zajęć Forma kształcenia Liczba godzin I Funkcja potęgowa, wykładnicza i logarytmiczna Równania i nierówności potęgowe Układy nierówności potęgowych Przekształcenia wykresu funkcji wykładniczej Równanie wykładnicze z wartością bezwzględną Równanie wykładnicze z wartością bezwzględną i parametrem Układy równań wykładniczych Układy nierówności wykładniczych Przekształcenia wykresu funkcji logarytmicznej konwersatoria 1 3 II Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka rozwiązywanie zadań o podwyższonym stopniu trudności Rozwiązywanie zadań prawdopodobieństwo zdarzeń (def. klasyczna, prawdopodobieństwo warunkowe, całkowite, niezależność zdarzeń, schemat Bernoulliego) Rozwiązywanie zadań z rachunku prawdopodobieństwa wybranych z arkuszy maturalnych konwersatoria 8 III Stereometria Przekroje płaskie graniastosłupów zadania Przekroje płaskie ostrosłupów zadania Pole powierzchni i objętości brył obrotowych Rozwiązywanie zadań ze stereometrii wybranych z arkuszy maturalnych konwersatoria 10 IV. Rozwiązywanie arkuszy maturalnych poziom rozszerzony konwersatoria

17 VI. PRZEWIDYWANE OSIĄGNIĘCA UCZESTNIKÓW Wynikiem działań podjętych w ramach zajęć będzie uzyskanie wyniku z matury na poziomie rozszerzonym umożliwiającym wstęp na uczelnie, na których o przyjęciu decyduje wynik egzaminu maturalnego. Uczeń powinien umieć: znać i rozumieć treści z matematyki z liceum na poziomie rozszerzonym, rozwiązywać zadania na poziomie rozszerzonym, zastosować wiedzę matematyczna w różnych sytuacjach życiowych. VII. SPOSOBY OCENIANIA UCZESTNIKÓW pochwała słowna, prace pisemne sprawdzane przez samych uczniów i korekta nauczyciela, test podsumowujący VIII. EWALUACJA PROGRAMU Narzędziami ewaluacji będą testy sprawdzające wiedze na początku roku szkolnego i na końcu roku szkolnego oraz testy.

18 Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Tezy do programu przedstawili: Alicja Wit Korekta i opracowanie: mgr Elżbieta Miterka Analiza statystyczna wyników egzaminu gimnazjalnego oraz ocen końcowych z matematyki: mgr Agnieszka Szumera Nadzór merytoryczny i zatwierdzenie: prof. dr hab. Zdzisław Rychlik Projekt realizowany przez Uniwersytet Rzeszowski w partnerstwie z Uniwersytetem Jagiellońskim oraz Państwową Wyższą Szkołą Zawodową w Chełmie Centralne Biuro Projektu, Uniwersytet Rzeszowski ul. Rejtana 16a, Rzeszów tel , faks

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć rozszerzających z matematyki w ramach projektu Młodzieżowe

Bardziej szczegółowo

IV etap edukacyjny. Cele kształcenia wymagania ogólne

IV etap edukacyjny. Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

MATEMATYKA poziom rozszerzony Cele kształcenia wymagania ogólne wymienione w podstawie programowej

MATEMATYKA poziom rozszerzony Cele kształcenia wymagania ogólne wymienione w podstawie programowej MATEMATYKA poziom rozszerzony Cele kształcenia wymagania ogólne wymienione w podstawie programowej ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć rozszerzających z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć rozszerzających z matematyki w ramach projektu Młodzieżowe

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Kalendarium maturzysty

Kalendarium maturzysty Matura 2012 Kalendarium maturzysty matematyka poziom podstawowy Liczby i ich zbiory TYDZIEŃ 1-4 (4 tygodnie) 3-28 października liczby naturalne, całkowite, wymierne i niewymierne planowanie i wykonywanie

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć rozszerzających z matematyki w ramach projektu Młodzieżowe

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do

Program zajęć wyrównawczych z matematyki. w ramach projektu Młodzieżowe Uniwersytety Matematyczne. na okres od r. do Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Program zajęć wyrównawczych z matematyki w ramach projektu Młodzieżowe Uniwersytety

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover 11-06-17 11:58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-389-0 9 788376 803890 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W RAMACH PROJEKTU MLODZIEŻOWE UNIWERSYTETY MATEMATYCZNE. na okres od r. do r.

PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W RAMACH PROJEKTU MLODZIEŻOWE UNIWERSYTETY MATEMATYCZNE. na okres od r. do r. Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W RAMACH PROJEKTU MLODZIEŻOWE UNIWERSYTETY

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny

MATEMATYKA IV etap edukacyjny MATEMATYKA IV etap edukacyjny Cele kształcenia wymagania ogólne POZIOM PODSTAWOWY POZIOM ROZSZERZONY Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik Uczeń uŝywa

Bardziej szczegółowo

Spis treści. Spis treści

Spis treści. Spis treści Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5 2. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 9 3. Pierwiastki, liczby niewymierne... 13 4. Wyrażenia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Rozkład. materiału nauczania

Rozkład. materiału nauczania Rozkład materiału nauczania Ramowy rozkład materiału nauczania Matematyka. Poznać, zrozumieć Klasa 1 42 Lp. Klasa 2 Dział Liczba godzin zakres podstawowy Liczba godzin zakres rozszerzony 1. 36 30 2. Funkcja

Bardziej szczegółowo

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

KLASA II LO Poziom rozszerzony (wrzesień styczeń) KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III A LP

Wymagania edukacyjne z matematyki w klasie III A LP Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM MARZEC 2018 Analiza wyników próbnego egzaminu maturalnego Poziom podstawowy MATEMATYKA Arkusz próbnego egzaminu maturalnego składał się z 34 zadań. Zadania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo