ZASTOSOWANIE TESTU GEHANA DO PORÓWNYWANIA FUNKCJI PRZEŻYCIA FIRM 1
|
|
- Laura Romanowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 STUDIA I PRACE WYDZIAŁU AUK EKOOMICZYCH I ZARZĄDZAIA R IWOA MARKOWICZ BEATA STOLORZ Uniwersytet Szczeciński ZASTOSOWAIE TESTU GEHAA DO PORÓWYWAIA FUKCJI PRZEŻYCIA FIRM 1 Wstęp Rozwój metod ilościowych i techniki komputerowej stwarza coraz większe możliwości wykorzystania nowoczesnych i zaawansowanych metod i technik w różnych dyscyplinach naukowych. Przykładem są metody analizy historii zdarzeń, wykorzystywane przez demografów, socjologów, ekonomistów, medyków, biologów, kryminologów i epidemiologów. Tak szerokie zastosowanie sprawia, że nie zostało ujednolicone nazewnictwo, dlatego mówi się o analizie przeżycia (lub dożycia), analizie trwania, analizie przejścia, analizie niezawodności (lub bezawaryjności), analizie czasu niepowodzeń itp. Ogólnie mówiąc, jest to zbiór procedur statystycznych, dla których zmienną losową jest czas między określonymi zdarzeniami bądź czas procesu. Zdarzenie powoduje przejście jednostki z jednego stanu w drugi (np. śmierć osoby, awaria urządzenia, upadek firmy). Okres między stanem początkowym a momentem wystąpienia zdarzenia jest nazywany czasem przeżycia. Wyznaczając prawdopodobieństwo, że jednostka przeżyje kolejne wartości czasu t, określamy funkcję przeżycia. Funkcje takie utworzone dla dwóch lub więcej prób można porównywać. Celem artykułu jest przedstawienie możliwości wykorzystania testu Gehana (uogólnienia testu Wilcoxona) do porównywania funkcji przeżycia firm. Przy- 1 Praca naukowa finansowana ze środków na naukę w latach jako projekt badawczy. Artykuł napisano w ramach projektu numer /1109.
2 188 Iwona Markowicz, Beata Stolorz kładem zmiennej losowej jest czas funkcjonowania firm. Przeprowadzone badania uwzględniają obserwacje ucięte, a więc czas funkcjonowania niektórych firm nie jest znany, gdyż nie zostały one zlikwidowane przed zakończeniem obserwacji. 1. ieparametryczny test Gehana Modele nieparametryczne dla zmiennej losowej czasu trwania (czasu przeżycia) są stosowane wtedy, gdy nie jest znana postać analityczna rozkładu. Teoria szacowania wybranych funkcji jest wówczas bardzo złożona i rozbudowana. Historycznie najstarszym modelem nieparametrycznym jest tablica trwania życia 2. Tradycyjna metoda konstrukcji takich tablic dostarcza nieparametrycznej estymacji funkcji dożycia, funkcji gęstości i wskaźnika hazardu dla określonego przedziału czasu. Jednym z ograniczeń tej metody jest konieczność grupowania czasu obserwacji w przedziały o jednakowej długości 3, dlatego do badania czasu trwania zjawiska często stosuje się inne metody. Przykładem jednej z nich jest metoda Product-Limit-Estimation Kaplana-Meiera, stosowana głównie do konstrukcji tablic trwania życia. Jest to metoda nieparametryczna, uwzględniająca występowanie obserwacji uciętych, a więc niekompletnych danych. W tym przypadku nie ma konieczności konstrukcji przedziałów dla zmiennej czasowej, lecz jedynie uszeregowanie epizodów według długości czasów trwania. Każdemu punktowi czasu, w którym nastąpiło co najmniej jedno zdarzenie, jest przyporządkowana wartość ryzyka. W roku 1958 E.L. Kaplan i P. Meier zaproponowali sposób estymacji funkcji przeżycia (survival function) 4 : i d j St ˆ( i ) = 1 dla i = 1,..., k (1) j= 1 n j gdzie: t i punkt czasu, w którym wystąpiło co najmniej jedno zdarzenie, t 1 < t 2 <... < t k, t 0 = 0, d i liczba zdarzeń w czasie t i, 2 [5]. 3 Por. [4], s Por. ibidem, s
3 189 n i liczba jednostek objętych obserwacją w czasie t i, n i = n i 1 d i 1 z i 1, z i liczba obserwacji uciętych w czasie t i. Analizowane zbiorowości można dzielić na grupy ze względu na badane cechy i oszacować funkcję przeżycia dla każdej z tych grup oraz zbadać istotność różnic między nimi. Czasy przeżycia można porównywać w dwóch lub więcej próbach. Ponieważ ich rozkłady są nieznaczne, należy zastosować test nieparametryczny, który jest oparty na porządku rangowym czasów przeżycia. W przypadku dwóch grup można wykorzystać następujące testy: uogólnienie Gehana testu Wilcoxona 5, test Coxa-Mantela, test F Coxa, test log-rank oraz uogólnienie Peto i Peto testu Wilcoxona 6. Dostępne są również testy do porównywania wielu grup. ie ma, niestety, powszechnie akceptowanych metod wyboru testu w danej sytuacji. Zależy to bowiem od liczebności prób, występowania danych uciętych i znajomości rozkładu zmiennych 7. W większości testów obliczone statystyki dla dużej próby asymptotycznie dążą do rozkładu normalnego. Fakt ten jest wykorzystywany do testowania istotności statystycznej różnic między próbami. Większość testów daje rzetelne wyniki tylko przy dużych próbach, a efektywność testów przy małych próbach jest mniej poznana. Autorki artykułu zastosowały test Gehana dla dwóch prób 8 do weryfikacji hipotezy o równości funkcji przeżycia: H 0 : S 1 (t) = S 2 (t). ajpierw za pomocą procedury Mantela każdemu czasowi przeżycia przyporządkowuje się punkty, a następnie oblicza się wartość statystyki w oparciu o sumy (dla każdej próby) tych punktów. Dane są dwie próby: 1 i 2, o liczebnościach odpowiednio n 1 i n 2, które należy uporządkować łącznie w rosnącej kolejności. Dane można porządkować dwoma sposobami. ajpierw należy ustawić nieucięte obserwacje z obu prób wciąg od najmniejszej do największej, nadając im kolejne wartości naturalne, a w miejscu obserwacji uciętej wstawić wartość najbliższej kolejnej obserwacji nieuciętej. astępnie powtarzające się obserwacje w dwóch próbach trzeba zredukować do nadanej im mniejszej wartości. W ten sposób powstaje ciąg, które- 5 Zob. [6]; [7]. 6 Por. [10], s ; [2], s Por. [8], s Procedurę testowania zaczerpnięto z [10], s. 75.
4 190 Iwona Markowicz, Beata Stolorz go wyrazy oznaczono jako R 1i. Teraz należy utworzyć drugi ciąg wartości. Kolejno numerowane są wszystkie obserwacje w malejącej kolejności. astępnie w miejscu każdej obserwacji uciętej wstawia się wartość 1. W ten sposób powstaje ciąg wartości, który oznaczono jako R 2i. iech zbiór A jest zbiorem indeksów i, którymi oznaczono dane dotyczące pierwszej próby. Statystykę G oblicza się ze wzoru: gdzie: v = w G =, v n + n 1 2 nn 1 2 Ui i= 1 ( n + n )( n + n ) w= U, i A i, U = R R. i 1i 2i Otrzymaną wartość porównuje się z wartościami krytycznymi standardowego rozkładu normalnego na przyjętym poziomie istotności. Opisaną metodę stosuje się do analizy czasu przeżycia lub bezawaryjności, gdy część danych jest ucięta 9. Można je wykorzystać także w demografii, biologii, naukach społecznych, inżynierii, technice, a szczególnie w medycynie 10, gdzie często traci się kontakt z obserwowanymi pacjentami. 2. Analiza funkcji przeżycia firm w Szczecinie Badania przeprowadzono w trzech grupach firm zarejestrowanych w krajowym rejestrze urzędowym podmiotów gospodarki narodowej REGO w Urzę- 9 Obserwacje ucięte to obserwacje, dla których nieznany jest dokładny czas przeżycia. Powodem może być niewystąpienie zdarzenia przed ukończeniem badań lub utrata kontaktu z badaną jednostką. W literaturze mówi się również o danych cenzurowanych. Por. [3], s Por. [1].
5 191 dzie Statystycznym w Szczecinie. O przynależności firmy do danej kohorty decydował rok powstania podmiotu gospodarczego. Do analizy przyjęto grupy firm założonych w latach 1990, 1994 i a długość czasu funkcjonowania firm wpłynęło wiele czynników, między innymi warunki gospodarcze, w jakich podmiot rozpoczynał działalność, które z pewnością były różne dla omawianych grup. Jednym z elementów, który należy wziąć pod uwagę, jest konkurencja na danym rynku. O jej wielkości może świadczyć liczba istniejących podmiotów. a koniec roku (1989) poprzedzającego powstanie firm grupy pierwszej zarejestrowanych było 1205 podmiotów gospodarczych, Wielkość ta dla drugiej grupy wynosiła już ponad 33 grupy trzeciej ponad 43 tys. Wielkości te świadczą o niejednorodności warunków funkcjonowania badanych grup firm. Obserwację trzech grup zakończono w 2000 roku, zatem okresy obserwacji są niejednakowe. Maksymalny czas obserwacji wynosił do 132 miesięcy dla pierwszej grupy (firmy założone w 1990 roku), do 84 miesięcy dla drugiej grupy (firmy założone w 1994 roku) i do 48 miesięcy dla trzeciej grupy (firmy założone w 1997 roku). Firma, która nie została zlikwidowana w wymienionych okresach była uznawana za obserwację uciętą. Charakterystykę ilościową badanych grup przedstawiono w tabeli 1. Tabela 1 Liczebność badanych grup z podziałem na obserwacje nieucięte i ucięte Liczebność Obserwacje nieucięte Obserwacje ucięte Lata grupy liczba odsetek liczba odsetek , , , , , , Źródło: obliczenia własne. Jak wspomniano, punktem wyjścia w przeprowadzonej analizy było wyznaczenie funkcji przeżycia Kaplana-Meiera. astępnie przy zastosowaniu testu Gehana zweryfikowano hipotezę o jednakowych funkcjach przeżycia firm z analizowanych grup. Test ten przeprowadzono najpierw dla trzech grup, a następnie dla poszczególnych par grup; wyniki przedstawiono w tabeli 2. Wartość statystyki testu dla trzech grup wskazuje na istotność różnic między nimi. Potwierdza to również histogram sum punktów dla grup firm, obliczonych według pro-
6 192 Iwona Markowicz, Beata Stolorz cedury Mantela (rysunek 1). Wyraźną różnicę można zauważyć między grupą firm z 1990 roku a pozostałymi grupami. Wartości testów dla poszczególnych par jednoznacznie wskazują na istotną różnicę między czasami przeżycia dla firm z lat 1990 i 1994 oraz 1990 i Porównując grupy firm z lat 1994 i 1997, czasy przeżycia można uznać za różne dopiero na poziomie istotności 0, Zakładając najczęściej przyjmowany poziom α = 0,05, nie ma podstaw do odrzucenia hipotezy o jednakowych funkcjach przeżycia. Grupy (rok powstania firm dla porównywanych grup) Wyniki testu Gehana Wynik testu Gehana Źródło: obliczenia własne z wykorzystaniem programu Statistica. Tabela 2 Prawdopodobieństwo, przy którym różnice są istotne 1990, 1994, ,0314 0, , , , , , , , , ,10946 Rys. 1. Histogram sumy punktów dla każdej grupy firm (założonych w Szczecinie w latach 1994 i 1997), obliczone według procedury Mantela, wykorzystanej do obliczenia statystyki testu Gehana Źródło: opracowanie własne z wykorzystaniem programu Statistica.
7 193 Porównanie prawdopodobieństw przeżycia dla poszczególnych par spośród trzech badanych grup firm zaprezentowano w tabelach 3 5 i na rysunkach 2 4 ( liczebność). Tabela 3 Tablice przeżycia, przy zastosowaniu estymatora Kaplana-Meiera dla firm powstałych w Szczecinie w latach 1990 i 1994 Dolna granica wchodzących uciętych zlikwidowanych Procent Źródło: obliczenia własne z wykorzystaniem programu Statistica. Skumulowany procent , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,5835 0, , , , ,0148 0, , , , ,5371 0,0000 Tabela 4 Tablice przeżycia, przy zastosowaniu estymatora Kaplana-Meiera dla firm powstałych w Szczecinie w latach 1990 i 1997 Dolna granica wchodzących uciętych zlikwidowanych Procent Źródło: obliczenia własne z wykorzystaniem programu Statistica. Skumulowany procent , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,8586 0, , , , ,7438 0, , , , ,5835 0, , , , ,0148 0, , , , ,5371 0,0000
8 194 Iwona Markowicz, Beata Stolorz Tabela 5 Tablice przeżycia, przy zastosowaniu estymatora Kaplana-Meiera dla firm powstałych w Szczecinie w latach 1994 i 1997 Dolna granica wchodzących uciętych zlikwidowanych Procent Źródło: obliczenia własne z wykorzystaniem programu Statistica. Skumulowany procent , , , , ,0000 9, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,9019 0, , , , ,5150 0, , , , ,2197 0,0000 Rys. 2. Prawdopodobieństwo przeżycia Kaplana-Meiera dla firm założonych w Szczecinie w latach 1990 i 1994 Źródło: opracowanie własne z wykorzystaniem programu Statistica.
9 195 Rys. 3. Prawdopodobieństwo przeżycia Kaplana-Meiera dla firm założonych w Szczecinie w latach 1990 i 1997 Źródło: opracowanie własne z wykorzystaniem programu Statistica. Rys. 4. Prawdopodobieństwo przeżycia Kaplana-Meiera dla firm założonych w Szczecinie w latach 1994 i 1997 Źródło: opracowanie własne z wykorzystaniem programu Statistica.
10 196 Iwona Markowicz, Beata Stolorz Podsumowanie Podsumowując, wśród badanych grup wyróżnia się grupa firm zarejestrowanych w Szczecinie w 1990 roku. Spadek skumulowanego prawdopodobieństwa przeżycia tych podmiotów gospodarczych był wolniejszy niż podmiotów powstałych w latach 1994 i Z pewnością utrzymanie się firmy na szczecińskim rynku było łatwiejsze w pierwszych latach 90. ubiegłego wieku ze względu na małą konkurencję. Przedstawione na rysunku 4 prawdopodobieństwa przeżycia firm założonych w latach 1994 i 1997 wskazywały na podobieństwo zmian w czasie. Brak podstaw do odrzucenia hipotezy o statystycznej równości funkcji przeżycia potwierdził zastosowany test Gehana. Literatura 1. Badania statystyczne w ubezpieczeniach. Red. J. Hozer. Wyd. aukowe Uniwersytetu Szczecińskiego, Szczecin Cox D.R., Oakes D.: Analysis of survival data. Chapman and Hall, London Domański C., Pruska K.: ieklasyczne metody statystyczne. PWE, Warszawa Frątczak E., Gach-Ciepiela U., Babiker H.: Analiza historii zdarzeń. Elementy teorii, wybrane przykłady zastosowań. SGH, Warszawa Frątczak E., Jóźwiak J., Paszek B.: Zastosowania analizy historii zdarzeń w demografii. SGH, Warszawa Gehan E.A.: A generalized Wilcoxson test for comparing arbitrary single-censored samples. Biometrica 1965, o Gehan E.A.: A generalized two-sample Wilcoxson test for double-censored data. Biometrica 1965, o Lawless J.F.: Statistical models and methods for lifetime data. John Wiley & Sons, ew York Markowicz I., Stolorz B.: Wykorzystanie analizy historii zdarzeń do konstrukcji tablic żywotności firm. Wiadomości Statystyczne 2006, nr amboodiri K., Suchindran C.M.: Life table techniques and their applications. Academic Press Inc., ew York 1987.
11 197 APPLICATIO OF THE GEHA TEST FOR COMPARISO OF FIRMS SURVIVAL FUCTIOS Summary The aim of the paper is to present the possibility of Gehan test (Gehan s generalization of Wilcoxon test) application for the comparison of survival functions. Firm s existence time is the example of random variable. Studies carried out include censored observations, thus time of some firms existence is unknown because they were still operating at the completion of research. Analyses were carried out in three groups of firms registered in the ational Register of Economic Entities REGO in the Statistical Office in Szczecin. The year of the origin of economic entity decided on firm s membership in the specific cohort. Groups of firms established in the years 1990, 1994 and 1997 were analyzed and the observation was completed in year Translated by Janusz Stolorz
An a l i z a d e t e r m i n a n t c z a s u p o s z u k i wa n i a p r a c y
Studia Regionalne i Lokalne Nr 4(34)/2008 ISSN 1509 4995 Iwona Markowicz, Beata Stolorz* An a l i z a d e t e r m i n a n t c z a s u p o s z u k i wa n i a p r a c y na rynku lokalnym na przykładzie Szczecina
PŁEĆ, WIEK I WYKSZTAŁCENIE OSÓB BEZROBOTNYCH JAKO DETERMINANTY CZASU POSZUKIWANIA PRACY
EKONOMETRIA ECONOMETRICS 2(40) 2013 ISSN 1507-3866 Beata Bieszk-Stolorz, Iwona Markowicz Uniwersytet Szczeciński PŁEĆ, WIEK I WYKSZTAŁCENIE OSÓB BEZROBOTNYCH JAKO DETERMINANTY CZASU POSZUKIWANIA PRACY
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa
Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Analiza długości okresu bezrobocia według przyczyny wyrejestrowania na przykładzie Powiatowego Urzędu Pracy w Szczecinie
Beata Bieszk-Stolorz * Iwona Markowicz ** Analiza długości okresu bezrobocia według przyczyny wyrejestrowania na przykładzie Powiatowego Urzędu Pracy w Szczecinie Wstęp Celem artykułu jest zbadanie wpływu
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym
Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Testy dla dwóch prób w rodzinie rozkładów normalnych
Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych
Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Analiza przeżycia. Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw.
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? Jest to analiza czasu trwania, zaprojektowana do analizy tzw. danych uciętych Obserwacja jest nazywana uciętą jeżeli zdarzenie jeszcze
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Analiza przeżycia. Czym zajmuje się analiza przeżycia?
ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Wybrane statystyki nieparametryczne. Selected Nonparametric Statistics
Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 2/20/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.2.13 WIESŁAWA MALSKA Wybrane statystyki nieparametryczne Selected
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi)
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi) Czy miejsce zamieszkania różnicuje uprawianie sportu? Mieszkańcy
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Elementarne metody statystyczne 9
Elementarne metody statystyczne 9 Wybrane testy nieparametryczne - ciąg dalszy Test McNemary W teście takim dysponujemy próbami losowymi z dwóch populacji zależnych pewnej cechy X. Wyniki poszczególnych
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
EKONOMETRIA ECONOMETRICS 2(40) 2013
EKONOMETRIA ECONOMETRICS 2(40) 2013 Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu Wrocław 2013 Redaktor Wydawnictwa: Aleksandra Śliwka Redakcja techniczna i korekta: Barbara Łopusiewicz Łamanie:
Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Statystyczna analiza danych
Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
DEMOGRAFIA FIRM ANALIZA ZMIAN W POPULACJI FIRM W POLSCE
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR IWONA MARKOWICZ Uniwersytet Szczecinski DEMOGRAFIA FIRM ANALIZA ZMIAN W POPULACJI FIRM W POLSCE Wstęp Observatory of European SMEs zostało ustanowione
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Analiza przeżycia Survival Analysis
Analiza przeżycia Survival Analysis 2013 Analiza przeżycia Doświadczenie dynamiczne - zwierzęta znikają lub pojawiają się w czasie doświadczenia Obserwowane zdarzenia: zachorowanie, wyzdrowienie, zejście,
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15
IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.
Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków