Krótka historia ILP cz.1. DSP Digital Signal Processing

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krótka historia ILP cz.1. DSP Digital Signal Processing"

Transkrypt

1 1. Wstęp /4 Krótka historia ILP cz.1 DSP Digital Sigal Processig

2 1. Wstęp /4 Pomysł prawie owy Most traditioal processors were developed i the 1970's ad 1980's, before the advet of MP3 players, digital video, GPS, voice recogitio or, most importatly, small footprit, batterypowered, had-held products. The oly way for 0th cetury processors to meet 1st cetury performace requiremets is to tur up the clock rate. Ufortuately, turig up the processor clock also icreases power cosumptio ad heat dissipatio. Atmel has created the first processor architected specifically for 1st cetury applicatios. The AVR3 3-bit RISC processor core is desiged to do more processig per clock cycle so the same throughput ca be achieved at a lower clock frequecy.

3 1. Wstęp /4 AVR3 Sigle-Istructio Multiple Data (SIMD) Out of Order Executio

4 1. Wstęp /4 VLIW MIKROKOD Uiwersytet w Yale, prof. J. Fisher Multiflow Pamięc programu CPU IFU Jedostka pobierająca istrukcje IDU Jedostka dekodująca istrukcje FU-1 FU- FU-3 FU-4 FU-5 RF blok rejestrów Pamięć daych 1988 Multiflow TRACE 1990 UPADEK Multiflow Molekuł Istrukcji Atom Istrukcji Operacja dla FU-1 Atom Istrukcji Operacja dla FU-... Atom Istrukcji Operacja dla FU-N

5 . DSP /4 Digital Sigal Processig Sygał Przestrzeie sygałów: Przestrzeń fukcyja sygałów o ograiczoej eergii Przestrzeń fukcyja sygałów o ograiczoej mocy śr.. Metrycze przestrzeie sygałów : Przestrzeń Hilberta Iloczy skalary: ( xy, ) = xy i= 1 i i Korelacja: Defiicja 1: Dwa sygały x 1 i x mają te sam kształt, jeżeli istieją takie liczby rzeczywiste a,b,c i d, że dla każdego t spełioa jest rówość: t b x() t = a x1 + d c a skalowaie wartości b przesuięcie w czasie c skalowaie w czasie d przesuięcie wartości

6 . DSP /4 Digital Sigal Processig Korelacja: t b x() t = a x1 + d c Współczyik korelacyjy α ( x1, x) ( x, x ) ( x, x ) x () i x () i = = i= 1 a skalowaie wartości b przesuięcie w czasie c skalowaie w czasie d przesuięcie wartości ( xy, ) = xy i= 1 i i Uogólioa trasformata Fouriera: Baza sygałów ortogoalych + zupeła Fukcje harmoicze rzeczywiste (trygotometryczy szereg Fouriera) 1 π π, cos t, si t,... = 1,,... T T T T T Fukcje harmoicze zespoloe (zespoloy szereg Fouriera) 1 T e π j t T : = 0, ± 1,... Wielomiay Lagedre a d! dt ( t ) 1 : = 1,,... Wielomiay Czebyszewa d 1! ( 1) 1 t 1 t : = 1,,... ( )! dt Fukcje Haara + falki Fukcje Walsha + rozpraszaie widma

7 . DSP /4 Digital Sigal Processig ( x, y) = i= 1 x y i i Suma ważoa (iloczy i suma wykoywae jedocześie) Korelacja: Splot: Filtracja liiowa FIR: Filtracja liiowa IIR: Filtry adaptacyje: ( ) = ( ) ( + ) y a k x k k = ( ) = ( ) ( ) y x k h k k = M 1 ( ) = ( ) y b x k k k = 0 N M 1 y = ak y k + bk x k k= 1 k= 1 ( ) ( ) ( ) ( ) ( 1) µ ( ) ( ) T = + e( ) = d( ) H ( 1) U( ) h h e U DCT: N 1 k = 0 ( + 1) kπ X ( ) = e( k) x( ) cos, k = 0,1,..., N 1 N

8 . DSP /4 Digital Sigal Processig Ie operacje Algorytm Viterbiego: MPEG-: ( ) ( ) ( ) xj + 1 = mi xi aij +, i, j = 1,,..., N i DWT: X Wejście Filtr doloprzepustowy Filtr góroprzepustowy Filtr doloprzepustowy Filtr góroprzepustowy Wyjście J... Wyjście J-1 Filtr doloprzepustowy Filtr góroprzepustowy Wyjście 0 Wyjście 1

9 . DSP /4 Digital Sigal Processig P. Lapsley, J. Bier, A. Shoham, DSP Processor Fudametals, Architectures ad Features, IEEE Press 1997

10 . DSP /4 Data Flow Graph

11 . DSP /4 Iteratio Boud ograiczeie DSP Prawo Amdahla: Pipelie ( 1 α) T = αt + T S 1 1 T1 N 1 = = = T 1+ N 1 α α ( ) Iteratio Boud: T t max l = l L wl

12 3. Dataflow Processor /4 Dataflow Processor DFG 1975 Deis, Dataflow Computig 1980 MIT Static Dataflow Machie 1981 Arvid I-structure do/od CN SU RU UU PE Jedostka uaktualiaia IQ Kolejka istrukcji AS Pamięć aktywych operacji PE Jedostka przetwarzająca... lokala komuikacja OUs Jedostki przetwarzające IFU Jedostka pobierająca istrukcje PE CN sieć komuikacyja 1981 Machester Dataflow Machie (MDM) 1990 MIT Mosoo Motto: Istrukcja jest aktywa gdy wszystkie argumety do jej wykoaia są dostępe

13 3. Dataflow Processor /4 Static Dataflow Processor do/od CN SU RU PE PE Jedostka przetwarzająca... lokala komuikacja OUs Jedostki przetwarzające PE CN sieć komuikacyja UU Jedostka uaktualiaia IQ Kolejka istrukcji AS Pamięć aktywych operacji IFU Jedostka pobierająca istrukcje Motto: Istrukcja jest aktywa gdy wszystkie argumety do jej wykoaia są dostępe Cecha specyficza: tylko jede toke a krawędzi grafu

14 3. Dataflow Processor /4 E.A. Lee, J. Bier, Architectures for Statically Scheduled Dataflow

15 4. Zmiay lat 90 tych /4 P. Lapsley, J. Bier, A. Shoham, DSP Processor Fudametals, Architectures ad Features, IEEE Press 1997

Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć

Bardziej szczegółowo

ń ż ń ń ź ć ż ń ż ń ć ć ń ć ń ć ć Ź ń ć Ź ć ń ń ć ż ń ż ćź Ę ż ń ń ć ć ć ż ż ń ń Ę ć ć ń ż Ś Ś Ó Ź ń Ó ź Ś Ź Ę ż ń ż ź Ś ż ż ń ć ń ż ż ń Ż Ń Ź ż ż ć ć ż ć ń ż ż ń ń ń ć ń ż ć ź ć ń Ś Ę Ę ż Ę ń Ź ń Ó ż

Bardziej szczegółowo

Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż.

Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż. Adam Korzeniewski - adamkorz@sound.eti.pg.gda.pl, p. 732 dr inż. Grzegorz Szwoch - greg@sound.eti.pg.gda.pl, p. 732 dr inż. Piotr Odya - piotrod@sound.eti.pg.gda.pl, p. 730 Plan przedmiotu ZPS Cele nauczania

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia.

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia. Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia. Kod Rozmiar Bie nik LI SI RF FR Opony do samochodów osobowych - seria 80 13" 0362001000 135/80R13 rallye 680 70

Bardziej szczegółowo

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

METODY IMPLEMENTACJI SPLOTU NA TABLICY SYSTOLICZNEJ KOMPUTERA RÓWNOLEGŁEGO SYSTOLA 1024 *)

METODY IMPLEMENTACJI SPLOTU NA TABLICY SYSTOLICZNEJ KOMPUTERA RÓWNOLEGŁEGO SYSTOLA 1024 *) MARIA KOSICKA MICHAŁ MORAWSKI METODY IMPLEMENTACJI SPLOTU NA TABLICY SYSTOLICZNEJ KOMPUTERA RÓWNOLEGŁEGO SYSTOLA 24 *) STRESZCZENIE W artykule przedstawioo i porówao dwie metody implemetacji dyskretego

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

PassMark - CPU Benchmarks - List of Benchmarked CPUs

PassMark - CPU Benchmarks - List of Benchmarked CPUs Pass - CPU Benchmarks - List of Benchmarked CPUs Strona 1 z 29 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,

POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.

Bardziej szczegółowo

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Magistrala systemowa (System Bus) Architektura komputera

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Magistrala systemowa (System Bus) Architektura komputera System komputerowy systemowa (System Bus) Wstęp do iformatyki Architektura komputera Cezary Bolek cbolek@ki.ui.lodz.pl Uiwersytet Łódzki Wydział Zarządzaia Katedra Iformatyki Pamięć operacyja ROM, Jedostka

Bardziej szczegółowo

Terminarz rozgrywek Ekstraklasy w sezonie 2016/2017

Terminarz rozgrywek Ekstraklasy w sezonie 2016/2017 1. kolejka 16 lipca 2. kolejka 23 lipca 3. kolejka 30 lipca 4. kolejka 6 sierpnia 5. kolejka 13 sierpnia 6. kolejka 20 sierpnia 7. kolejka 27 sierpnia 8. kolejka 10 września 9. kolejka 17 września 10.

Bardziej szczegółowo

ĆWICZENIE nr 4. Pomiary podstawowych parametrów sygnałów

ĆWICZENIE nr 4. Pomiary podstawowych parametrów sygnałów Politechika Łódzka Katedra Przyrządów Półprzewodikowych i Optoelektroiczych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTROICZEJ ĆWICZEIE r 4 Pomiary podstawowych parametrów sygałów Łódź 00 CEL ĆWICZEIA: Ćwiczeie

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Systemy wbudowane Sygnały 2015/16

Systemy wbudowane Sygnały 2015/16 Systemy wbudowae Sygały 015/16 Itrodukcja i droga do FFT Ewa Łukasik Ewa.Lukasik@cs.put.poza.pl Systemy wbudowae -> prof. A. Urbaiak Sygały dr iż. Ewa Łukasik Struktura wykładów Zakres materiału części

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Podstawowe I/O Liczby

Podstawowe I/O Liczby Podstawowe I/O Liczby Informatyka Jolanta Bachan Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops Jolanta Bachan 2 Implementacja algorytmów, cd. I/O: Keyboard in, screen out, no loops

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Szkic notatek do wykładu Analiza Funkcjonalna MAP9907

Szkic notatek do wykładu Analiza Funkcjonalna MAP9907 Szkic otatek do wykładu Aaliza Fukcjoala MAP9907 Prowadzący: prof dr hab Tomasz Dowarowicz Sporządził: Paweł Szołtysek Spis treści I Wstęp do Aalizy Fukcjoalej 0 Przestrzeie Metryka Kula 3 Zbiory otwarte

Bardziej szczegółowo

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us Pass - CPU Benchmarks - List of Benchmarked CPUs 1 z 26 2011-09-07 09:09 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU

Bardziej szczegółowo

TŁUMIK. ZASTOSOWANIE Wytrzymałe tłumiki do zastosowań okrętowych.

TŁUMIK. ZASTOSOWANIE Wytrzymałe tłumiki do zastosowań okrętowych. TŁUMIK ZASTOSOWANIE Wytrzymałe tłumiki do zastosowań okrętowych. LD Okrągły, wysokowydajny tłumik do podłączenia kołnierzowego Dostępny w rozmiarach od średnicy Ø315-Ø. długości 1D lub 2D (długość = 1

Bardziej szczegółowo

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś

Bardziej szczegółowo

Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć

Bardziej szczegółowo

ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł

Bardziej szczegółowo

Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć

Bardziej szczegółowo

ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us Pass - CPU Benchmarks - List of Benchmarked CPUs Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks Video Card Benchmarks

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów 31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.

Bardziej szczegółowo

PassMark - CPU Benchmarks - List of Benchmarked CPUs

PassMark - CPU Benchmarks - List of Benchmarked CPUs Pass - CPU Benchmarks - List of Benchmarked CPUs Strona 1 z 32 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» CPU List CPU Benchmarks

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Komputer (elektroniczna maszyna cyfrowa) jest to maszyna programowalna. Maszyna programowalna ma dwie cechy: Reaguje

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY FOURIERA W UKŁADZIE PROGRAMOWALNYM FPGA

FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY FOURIERA W UKŁADZIE PROGRAMOWALNYM FPGA Inż. Arkadiusz Pantoł IV rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy FPGA IMPLEMENTATION OF FAST FOURIER TRANSFORM ALGORITHM IMPLEMENTACJA ALGORYTMU SZYBKIEJ TRANSFORMATY

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka trasformacja Fouriera (FFT Fast Fourier Trasform) Pla wykładu: 1 Trasformacja Fouriera, iloczy skalary 2 DFT - dyskreta trasformacja Fouriera 3 FFT szybka trasformacja Fouriera a) algorytm PFA b)

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

Zastosowanie emulatorów w rozbudowie systemów wbudowanych

Zastosowanie emulatorów w rozbudowie systemów wbudowanych Zastosowanie emulatorów w rozbudowie systemów wbudowanych Jan Kowalewski kowalewski.j@protonmail.com May 29, 2019 Jan Kowalewskikowalewski.j@protonmail.com Zastosowanie emulatorów w rozbudowie systemów

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

ó ó ć Ż Ł Ą Ż ó ż ć Ż ó Ą ó ó Ą ć ó ó Ł Ł ó ć ó ż ć ż Śó ó ó ó ć ó ż ć Ą ż ĘĄ ó Ś Ż óź Ż ć ó Ż Ż Ż ć ń Ą ó Ą ż ó Ż ó Ł ó ó Ż ó ó ó ź Ś ó Ą ć Ś ó ó ż ó ż Ł ńę ó ń ó ń ż ć ó Ż Ż ż ć Ż ć ć ć ż ó ń óź ó ć

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka trasformacja Fouriera (FFT Fast Fourier Trasform) Pla wykładu:. Trasformacja Fouriera, iloczy skalary. DFT - dyskreta trasformacja Fouriera 3. FFT szybka trasformacja Fouriera a) algorytm PFA b)

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych

Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Komputer (elektroniczna maszyna cyfrowa) jest to maszyna programowalna. Maszyna programowalna ma dwie cechy: Reaguje

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo