Co to jest klasyfikacja? Klasyfikacja a grupowanie Naiwny klasyfikator Bayesa
|
|
- Włodzimierz Kozak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Co to jest klasyfikacja? Klasyfikacja a grupowanie Naiwny klasyfikator Bayesa
2 Odkrywanie asocjacji Wzorce sekwencji Analiza koszykowa Podobieństwo szeregów temporalnych Klasyfikacja Wykrywanie odchyleń
3
4 Jest jednym z głównych celów eksploracji danych. Służy do rozdzielenia obiektów w grupy, z których każda ma coś ze sobą wspólnego.
5 Klasy: Żółty, Niebieski, Zielony
6 Do tego przydają się klasyfikatory, czyli algorytmy które na podstawie jakichś znanych wcześniej przypadków, potrafią zaklasyfikować nowe obiekty (przypadki) do wcześniej zdefiniowanych i utworzonych grup. Co wynika z powyższego: klasyfikatory można uczyć: Uczenie nienadzorowane Uczenie nadzorowane
7 Prosty, propablistyczny klasyfikator Zakłada, że predyktory są niezależne Wywodzi się z Twierdzenia Bayesa Można go uczyć w trybie z nadzorem Pomimo ich naiwnego projektowania i bardzo uproszczonych założeń, naiwne klasyfikatory Bayesa często pracują dużo lepiej w wielu rzeczywistych sytuacjach niż można było tego oczekiwać.
8
9 Liczba kobiet: 5 Liczba mężczyzn: 3 A więc panowie do dzieła
10 Liczba kobiet: 5 Liczba mężczyzn: 3 A więc panowie do dzieła Gaśnie światło. Przychodzi nowa osoba na dyskotekę. Czy będzie to kobieta czy mężczyzna?
11 Liczba kobiet: 5 Liczba mężczyzn: 3 Gaśnie światło. Przychodzi nowa osoba na dyskotekę. Czy będzie to dziewczyna czy chłopak? Prawd. chłopaka = 3/8 Prawd. dziewczyny =5/8 W otoczeniu jest 1 chłopak i 3 dziewczyny
12 Liczba kobiet: 5 Liczba mężczyzn: 3 Prawd. chłopaka = 3/8 Prawd. dziewczyny =5/8 W otoczeniu jest 1 chłopak i 3 dziewczyny Prawd. chłopaka w sąsiedztwie = 1/3 Prawd. dziewczyny w sąsiedztwie = 3/5
13 Prawdopodobieństwo, że nowa osoba jest dziewczyną = Prawdopodobieństwo, że jest dziewczyna w sąsiedztwie * Prawdopodobieństwo, że dziewczyna w ogóle Prawdopodobieństwo, że nowa osoba jest chłopakiem = Prawdopodobieństwo, że jest chłopak w sąsiedztwie * Prawdopodobieństwo, że chłopak w ogóle
14 Prawdopodobieństwo, że nowa osoba jest dziewczyną = Prawdopodobieństwo, że jest dziewczyna w sąsiedztwie * Prawdopodobieństwo, że dziewczyna w ogóle P(chłopak) = 1/3 * 3/8 = 1/8 P(dziewczyna) = 3/5 * 5/8 = 3/8 Prawdopodobieństwo, że nowa osoba jest chłopakiem = Prawdopodobieństwo, że jest chłopak w sąsiedztwie * Prawdopodobieństwo, że chłopak w ogóle
15 Poniższy plan odzwierciedla strukturę demograficzną właścicieli działek. Zielony emeryt, Niebieski w średnim wieku, Żółty dwudziestokilkulatek. Wprowadza się nowa osoba (czerwony). Kto to będzie najpewniej? Zanalizuj sąsiedztwo najbliższe, potem o 1 dalsze.
16 Poniższy plan odzwierciedla strukturę demograficzną właścicieli działek. Zielony emeryt, Niebieski w średnim wieku, Żółty dwudziestokilkulatek. Wprowadza się nowa osoba (czerwony). Kto to będzie najpewniej? Zanalizuj sąsiedztwo najbliższe, potem o 1 dalsze.
17 Poniższy plan odzwierciedla strukturę demograficzną właścicieli działek. Zielony emeryt, Niebieski w średnim wieku, Żółty dwudziestokilkulatek. Wprowadza się nowa osoba (czerwony). Kto to będzie najpewniej? Zanalizuj sąsiedztwo najbliższe, potem o 1 dalsze.
18 Jak wszystkim wiadomo, w akademikach mieszkają różni studenci Wiadomo również, że poszczególne domy studenckie znacznie różnią się między sobą stopniem zimprezowania. Wiadomo też, że osoby z różnych wydziałów wybierają różne akademiki. Mając dane te dwa kryteria sporządź mapę akademikową: uwzględnij dwa poziomy numer domu studenta oraz piętro. Tak przygotowaną mapę (skoro mamy dwie cechy, to może mapy?) zwizualizuj graficznie. Technika dowolna, byleby czytelna z punktu widzenia klasyfikatora Bayesa. Mając dany taki aparat statystyczny wprowadź nowego mieszkańca i określ prawdopodobieństwo należności do wydziału i do grupy imprezowej. Podobnie określ przynależność do wydziału nowego studenta. Całość oddaj w formie sprawozdania na za 2 tygodnie (w sprawozdaniu ma się znaleźć również podbudowa teoretyczna o naiwnym klasyfikatorze bayesa oraz bibliografia).
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoAnaliza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoPrawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Bardziej szczegółowoAgnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Bardziej szczegółowoKlasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
Bardziej szczegółowo1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Bardziej szczegółowoElementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Bardziej szczegółowoAnaliza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Bardziej szczegółowoMail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Bardziej szczegółowoEksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Bardziej szczegółowoNaiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Bardziej szczegółowoIntegracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
Bardziej szczegółowoAnaliza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Bardziej szczegółowoSztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
Bardziej szczegółowoSystemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Bardziej szczegółowoMetody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
Bardziej szczegółowoSzczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
Bardziej szczegółowoPODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Bardziej szczegółowoData Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Bardziej szczegółowoUniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Bardziej szczegółowoInformacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
Bardziej szczegółowoAlgorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Bardziej szczegółowoWybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora.
Wprowadzenie do programu RapidMiner Studio 7.6, część 7 Podstawy metod wyboru atrybutów w problemach klasyfikacyjnych, c.d. Michał Bereta www.michalbereta.pl Wybór / ocena atrybutów na podstawie oceny
Bardziej szczegółowoSystemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Bardziej szczegółowoWprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Bardziej szczegółowoUczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Bardziej szczegółowoJednostka modułowa: m3.j1 Podejmowanie i prowadzenie działalności w gastronomii
Moduł: 512001. M3 Organizowanie działalności w gastronomii Jednostka modułowa:512001.m3.j1 Podejmowanie i prowadzenie działalności w gastronomii Autor: Andrzej Śliwiński Temat: Jak skutecznie pozyskać
Bardziej szczegółowoHurtownie danych - opis przedmiotu
Hurtownie danych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Hurtownie danych Kod przedmiotu 11.3-WI-INFD-HD Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Zintegrowane
Bardziej szczegółowoSAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Bardziej szczegółowoRodzaje badań statystycznych
Rodzaje badań statystycznych Zbieranie danych, które zostaną poddane analizie statystycznej nazywamy obserwacją statystyczną. Dane uzyskuje się na podstawie badania jednostek statystycznych. Badania statystyczne
Bardziej szczegółowoALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Bardziej szczegółowoTechniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź
Bardziej szczegółowodata mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Bardziej szczegółowo4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Bardziej szczegółowoAnaliza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy
Bardziej szczegółowoWYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Bardziej szczegółowoMetody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Bardziej szczegółowoKlasyfikacja bayesowska
Wykład14,26V2010,str.1 Przykład: (Bishop) M Jabłka i pomarańcze: Wyciągnięto pomarańczę; jakie jest prawdopodobieństwo, że naczynie było niebieskie? Wykład14,26V2010,str.2 TWIERDZENIE: (Bayes) M Wykład14,26V2010,str.2
Bardziej szczegółowoSylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia.
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Bardziej szczegółowoMateriały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty).
Pudełkowy komputer Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty). Budowa komputera: każdy uczeń składa proste pudełko metodą orgiami Zobacz:
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Bardziej szczegółowoSztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Bardziej szczegółowoPlan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Bardziej szczegółowoTechnologie Informacyjne
Systemy Uczące się Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 16, 2017 1 Wprowadzenie 2 Uczenie nadzorowane 3 Uczenie bez nadzoru 4 Uczenie ze wzmocnieniem Uczenie się - proces
Bardziej szczegółowoEstymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoUwaga: szarych kropek po pokolorowaniu nie uwzględniaj w klasyfikowaniu kolejnych szarych.
Inteligencja obliczeniowa stud. niestac. Laboratorium 4: Zadanie klasyfikacji poznanie trzech algorytmów klasyfikujących: knn, NaiveBayes, drzewo decyzyjne. Przy pomnijmy sobie bazę danych z irysami. Na
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Bardziej szczegółowoZalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology
Bardziej szczegółowoKP, Tele i foto, wykład 3 1
Krystian Pyka Teledetekcja i fotogrametria sem. 4 2007/08 Wykład 3 Promieniowanie elektromagnetyczne padające na obiekt jest w części: odbijane refleksja R rozpraszane S przepuszczane transmisja T pochłaniane
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
Bardziej szczegółowoALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie
Bardziej szczegółowoGłównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa.
KAPITAŁ W PRZEDSIĘBIORSTWIE I JEGO STRUKTURA Autor: Jacek Grzywacz, Wstęp W opracowaniu przedstawiono kluczowe zagadnienia dotyczące możliwości pozyskiwania przez przedsiębiorstwo kapitału oraz zasad kształtowania
Bardziej szczegółowoDODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b
DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez
Bardziej szczegółowoWydawnictwo Politechniki Poznanskiej
Confusion matrix (test set): (a) (b) 10875 : bad (25.0/9.2) Credit
Bardziej szczegółowoWprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Bardziej szczegółowoAutomatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Bardziej szczegółowoElementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
Bardziej szczegółowoZarządzenie nr 7 Rektora Uniwersytetu Jagiellońskiego z 14 stycznia 2015 roku
75.0200.4.2015 Zarządzenie nr 7 Rektora Uniwersytetu Jagiellońskiego z 14 stycznia 2015 roku w sprawie: wprowadzenia Regulaminu ankietowego systemu oceny zajęć dydaktycznych Na podstawie art. 66 ust. 2
Bardziej szczegółowoTestowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Bardziej szczegółowoSTUDENCI UCZELNI PUBLICZNYCH I NIEPUBLICZNYCH
STUDENCI UCZELNI PUBLICZNYCH I NIEPUBLICZNYCH Analiza dotychczasowej sytuacji i prognoza liczby studentów uczelni publicznych i niepublicznych w latach 1999-2030 W latach 1999 2009 liczba absolwentów szkół
Bardziej szczegółowoAlgorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Bardziej szczegółowoTestowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Bardziej szczegółowoAnaliza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl
Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja
Bardziej szczegółowoEksploracja Danych. podstawy
Eksploracja Danych podstawy Bazy danych (1) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 2/633 Bazy danych (2) Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 3/633
Bardziej szczegółowoMetody doboru próby do badań. Dr Kalina Grzesiuk
Metody doboru próby do badań Dr Kalina Grzesiuk Proces doboru próby 1. Ustalenie populacji badanej 2. Ustalenie wykazu populacji badanej 3. Ustalenie liczebności próby 4. Wybór metody doboru próby do badań
Bardziej szczegółowoKARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoSPRAWOZDANIE Z PŁATNOŚCI NA RZECZ ADMINISTRACJI PUBLICZNEJ JASTRZĘBSKIEJ SPÓŁKI WĘGLOWEJ S.A. ZA ROK OBROTOWY ZAKOŃCZONY 31 GRUDNIA 2016 ROKU
2 Spis treści 1. PODSTAWA SPORZĄDZENIA SPRAWOZDANIA... 3 2. PRZYJĘTE ZASADY RAPORTOWANIA... 3 PŁATNOŚCI DOKONANE W 2016 ROKU W PODZIALE NA POSZCZEGÓLNE SZCZEBLE ADMINISTRACJI PUBLICZNEJ... 4 PŁATNOŚCI
Bardziej szczegółowoProjekt przejściowy 2015/2016 BARTOSZ JABŁOŃSKI, TOMASZ JANICZEK
Projekt przejściowy 2015/2016 BARTOSZ JABŁOŃSKI, TOMASZ JANICZEK Kto? dr inż. Tomasz Janiczek tomasz.janiczek@pwr.edu.pl s. P1.2, C-16 dr inż. Bartosz Jabłoński bartosz.jablonski@pwr.edu.pl s. P0.2, C-16
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoWybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Bardziej szczegółowoWymagania edukacyjne z przedmiotu "Projektowanie i montaż lokalnych sieci komputerowych "
Wymagania edukacyjne z przedmiotu "rojektowanie i montaż lokalnych sieci komputerowych " 10.1. rojektowanie i montaż okablowania strukturalnego Uszczegółowione efekty kształcenia Uczeń po zrealizowaniu
Bardziej szczegółowoBudowanie drzewa filogenetycznego
Szkoła Festiwalu Nauki 134567 Wojciech Grajkowski Szkoła Festiwalu Nauki, ul. Ks. Trojdena 4, 02-109 Warszawa www.sfn.edu.pl sfn@iimcb.gov.pl Budowanie drzewa filogenetycznego Cel Ćwiczenie polega na budowaniu
Bardziej szczegółowoWidzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Bardziej szczegółowoInżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Bardziej szczegółowoINDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Bardziej szczegółowoNumeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
Bardziej szczegółowoWYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Bardziej szczegółowoSystemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Bardziej szczegółowoa)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.
Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoWyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Bardziej szczegółowoWykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka
Wykaz tematów prac magisterskich w roku akademickim 2018/2019 kierunek: informatyka L.p. Nazwisko i imię studenta Promotor Temat pracy magisterskiej 1. Wojciech Kłopocki dr Bartosz Ziemkiewicz Automatyczne
Bardziej szczegółowoKARTA PRZEDMIOTU. Hurtownie i eksploracja danych D1_5
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Bardziej szczegółowoEksploracja logów procesów. Process mining
Eksploracja logów procesów Process mining Eksploracja logów procesów Celem eksploracji logów procesów biznesowych jest: Odkrywanie modelu procesów biznesowych Analiza procesów biznesowych Ulepszanie procesów
Bardziej szczegółowoLaboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Bardziej szczegółowoSposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Bardziej szczegółowoEksploracja danych PROCES EKSPLORACJI DANYCH. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych PROCES EKSPLORACJI DANYCH Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Bardziej szczegółowoZakres pytań obowiązujący w roku akad. 2015/2016
Akademia Górniczo-Hutnicza IM. STANISŁAWA STASZICA W KRAKOWIE Wydział: Górnictwa i Geoinżynierii Rodzaj studiów: stacjonarne i niestacjonarne II stopnia Kierunek studiów: Zarządzanie i inżynieria produkcji
Bardziej szczegółowoPRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI W SZKOLE PODSTAWOWEJ NR 1 W SULECHOWIE
PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI W SZKOLE PODSTAWOWEJ NR 1 W SULECHOWIE Opracowany przez mgr Beatę Halasz, mgr Marię Samol, Ewę Szustak, Anetę Zdanowicz Podstawa prawna do opracowania
Bardziej szczegółowoPodstawy sztucznej inteligencji
wykład 7 Eksploracja danych 09 stycznia 2013 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji
Bardziej szczegółowoDział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Bardziej szczegółowoALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Bardziej szczegółowoWYKSZTAŁCENIE I KWALIFIKACJE KOBIET A ICH SYTUACJA NA RYNKU PRACY. Redakcja naukowa Grażyna Firlit-Fesnak
WYKSZTAŁCENIE I KWALIFIKACJE KOBIET A ICH SYTUACJA NA RYNKU PRACY Redakcja naukowa Grażyna Firlit-Fesnak Warszawa 2008 SPIS TREŚCI Wstęp 9 ROZDZIALI Grażyna Firlit-Fesnak - METODOLOGIA BADAŃ 1.1. Przedmiot,
Bardziej szczegółowo