Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2013/2014
|
|
- Henryka Wysocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2013/2014
2 Sieci neuronowe
3 Sieci neuronowe W XIX wieku sformułowano teorię opisującą podstawowe pojęcia dla funkcjonalnego opisu systemu nerwowego. System nerwowy składa się z komórek nerwowych (neuronów), które komunikują się ze sobą poprzez przekazywanie sygnałów. Komórki nerwowe są połączone ze sobą tworząc skomplikowana sieć. Każdy neuron jest pojedynczą komórką, która może odbierać sygnały elektrochemiczne, przetwarzać je i rozsyłać do innych komórek. 3
4 Sieci neuronowe Pojemność ludzkiego mózgu szacuje się na neuronów. Na jeden neuron przypada średnio kilka tysięcy połączeń. Cztery tygodnie po zapłodnieniu embrion wytwarza pół miliona neuronów na minutę. W ciągu następnych tygodni te komórki przemieszczają się do mózgu i łączą między sobą (około 2 miliony połączeń na sekundę). To daje około połączeń między neuronami. 4
5 Rodzaje neuronów Neurony wstępujące (czuciowe) odbierają bodźce od narządów zmysłów i przekazują informację do ośrodkowego układu nerwowego. Neurony pośredniczące zajmują się integracją (kojarzeniem) docierających informacji i podejmowaniem decyzji dotyczących sposobów reagowania. Neurony zstępujące przekazują informację z systemu nerwowego do odpowiednich narządów zmysłu i gruczołów. 5
6 Budowa neuronu Ciało komórki (perikarion). Dendryty odbierają sygnały przychodzące od innych. Sygnały wejściowe są agregowane i jeżeli przekroczą pewną wartość progową, neuron zostaje pobudzony i wysyła sygnał wyjściowy. Akson przewodzi z ciała komórki do innych neuronów lub do mięśni i gruczołów. Akson jednej komórki łączy się z dendrytami innych komórek poprzez złącza zwane synapsami. 6
7 Neurony a uczenie się W 1949 roku Donald Hebb w pracy The Organization of Behavior zasugerował, że zachowanie się synaps może być modyfikowane przez uczenie. Bodźce przychodzące ze świata zewnętrznego powodują wzrost aktywności neuronów, co wpływa na wzrost powiązań synaptycznych między pobudzanymi neuronami. Uczenie powoduje, że niektóre synapsy są wzmocnione, a inne uśpione. Powyższa idea stała się podstawą konstrukcji sztucznych sieci neuronowych. 7
8 Modele sieci neuronowych W budowie sztucznych sieci neuronowych wykorzystuje się modele matematyczne neuronów, których działanie w pewnym uproszczeniu odpowiada działaniu neuronów biologicznych. dendrytom biologicznych sieci neuronowych odpowiadają wejścia, które są połączone z wyjściami innych neuronów, synapsom odpowiadają pewne liczby zwane wagami połączeń, które pełnią rolę parametrów wpływających na działanie neuronów. Podobnie jak w systemie biologicznym wagi połączeń są zmieniane w zależności od otrzymywanej informacji. To zapewnia zdolność kojarzenia faktów czyli uczenia sieci. 8
9 Modele sieci neuronowych Mimo wielu uproszczeń, sztuczne sieci neuronowe charakteryzują się cechami zarezerwowanymi dotychczas dla organizmów żywych. zdolność uczenia się, dzięki której sieć neuronowa potrafi nauczyć się prawidłowych reakcji na określone bodźce, umiejętność abstrakcji tj. zdolność uogólniania zdobytej wiedzy, odporność na uszkodzenia, gdyż sieć neuronowa potrafi działać poprawnie nawet gdy część jej elementów jest uszkodzona. [D. Witkowska, 2000] Odporność na zaszumione i niedokładne dane wejściowe. 9
10 Zastosowania Modele sieci neuronowych stosuje się, gdy: nie znamy formuły matematycznej wiążącej zmienną zależną ze zmiennymi objaśniającymi (zależność ta jest nieliniowa), predykcja jest ważniejsza niż wyjaśnianie zależności między zmiennymi, mamy dużo obserwacji, dla których znamy wartości zmiennej objaśnianej i zmiennych objaśniających. 10
11 Kilka możliwych zastosowań sieci neuronowych rozpoznawanie i generowanie mowy, przewidywanie wskaźników finansowych, kursów na giełdzie optymalizacja procesów chemicznych, rozpoznawanie obiektów i wykrywanie złóż, identyfikacja komórek nowotworowych, wykrywanie anomalii w chromosomach, określanie ryzyka przedsięwzięć, automatyczne rozpoznawanie ręcznego pisma, rozwiązywanie problemów optymalizacyjnych, takich jak problem komiwojażera, usuwanie szumów w analizie szeregów czasowych. [R. Tadeusiewicz, 1993] 11
12 Ciekawe zastosowania sieci neuronowych selekcja policjantów z uwagi na skłonność do nieetycznego zachowania, powoływanie przysięgłych, przewidywanie napraw drogowych, diagnozy lekarskie, przewidywanie wyników wyścigów konnych, przewidywanie wybuchów na Słońcu prognoza pogody, automatyczne sterowanie, wybór składników karmy dla kurcząt, poszukiwanie złota, badanie zanieczyszczeń powietrza. [Iwo Białynicki-Birula, Iwona Białynicka-Birula, Modelowanie rzeczywistości, WNT 2007] 12
13 Opis zależności między zmiennymi Wartości zmiennych objaśniających X 1 X 2 Sieć neuronowa Y Wartości zmiennej objaśnianej X 3 Po wprowadzeniu na wejściu wartości zmiennych objaśniających sieć powinna przewidywać wartość zmiennej objaśnianej 13
14 Jednokierunkowa sieć wielowarstwowa MLP MultiLayer Perception) neurony układają się w warstwy, połączenie istnieje tylko pomiędzy neuronami sąsiednich warstw (nie ma połączeń między neuronami tej samej warstwy), istnieje warstwa wejściowa, warstwa wyjściowa oraz jedna lub wiele warstw ukrytych, sygnał przepływa od warstwy wejściowej do warstwy wyjściowej w jednym kierunku. Warstwa wejściowa Warstwa ukryta Warstwa wyjściowa 14
15 Sztuczna sieć neuronowa Połączeniom między neuronami są przypisane wagi połączeń. waga Początkowe wartości wag mogą być ustalone lub wybrane losowo. Warstwa wejściowa Warstwa ukryta Warstwa wyjściowa 15
16 W jaki sposób neuron przetwarza informację przychodzącą do niego? Pobudzenie neuronu p jest liniową funkcją sygnałów wejściowych z wagami połączeń jako współczynnikami (funkcja kombinacji). n p=w 1 x 1 +w 2 x w n x = n i=1 w i x i Sygnał wyjściowy y jest zależny od całkowitego pobudzenia neuronu, transformowanego przez funkcję aktywacji f. Pozwala to wprowadzić nieliniowość. n y=f ( p)=f ( i=1 w i x i) 16
17 Funkcja aktywacji progowa Funkcja przekazuje sygnał (f =1), gdy progowa wartość p jest większa od zera. 1,2 1 0,8 0,6 0,4 0,2 0-2,0-1,0 0,0 1,0 2,0 17
18 Funkcja aktywacji liniowo-progowa Zakres zmian wartości funkcji jest ograniczony przez wartości progowe α i β (przyjmujemy α < β). Sygnały mniejsze lub większe od wartości progowych nie powodują żadnych dalszych zmian wartości funkcji, natomiast między wartościami progowymi funkcja aktywacji zmienia się w sposób liniowy. 1,2 1 0,8 0,6 0,4 0,2 0-2,0-1,0 0,0 1,0 2,0 18
19 Funkcja logistyczna 1 f ( p )= 1+exp( β p ) Przyjmuje wartości z przedziału otwartego (0; 1), gdzie parametr β decyduje o kształcie funkcji w pobliżu zera. 1,0 0,8 0,6 0,4 0,2 0,0-2,0-1,0 0,0 1,0 2,0 2 19
20 Funkcja tangens hiperboliczny f ( p )=tanh p= exp ( p) exp( p ) exp ( p)+exp( p ) Przyjmuje wartości z przedziału [-1; 1] 20
21 Inne funkcje aktywacji W programie SAS Enterprise Miner używane są jeszcze inne funkcje aktywacji, m. in. identyczność - f(p) = p, wykładnicza - f(p) = exp(p) softmax - będąca uogólnieniem funkcji logistycznej, Gauss - f(p) = exp(-p 2 ), odwrotność (reciprocal) - f(p) = 1/p, Elliot - f(p) = p/(1+ p ) 21
22 Domyślne funkcje aktywacji dla warstwy wyjściowej W programie Enterprise Miner domyślne funkcje aktywacji dla warstwy wyjściowej zależą od skali pomiaru zmiennej objaśnianej (target). Skala pomiaru Interval Ordinal Nominal Funkcja aktywacji identyczność logistyczna softmax 22
23 Uczenie sieci neuronowej uczenie sieci polega na modyfikacji wartości wag wszystkich połączeń między neuronami w ten sposób, że sieć przyjmuje pożądane wartości wyjściowe dla określonych danych wejściowych, o działaniu sieci decyduje struktura połączeń neuronów i wartości wag tych połączeń, proces uczenia polega na kolejnych modyfikacjach wag. Wynika z niego też modyfikacja topologii sieci, ponieważ sieć z zerowymi wagami między dwoma neuronami oznacza brak połączenia, a neuron z wejściowymi i wyjściowymi wagami równymi zero oznacza neuron zbędny, który może być usunięty ze struktury sieci. 23
24 Uczenie sieci neuronowej Przebieg procesu uczenia sieci jest następujący: najpierw nadaje się wszystkim wagom wartości początkowe (w sposób z góry ustalony lub losowy), ale tak aby nie faworyzować żadnego połączenia, następnie sieć wykonuje postawione zadanie i na podstawie otrzymanego wyniku wartości wag są zmieniane. 24
25 Uczenie sieci neuronowej W zależności od rodzaju informacji o ocenie zadania wykonanego przez sieć wyróżniamy: uczenie pod nadzorem (z nauczycielem), gdzie dostarczana jest informacja o poprawnych odpowiedziach, uczenie ze wzmocnieniem gdzie nie podaje się poprawnej odpowiedzi, lecz jedynie ocenę wyniku, np. "dobrze" lub "źle ; ten tryb uczenia naśladuje ludzki proces uczenia się, uczenie bez nadzoru (bez nauczyciela), w którym nauczyciel nie bierze udziału w nauczaniu, a sieć sama wykrywa wzajemne zależności w danych wejściowych. Skuteczność uczenia zależy od wyboru wzorców ze względu na ich reprezentatywność. 25
26 Uczenie nadzorowane sieć neuronowa analizuje ciąg dostarczanych na wejściu przykładów (zwanych faktami) i jednocześnie otrzymuje informację, jaki jest poprawny wynik dla każdego przykładu, sieć stara się odgadnąć powiązania między danymi wejściowymi a znanym wynikiem, na podstawie odstępstw wyników sieci od znanych wartości na wyjściu dokonywana jest korekta wag w ten sposób, aby zredukować różnice do możliwie małych wartości. 26
27 Modyfikacja wag Modyfikacja wag połączeń jest przeprowadzana iteracyjnie zgodnie z zależnością: w t+1 =w t +Δw t, Zmienianie wartości wag jest w t+1 - nowa waga (w t+1 iteracji) zatrzymywane, jeżeli działanie sieci uznamy za właściwe lub przekroczona zostanie z góry w t założona maksymalna liczba iteracji. Δw t - dotychczasowa waga (w t-tej iteracji) - wartość, o jaką należy zmienić wagę w danej chwili uczenia 27
28 Reguła delta Jeżeli oznaczymy symbolem y - wartość wymaganej odpowiedzi neuronu, a symbolem y^ - wartość sygnału wyjściowego neuronu, to możemy obliczyć błąd odpowiedzi: δ = y ^y, Na podstawie obliczonego błędu Δw=η δ p jest wyznaczana wartość, o jaką należy zmienić wagę: gdzie η jest współczynnikiem uczenia, δ=δ f ' ( p ) f ' jest pochodną funkcji aktywacji. 28
29 Współczynnik uczenia η Określa szybkość, z jaką następuje modyfikowanie wartości wag. jeżeli wartość współczynnika uczenia jest zbyt duża, to zmiany wag będą zwiększać błąd w następnych iteracjach i uczenie nie będzie możliwe (sieć będzie zbyt intensywnie reagować na kolejne bodźce wejściowe), jeżeli wartość będzie zbyt mała, to uczenie będzie przebiegać powoli, współczynnik uczenia jest wspólny dla wszystkich wag, w trakcie procesu uczenia wartości współczynnika są zmieniane. 29
30 Algorytm propagacji wstecznej Celem algorytmu jest zmniejszenie błędu odpowiedzi sieci nie tylko dla jednego wzorca, ale dla wszystkich wzorców wejściowych. Q= 1 n 2 i=1 ( y i ^y i ) 2 Oblicza się błąd Q, zwany błędem średniokwadratowym (SSE - Sum Squared Error) y i ^y i n wartości oczekiwane na wyjściu neuronu wartości wyznaczone z sieci liczba wzorców 30
31 Algorytm propagacji wstecznej Propagacja wsteczna polega na obliczaniu gradientu błędu dla neuronów wcześniejszych warstw. Najpierw koryguje się wagi prowadzące do warstwy wyjściowej, potem wagi prowadzące do warstwy poprzedzającej ją, aż osiągniemy pierwszą warstwę. Pozwala to na wyznaczenie wartości wszystkich wag połączeń. 31
32 Algorytm propagacji wstecznej Możliwe są dwie wersje algorytmu: wczytaj cały zbiór danych, modyfikuj wagi, wczytaj cały zbiór danych, modyfikuj wagi itd., wczytaj jedną obserwację, modyfikuj wagi, wczytaj jedną obserwację, modyfikuj wagi itd.. Pierwsza z tych metod jest mniej zalecana, gdyż jest powolna i nieefektywna. 32
33 Trening sieci przygotowanie wzorców wejściowych i wyjściowych, nadanie wartości początkowych wagom połączeń, nadanie wartości początkowych innym parametrom uczenia (np. współczynnikowi uczenia), prezentacja wzorców i modyfikację wag, sprawdzenie kryterium zakończenia procesu uczenia. 33
34 Testowanie sieci Program umożliwia testowanie sieci podczas treningu. Testowanie odbywa się w oparciu o zbiór faktów testowych wyodrębnionych spośród zbioru wszystkich faktów, zapisanych w zbiorze danych. Następuje wtedy podział zbioru faktów (w proporcjach zadanych przez użytkownika): na fakty treningowe, fakty testowe. Fakty testowe nie biorą udziału w treningu sieci. 34
35 Pułapki Liczba faktów powinna być przynajmniej kilka razy większa od liczby szacowanych wag Sieć o zbyt złożonej strukturze prowadzi do powstania modeli, które bardzo dobrze działają na danych uczących, ale nie sprawdzają się dla innych danych (sieć nie potrafi uogólniać zdobytej wiedzy). Zjawisko to nazywa się przetrenowaniem sieci 35
36 Wnioski sieć neuronowa nie wyjaśnia, jaka jest zależność funkcyjną między zmiennymi objaśniającymi (wejściowymi) a zmienną wynikową. pozwala jednak dokonywać predykcji albo zidentyfikować przynależność obiektu do danej klasy. nie jest wymagane spełnienie założeń o naturze rozkładu zmiennych, jak to jest w przypadku stosowania modeli ekonometrycznych, np. metod regresji liniowej lub logistycznej. 36
37 Dziękuję za uwagę!
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.
Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Inteligentne systemy informacyjne
Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
I EKSPLORACJA DANYCH
I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe
SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Wstęp do sztucznych sieci neuronowych
Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY SZTUCZNE SIECI NEURONOWE MLP Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe. Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Krzysztof Regulski, WIMiIP, KISiM, regulski@aghedupl B5, pok 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Widzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe Sztuczne sieci neuronowe Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Typy sieci 2 Wprowadzenie Zainteresowanie
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)
WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach
Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie
SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Wykład 1: Wprowadzenie do sieci neuronowych
Wykład 1: Wprowadzenie do sieci neuronowych Historia badań nad sieciami neuronowymi. - początki: badanie komórek ośrodkowego układu nerwowego zwierząt i człowieka, czyli neuronów; próby wyjaśnienia i matematycznego
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Sieci Kohonena Sieci Kohonena Sieci Kohonena zostały wprowadzone w 1982 przez fińskiego
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie
Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja
Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW
Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się
Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy
ELEMENTY SZTUCZNEJ INTELIGENCJI. Sztuczne sieci neuronowe
ELEMENTY SZTUCZNEJ INTELIGENCJI Sztuczne sieci neuronowe Plan 2 Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie regułą delta Perceptron wielowarstwowy i jego uczenie
Sztuczna inteligencja
Sztuczna inteligencja Wykład 7. Architektury sztucznych sieci neuronowych. Metody uczenia sieci. źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Podstawowe architektury
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015
Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Sieci neuronowe Sieci neuronowe w SAS Enterprise Miner Węzeł Neural Network Do
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Sztuczne sieci neuronowe. Uczenie, zastosowania
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe. Uczenie, zastosowania Inteligencja Sztuczne sieci neuronowe Metody uczenia Budowa modelu Algorytm wstecznej propagacji błędu
OBLICZENIA ZA POMOCĄ PROTEIN
OBLICZENIA ZA POMOCĄ PROTEIN KODOWANIE I PRZETWARZANIE INFORMACJI W ORGANIZMACH Informacja genetyczna jest przechowywana w DNA i RNA w postaci liniowych sekwencji nukleotydów W genach jest przemieniana
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ
optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Katedra Zarządzania i Informatyki Politechnika Śląska
prof. dr hab. Tadeusz Wieczorek mgr inż. Krystian Mączka Katedra Zarządzania i Informatyki Politechnika Śląska Charakterystyka procesu topienia złomu w piecu łukowym Problemy do rozwiązania Prezentacja
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
PRÓBA ZASTOSOWANIA SIECI NEURONOWYCH DO PROGNOZOWANIA OSIADAŃ POWIERZCHNI TERENU POWSTAŁYCH NA SKUTEK EKSPLOATACJI GÓRNICZEJ**
Górnictwo i Geoinżynieria Rok 30 Zeszyt 4 2006 Dorota Pawluś* PRÓBA ZASTOSOWANIA SIECI NEURONOWYCH DO PROGNOZOWANIA OSIADAŃ POWIERZCHNI TERENU POWSTAŁYCH NA SKUTEK EKSPLOATACJI GÓRNICZEJ** 1. Wstęp Na
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010
Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
SIECI REKURENCYJNE SIECI HOPFIELDA
SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
OCENA DZIAŁANIA AE. METODY HEURYSTYCZNE wykład 4 LOSOWOŚĆ W AE KRZYWE ZBIEŻNOŚCI ANALIZA STATYSTYCZNA:
METODY HEURYSTYCZNE wykład 4 OCENA DZIAŁANIA AE 1 2 LOSOWOŚĆ W AE Różne zachowanie algorytmuw poszczególnych uruchomieniach przy jednakowych ustawieniach parametrów i identycznych populacjach początkowych.
Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman
Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Modelowanie glikemii w procesie insulinoterapii
Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)
MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI
MOŻLIWOŚCI ZASTOSOWANIA METOD DATA MINING DO ANALIZY ILOŚCI ŚCIEKÓW DOPŁYWAJĄCYCH DO OCZYSZCZALNI Monika Paluch-Puk, Instytut Inżynierii Środowiska, Uniwersytet Przyrodniczy we Wrocławiu W każdej oczyszczalni
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Liczba godzin Punkty ECTS Sposób zaliczenia
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Jan Matysiak Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne
Emergentne właściwości. sztucznych sieci neuronowych
Barbara Pankiewicz nauczyciel fizyki III Liceum Ogólnokształcące w Zamościu ul. Kilińskiego 15 22-400 Zamość Emergentne właściwości sztucznych sieci neuronowych Opracowała: Barbara Pankiewicz Zamość, 2001
SZTUCZNE SIECI NEURONOWE
INTELIGENTNE TECHNIKI KOMPUTEROWE wykład SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Sztuczne sieci neuronowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Systemy wspomagania decyzji Wprowadzenie Trochę historii Podstawy działania Funkcja aktywacji Uczenie sieci Typy sieci Zastosowania 2 Wprowadzenie
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Obliczenia Naturalne - Sztuczne sieci neuronowe
Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.
Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Sieci neuronowe - dokumentacja projektu
Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej