Klasa problemów #P. Paweł Gora 11/20/2008 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Klasa problemów #P. Paweł Gora 11/20/2008 1"

Transkrypt

1 Kls prolmów #P Pwł Gor /2/28

2 Agn Prolmy klsy #P Prolmy #P-zupłn Przykł prolmu #PC: zlizni roszrzń liniowyh Przykłow lgorytmy zlizni rozszrzń liniowyh /2/28 2

3 Kls polmów #P Kls #P kls prolmów zlizni związnyh z prolmmi yzyjnymi z klsy NP Przykły: NP #P Czy istnij w gri ykl Hmilton o koszi mnijszym niż? Czy istnij wrtośiowni spłniją ormułę CNF? Czyistnij oskonł skojrzni w gri wuzilnym? Il istnij w gri ykli Hmilton o koszi mnijszym niż? Il istnij wrtośiowń spłnijąyh ormułę CNF? Il istnij oskonłyh skojrzń w gri wuzilnym? /2/28 3

4 Kls prolmów #P-zupłnyh Kls #P-omplt kls prolmów z #P tkih, ż kży prolm z #P się o nih zrukowć w zsi wilominowym. Przykły: #SAT (il jst wrtośiowń spłnijąyh zną ormułę?) #HAMILTON_PATH (il jst śiżk Hmilton w gri?) #PERMANENT (il jst ilnyh skojrzń w gri wuzilnym?) /2/28 4

5 Dowozni przynlżnośi o #PC Rukj prolmu A o prolmu B: x A? /2/28 5

6 Dowozni przynlżnośi o #PC Rukj prolmu A o prolmu B: R x A? R(x) B N /2/28 6

7 Dowozni przynlżnośi o #PC Rukj prolmu A o prolmu B: x A S(N) R S R(x) B N /2/28 7

8 Dowozni przynlżnośi o #PC Rukj prolmu A o prolmu B: x A S(N) R S R(x) B N JśliS jst unkją intyznośiową,to jst to rukj oszzęn. /2/28 8

9 Truność prolmów z #P i #PC Prolmy z klsy #P są o njmnij tk trun jk opowiją im prolmy z klsy NP Jżli istnij wilominowy lgorytm l prolmu z #PC, to P = NP (o pokzno, ż #SAT jst w klsi #PC). Tki lgorytm ni jst jszz znny... /2/28 9

10 Pytni kontroln #PNPC -kls prolmów z #P, któr opowiją prolmom z NPC. Czy #PC = #PNPC? /2/28

11 Pytni kontroln #PNPC -kls prolmów z #P, któr opowiją prolmom z NPC. Czy #PC = #PNPC? NIE!! /2/28

12 Prolmy z #PC Do klsy #PC nlżą tż prolmy, l któryh opowini prolm yzyjny posi rozwiązni wilominow. Przykł: Prolm istnini ilngo skojrzni w gri wuzilnym /2/28 2

13 Wżny przykł prolmu z #PC Prolm znjowni ilośi rozszrzń liniowyh zioru zęśiowo uporząkowngo (postu). Post= (P, ), P = n Rlj jst:. Zwrotn: l z S 2. Antysymtryzn: jśli i, to = 3. Przhoni: jśli i, to /2/28 3

14 Post Elmnty x, y są porównywln, jżli x y lu y x Wpp x,y niporównywln(x y) Porząk liniowy: kż 2 lmnty P są porównywln Łńuh w P: poziór P ęąy porząkim liniowym Antyłńuhw P: poziór P, w którym wszystki lmnty są niporównywln Szrokość P: rozmir njwiększgo ntyłńuh w P (w(p)) /2/28 4

15 Rozszrzni liniow postu Post (P, ) jst rozrzsznim(p, ), gy l x,y z zioru P x y implikuj x y Rozszrzni liniow = rozszrzni ęą łńuhm /2/28 5

16 Digrm Hssgo Przykł igrmu Hssgo: /2/28 6

17 Prolmy związn z postmi Jk znjowć wszystki rozszrzni liniow? Il jst wszystkih rozszrzń liniowyh? Il jst roszrzń liniowyh, w któryh x jst n pozyji ustlonj pozyji? Il jst rozszrzń liniowyh, w któryh x jst prz y? Pirwszy prolm się rozwiązć w zmortyzownym zsi stłym (O((P)), gzi (P) ilość rozszrzń liniowyh) Osttni 3 prolmy nlżą o klsy #PC. /2/28 7

18 Potrzn pojęi Post P jst krtą, jżli l owolyh x, y z P istnij in{x, y} = x Λv orz sup{x, y} = x v y. Ił: poziór D postu P: D x x y P y D x,, Filtr: poziór U postu P: /2/28 8 D x x y P y D x,, U y y x P y U x,,

19 Zlizni rozszrzń liniowyh Algorytm ynmizny Post (P, ) o szrokośi k. Z tw. Dilworth się go pokryć k rozłąznymi łńuhmi: x x x, 2, k, < <... < x x x,2 2,2 k,2 < <... < < < x, n x x, n... <, 2.. n k /2/28 9

20 Algorytm ynmizny Kżmu iłowi I możn jnoznzni przyporząkowć krotkę: U k { i, j i= I = x : j < p } p, p,..., p ) i ( 2 k Różn iły są rprzntown przz różn krotki, np krotk (,,...,) rprzntuj ił pusty. /2/28 2

21 Algorytm ynmizny [p,p 2,...,p k ] ilość rozszrzń liniowyh iłu rprzntowngo przz tą krotkę [,,...,] = Jśli (p,p 2,...,p k ) ni rprzntuj iłu, to [p,p 2,...,p k ] = Jśli (p,p 2,...,p k ) rprzntuj ił, to [p,p 2,...,p k ] = [p -,p 2,...,p k ] + [p,p 2 -,...,p k ] [p,p 2,...,p k -] /2/28 2

22 Algorytm ynmizny /2/28 22

23 Algorytm ynmizny N koni olizń: [ 2 n, n,..., n k ] = liz rozszrzń liniowyh Wszystkih krotk jst o njwyżj: /2/28 23

24 Algorytm ynmizny Ilość oprji n prztworzni krotki: Łązn ilość oprji lgorytmu: Dl ustlongo k złożoność: Dl k = Θ(n) złożoność: /2/28 24

25 Algorytm II krt iłów Krt iłów: {,,,,,} {,,,,} {,,,} {,,,} {,,} {,,} {,} {,} {} /2/28 25 Ø

26 Algorytm II krt iłów Krt iłów: {,,,,,} {,,,,} {,,,} {,,,} {,,} {,,} {,} {,} {} /2/28 26 Ø

27 Oznzni ImSu(I) list zpośrnih nstępników I Chil(I) list zpośrnih poprzników I LinExtFiltr(I) ilość rozszrzń liniowyh iltru P\I VisitIl(I) lg: zy I ył już owizony przz lgorytm /2/28 27

28 Algorytm Buil (Post P) zuuj krtę iłów P; ount <- Assign(Ø); Assign (Il I) VisitIl(I) <- tru; xtnsions <- ; or h il I inimsu(i) o ii = P thnxtnsions <-xtnsions + ; ls i not VisitIl(I ) thn xtnsions <- xtnsions + Assign(I ); ls xtnsions <- xtnsions + LinExtFiltr(I ); LinExtFiltr(I) <- xtnsions; rturnxtnsions; /2/28 28

29 Przykł /2/28 29

30 Przykł /2/28 3

31 Przykł /2/28 3

32 Przykł /2/28 32

33 Przykł /2/28 33

34 Przykł /2/28 34

35 Przykł /2/28 35

36 Przykł /2/28 36

37 Przykł /2/28 37

38 Przykł /2/28 38

39 Przykł /2/28 39

40 Przykł /2/28 4

41 Przykł /2/28 4

42 Przykł /2/28 42

43 Przykł /2/28 43

44 Przykł 2 /2/28 44

45 Przykł 2 3 /2/28 45

46 Przykł /2/28 46

47 Przykł /2/28 47

48 Przykł /2/28 48

49 Przykł /2/28 49

50 Przykł /2/28 5

51 Znjowni rozszrzń liniowyh Kż rozszrzni liniow opowi śiż o njmnijszgo o njwiększgo iłu /2/28 5

52 Znjowni rozszrzń liniowyh Gnrt (Krt L) I<-Ø; E<- ; whil(i P) umulassignmnt <- ; rn <- rnom numr rom {,...,LinExtFiltr(I)}; or h il I in ImSu(I) o umulassignmnt <- umulassignmnt + LinExtFiltr(I ); i rn umulassignmnt thn E.(I \I); I <-I ; rk; rturn E; /2/28 52

53 Zlizni liniowyh rozszrzń Pytni: Il jst rozszrzń liniowyh, w któryh lmnt x występuj n pozyji i? Rozwiązni: Stosujmy lgorytm Assignl porząku owróongo i otrzymujmy wrtośi LinExtIl(I) ilość liniowyh rozszrzń iłu I. /2/28 53

54 Zlizni rozszrzń liniowyh ComputRnks(Post P) zuuj krtę iłów; Assign(Ø); or h lmnt E in P o or h Hight in,..., P o Rnk(E, Hight) <- ; ComputRnk(Ø, ); rturn Rnk; ComputRnk(Il I, Intgr Hight) VisitIl(I) <- tru; or h il I inimsu(i) o Rnk(I \I, Hight) += LinExtIl(I) * LinExtFiltr(I ); i(i P) n not VisitIl(I ) thn ComputRnk(I, High + ); /2/28 54

55 Zlizni rozszrzń liniowyh ComputMutulRnk(Il I, Intgr Hight) Buil th il ltti o P; Assign(Ø); For h lmnt E inp For h lmnt F inp o MR(E, F) <-; ComputMutulRnkDFS(Ø,); rturn MR; // MR(E, F) ilość rozszrzń, w któryh // lmnt F jst prz lmntm E ComputMutulRnkDFS(Il I, Intgr Hight) lr lol rry HsVisit; VisitIl(I)<-tru; or h il I inimsu(i) o HsVisit(I \I) <- tru; or h lmnt E inp o i HsVisit(E) = Tru thn MR(I \I, E) <- MR(I \I, E) + LinExtIl(I) * LinExtFiltr(I ) i I P n not VisitIl(I ) thn ComputMutulRnkDFS(I, Hight + ); /2/28 55

56 Złożoność Zlizni rozszrzń liniowyh: O(I(P) * w(p)) Znjowni koljnyh rozszrzń liniowyh: O(P * w(p)) Zlizni ilośi rozszrzń, l któryh x jst n pozyji i : O(I(P) * P * w(p)) Zlizni ilośi rozszrzń, l któryh x jst prz y: O(I(P)* P * w(p)) /2/28 56

57 Biliogri M. Pzrski Lizni rozszrzń liniowyh w zsi wilominowym M. Pzrski Nw rults in Minimum-Comprison Sorting G.Pruss, F. Rusky Gnrting linr xtnsions st K. D Loo, B. D Bts, H. D Myr Exploiting th ltti o ils rprsnttion o posts M.Hi, R.Min, L. Nourin, G.Stinr Eiint lgorithm on istriutiv lttis Ch. Ppimitriou Złożoność olizniow M. Wlls Elmnts o omintoril Computing /2/28 57

58 Dziękuję z uwgę!! Pytni? /2/28 58

Prezentacja kierunków pracy naukowej

Prezentacja kierunków pracy naukowej Prznj kirunków pry nukowj Driusz Drniowski Kr Algorymów i Molowni Sysmów Polihnik Gńsk Kirunki wz Uporząkown kolorowni grów Szrgowni zń w śroowisku wiloprosorowym Wyszukiwni lmnów w zęśiowyh porząkh Przszukiwni

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Dnyh. Gry. Drzwo rozpinj. Minimln rzwo rozpinj. Bożn Woźn-Szzśnik wozn@gmil.om Jn Długosz Univrsity, Poln Wykł 9 Bożn Woźn-Szzśnik (AJD) Algorytmy i Struktury Dnyh. Wykł 9 1 / 4 Pln

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojaera algorytm optymalny

Grafy hamiltonowskie, problem komiwojaera algorytm optymalny 2 Grfy hmiltonowski, prolm komiwojr lgorytm optymlny 3 Grfy hmiltonowski Df. Cykl (rog) Hmilton jst to ykl (rog), w którym ky wirzhołk grfu wystpuj okłni rz. Grf jst hmiltonowski (półhmiltonowski), o il

Bardziej szczegółowo

ý Ą Ż í đ í ż Ż Ż ĺ Ł ĺ ź ż Ż Í Í ĺ ĺ ĺ ĺ ĺ ĺ ĺ ĺ ý ý ń ť Ż Ż ć ż ń Í í ń ż ĺ ĺ Ó Í ĺ ť Ż ĺ ĺ ý Ę Ś ń ĺ ý ý Í ý ĺ í ĺ ĺ ĺ ĺ Í Ę ĺ ĺ ĺ ĺ ĺ ĺ Ś ż ĺ ż ż ć ż ż ć ĺ ý Ż ż đ ĺ ż ż đ í ŕ Ż Ż ő ż Ę í Ż ŕ ń ż Ż

Bardziej szczegółowo

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie Posumowni nkity wluyjnj l złonków Ry Pgogiznj po zkońzniu projktu Ersmus+: Thnologi multimiln rogą o przyjznj ukji przyszłośi. Ankit skłł się z 10 pytń, w tym jngo otwrtgo. Zostł przprowzon pozs szkolniowj

Bardziej szczegółowo

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9 ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

Algorytmy i Struktury Danych, Rozwiązania zadań z kolokwiów

Algorytmy i Struktury Danych, Rozwiązania zadań z kolokwiów Algorytmy i Struktury Dnyh, Rozwiązni zń z kolokwiów 2017-11 1 Klsówk 2007 (1), zni 1 Opruj strukturę nyh, któr pozwl wykonywć nstępują oprj: Ini(k):: inijj struktury nyh i ustlni ługośi krotk liz łkowityh

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

Materiały tylko do użytku wewnętrznego PZU SA. ankieta HOSPI

Materiały tylko do użytku wewnętrznego PZU SA. ankieta HOSPI Mtriły tylko o użytku wwnętrzngo PZU SA. nkit HOSPI Ankit l komórk lznitw stjonrngo w zkłzi opiki zrowotnj Ankit otyzy łąz wszystkih komórk orgnizyjnyh zkłu opiki zrowotnj związnyh z lznitwm stjonrnym,

Bardziej szczegółowo

2 0 0 M P a o r a z = 0, 4.

2 0 0 M P a o r a z = 0, 4. M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z

Bardziej szczegółowo

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu 24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

ť Ü Ĺ ä Ů Ú Í Í Ť ř Ě Í ü Í ń đ ń ď ď ń Ż Ł í á í É Ĺ Ü Í Ť Ĺ Ĺ ű Í Í ť Í ŕ Ĺ Í Ü Ü ü Ż Ż ń ť Ą Ą ŕ Ą ń ń Ż ń Ż ń ý Ż ń í Á É É Ýá Í ä í Ĺ Ĺ í Í ů ť Ĺ ť Ź Ť Ť Ł ń ź Ź ń ń ć ń ć ń Ż í ť ń Ż Ĺ ŕ í Ú íí ť

Bardziej szczegółowo

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8

o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8 T A B E L A O C E N Y P R O C E N T O W E J T R W A Ł E G O U S Z C Z E R B K U N A Z D R O W IU R o d z a j u s z k o d z e ń c ia ła P r o c e n t t r w a łe g o u s z c z e r b k u n a z d r o w iu

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Minimalizacja automatu

Minimalizacja automatu Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh.

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

Sieæ koordynatorów pobierania i przeszczepiania narz¹dów w Polsce w 2013 r.

Sieæ koordynatorów pobierania i przeszczepiania narz¹dów w Polsce w 2013 r. Siæ kooryntorów poirni i przszzpini nrz¹ów w Pols w 2013 r. N koni 2013 r. unkjê trnsplntyjngo p³ni³o w Pols ³¹zni 274 osoy. Njwiêksz¹ zœæ, 228 osó, stnowili szpitlni kooryntorzy poirni nrz¹ów. Kooryntorzy

Bardziej szczegółowo

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c

Bardziej szczegółowo

4.6. Gramatyki regularne

4.6. Gramatyki regularne 4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie Stron 1 z 7 Połązni Instrukj otyzą systmu Winows w przypku rukrki połązonj loklni Uwg: Przy instlowniu rukrki połązonj loklni, jśli ysk CD-ROM Oprogrmowni i okumntj ni osługuj ngo systmu opryjngo, nlży

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów

Hipoteza Černego, czyli jak zaciekawić ucznia teorią grafów Młodzieżowe Uniwersytety Mtemtyczne Projekt współfinnsowny przez Unię Europejską w rmch Europejskiego Funduszu Społecznego Hipotez Černego, czyli jk zciekwić uczni teorią grfów Adm Romn, Instytut Informtyki

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Podsumowanie wyników ankiet dotyczących żywienia w sklepikach szkolnych.

Podsumowanie wyników ankiet dotyczących żywienia w sklepikach szkolnych. Posumowni wyników nkit otyząyh żywini w sklpikh szkolnyh. 1.Czy jsz posiłki z stołówki szkolnj? )tk - )ni - )zsmi - 4 6 4 3 tk ni zsmi 1.Czy jsz posiłki z stołówki szkolnj? 2.Il śrnio spożywsz posiłków

Bardziej szczegółowo

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie

PROJEKT: Technologie multimedialne drogą do przyjaznej edukacji przyszłości realizowany w Szkole Podstawowej nr 11 w Będzinie Posumowni nkity wluyjnj l nuzyili uzstniząyh w kursh szkolniowyh po zkońzniu projktu Ersmus+: Thnologi multimiln rogą o przyjznj ukji przyszłośi. W lu zni wpływu kursów n uzstniząyh w nih nuzyili przprowzono

Bardziej szczegółowo

Przekształcenia automatów skończonych

Przekształcenia automatów skończonych Przeksztłceni utomtów skończonych Teori utomtów i języków formlnych Dr inŝ. Jnusz Mjewski Ktedr Informtyki Konstrukcj utomtu skończonego n podstwie wyrŝeni regulrnego (lgorytm Thompson) Wejście: wyrŝenie

Bardziej szczegółowo

1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i

1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

1 3

1 3 1 3 1 3 1 3 ؽ ؽ ؽ ؽ 0 4 ؽ 1 3 0 7 0 7 0 1 1 3 0 3 0 1 0 1 0 1 1 3 0 1 1 3 1 3 0 1 0 1 0 7 0 1 1 3 0 3 0 1 0 1 0 1 0 1 0 1 0 1 1 3 0 3 0 1 0 1 1 3 1 3 0 1 0 1 0 1 1 3 0 1 0 1 ؽ ؽ 1 3 0 1 0 1 0 1

Bardziej szczegółowo

F u l l H D, I P S D, I P F u l l H D, I P 5 M P,

F u l l H D, I P S D, I P F u l l H D, I P 5 M P, Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y

Bardziej szczegółowo

Echa Przeszłości 11,

Echa Przeszłości 11, Irena Makarczyk Międzynarodowa Konferencja: "Dzieje wyznaniowe obu części Prus w epoce nowożytnej: region Europy Wschodniej jako obszar komunikacji międzywyznaniowej", Elbląg 20-23 września 2009 roku Echa

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

w ww cic oz F o r p U0 a A Zr24 H r wa w wa wa w o UazQ v7 ; V7 v7 ; V7 ; v7 rj. co.. zz fa. A o, 7 F za za za 4 is,, A ) D. 4 FU.

w ww cic oz F o r p U0 a A Zr24 H r wa w wa wa w o UazQ v7 ; V7 v7 ; V7 ; v7 rj. co.. zz fa. A o, 7 F za za za 4 is,, A ) D. 4 FU. 1 68. E E E E 69 69 69 E ) E E E E be 69 69 E n c v u S i hl. ' K cic p. D 2 v7. >- 7 v7 ; V7 v7 ; V7 ; v7 J.. ~" unli. = c.. c.. n q V. ) E- mr + >. ct >. ( j V, f., 7 n = if) is,, ) - ) D. lc. 7 Dn.

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

Regał / wózek do opon. podstawa...

Regał / wózek do opon. podstawa... Dl pństw wygoy Rgł / wózk o opon Rgł / wózk o opon postw... Rgł / wózk o opon, spwn konstrukj z rur stlowyh. Oynkown rury spinją z połąznimi śruowymi umożliwiją opsowni szrokośi rgłu / wózk o kżj sytuji

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

u P o d n o s z e n i e e f e k t y w n o śc i e k o n o m i c z n e j f u n k c j o n o w a n i a a d m i n i s t ra c j i pu - b li c z n e j w y m

u P o d n o s z e n i e e f e k t y w n o śc i e k o n o m i c z n e j f u n k c j o n o w a n i a a d m i n i s t ra c j i pu - b li c z n e j w y m W Załącznik do Uchwały nr XXX/244/01 R ady M ie j s kie j w N ałę czowie z dnia 28 g ru dnia 2001 r. Strategia rozwoju gminy miejskiej Nałęczów Opracowanie: dr Waldemar A. Gorzym-Wi lk ow s k i dr An drzej

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,

Mazurskie Centrum Kongresowo-Wypoczynkowe Zamek - Ryn Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax , R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n

Bardziej szczegółowo

Sieæ szpitalnych koordynatorów pobierania narz¹dów w Polsce w 2011 r.

Sieæ szpitalnych koordynatorów pobierania narz¹dów w Polsce w 2011 r. Siæ szpitlnyh poirni w ls w 2011 r. Do koñ 2011 roku stnowisko szpitlngo trnsplntyjngo powst³o ³¹zni w 186 szpitlh, unkjê p³ni³y 203 osoy. ltrnsplnt popis³ umowy ywilno-prwn z 200 mi w 184 szpitlh, w 2

Bardziej szczegółowo

Programy współbieżne

Programy współbieżne Specyfikownie i weryfikownie Progrmy współieżne Mrek A. Bednrczyk, www.ipipn.gd.pl Litertur wiele prc dostępnych w Sieci np.: http://www.wikipedi.org/ Specyfikownie i weryfikcj progrmy współieżne PJP Prosty

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć

Bardziej szczegółowo

ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł

Bardziej szczegółowo

ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś

Bardziej szczegółowo

ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś

Bardziej szczegółowo

Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć

Bardziej szczegółowo

w 1 9 2 8 i 1 9 3 0 r.

w 1 9 2 8 i 1 9 3 0 r. I I O G Ó L N O P O L S K A K O N F E R E N C J A N A U K O W A D O K T O R A N C K I E S P O T K A N I A Z H I S T O R I } K o m i t e t n a u k o w y U n i w e r s y t e t W a r m i f -M s kaoz u r s

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykłd 6 RBD Relcyjne Bzy Dnych Bzy Dnych - A. Dwid 2011 1 Bzy Dnych - A. Dwid 2011 2 Sum ziorów A i B Teori ziorów B A R = ) ( Iloczyn ziorów A i B ( ) B A R = Teori ziorów Różnic ziorów ( A) i B Iloczyn

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Bank Spółdzielczy w Raciążu

Bank Spółdzielczy w Raciążu Złączik r 1 d Itrukcji śidczi uług zkri rdzi rchukó bkch, di krt d rchukó rz uług bkści lktriczj dl klitó ittucjlch Bku Sółdzilcz Rciążu Bk Sółdzilcz Rciążu część 1 Wik trci rchuku /zię dch *) tl głók

Bardziej szczegółowo

Obozy Naukowe OMG poziom OMG Perzanowo

Obozy Naukowe OMG poziom OMG Perzanowo Oozy Naukow OMG poziom OMG Przanowo 2014 1 Trśi zaań (poziom OMG) Pirwsz zawoy inywiualn 1. Dany jst trójkąt ABC, w którym

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn

Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Kultura Fizyczna 7, 215-223

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!

Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Frgmnt rmowy uostępniony przz Wywnictwo w clch promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Wszlki prw nlżą o: Wywnictwo Zilon Sow Sp. z o.o. Wrszw 2015 www.zilonsow.pl Prw łoń, lw łoń. Przyłóż obywi łoni

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

ᖧ厇 Ż ᖧ厇 ᐗ厷 ᖧ厇. aryja, atka asza olesna 勗tku n Z r ni, NMP B l n ryw ł i t tn 勗 r lᆗ叧 w r u i niu i ur ywi tni niu n h ry tu. W wi lu i j h w j n u ni j k ł ży i l n Z r ni r ᆗ叧ឧ呧ni j j k bi ku -. Lui A

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

5. Zadania tekstowe.

5. Zadania tekstowe. 5. Zni tekstowe. Przykł. Kolrz połowę rogi pokonł ze śrenią prękością 0 km/, rugą połowę z prękością 50 km /. Wyzncz śrenią prękość kolrz n cłej trsie. nliz : pierwsz połow rogi rug połow rogi 0 km/ prękość

Bardziej szczegółowo

51. Ogólnopolski Konkurs Chemiczny im. A. Swinarskiego

51. Ogólnopolski Konkurs Chemiczny im. A. Swinarskiego 51. gólnopolski Konkurs Chmizny im. A. Swinrskigo Finł zęść tortyzn 27.03.2015 Przykłdowy shmt rozwiązni zdń i punktj Zdni A punkt Przykłdowy shmt odpowidzi Punktj I r = [Cu 2+ ][H ] 2 = 2,2 10-20 ph =

Bardziej szczegółowo

K R Ó L O W I E PS Z W E C J I PWP.P O LF K U N G O W I E P 5 2 2

K R Ó L O W I E PS Z W E C J I PWP.P O LF K U N G O W I E P 5 2 2 5 2 2 3. Folkungowie WŻ L D E MŻ R B I R G E R S S O N MŻ G N U S I LŻ D U L Å S B I R G E R MŻ G N U S S O N MŻ G N U S I I E R I K S S O N E R Y K MŻ G N U S S O N HŻŻ K O N MŻ G N U S S O N 5 2 3 W

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionlne Koło Mtemtyzne Uniwersytet Mikołj Kopernik w Toruniu Wyził Mtemtyki i Informtyki http://www.mt.umk.pl/rkm/ List rozwiązń zń nr 8, grup zwnsown (3.03.200) O izometrih (..) Wektorem uporząkownej

Bardziej szczegółowo