ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony)

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony)"

Transkrypt

1 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 160 Podręczniki i książki pomocnicze Gdańskiego Wydawnictwa Oświatowego: Matematyka II. Podręcznik dla liceum i technikum. Zakres roszerzony. Nowa wersja M. Dobrowolska, M. Karpiński, J. Lech, M.M. Karpiński Matematyka II. Zbiór zadań M. Braun, M. Dobrowolska, M. Karpiński, J. Lech, E. Zamościńska Matematyka II. Sprawdziany U. Sawicka Patrzałek, D. Figura, B. Jeleńska, A. Wola, W. Urbańczyk Treści nieobowiązkowe zapisano na szarym tle. ROZKŁAD MATERIAŁU DLA KLASY II Liczba godzin Potęgi, pierwiastki, logarytmy 28 Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach wymiernych 2 Potęgi o wykładnikach rzeczywistych 2 Logarytmy 2 Własności logarytmów 2 Funkcje wykładnicze 2 Funkcje logarytmiczne 2 Równania i nierówności wykładnicze 2 Równania i nierówności logarytmiczne 2 Zastosowania funkcji wykładniczych i logarytmicznych 3 Powtórzenie i praca klasowa 3

2 2 Wielomiany 23 Przykłady wielomianów 2 Rozkład wielomianu na czynniki 2 Równania wielomianowe 3 Dzielenie wielomianów 2 Twierdzenie Bezout 1 Równania wielomianowe (cd.) 2 Rozwiązania wymierne równań wielomianowych 2 Nierówności wielomianowe 2 Funkcje wielomianowe 2 Nierówności wielomianowe (cd.) 2 Powtórzenie i praca klasowa 3 Figury i przekształcenia 24 Przekształcenia geometryczne. Symetrie 2 Przesunięcie 2 Działania na wektorach 2 Przekształcenia w układzie współrzędnych 2 Równanie prostej 3 Długość odcinka. Równanie okręgu. 3 Proste i okręgi 3 Wektory w układzie współrzędnych 2 Działania na wektorach (cd.) 2 Powtórzenie i praca klasowa 3

3 3 Trygonometria 38 Funkcje trygonometryczne kąta ostrego 1 Kąty o miarach dodatnich i ujemnych 1 Funkcje trygonometryczne dowolnego kąta 3 Podstawowe związki między funkcjami trygonometrycznymi 2 Wykres funkcji y=sin α 3 Wykres funkcji y=cos α 3 Wykresy funkcji y=tg α 3 Miara łukowa kąta 2 Funkcje trygonometryczne zmiennej rzeczywistej 2 Powtórzenie i praca klasowa 3 Funkcje y=asinx, y=sinax 2 Przekształcanie wykresów funkcji 2 Równania trygonometryczne 4 Sinus i cosinus sumy i różnicy kątów 2 Suma i różnica sinusów i cosinusów kątów 2 Powtórzenie i sprawdzian 3 Ciągi 20 Przykłady ciągów 2 Ciągi arytmetyczne 3 Ciągi geometryczne 3 Procent składany 3

4 4 Granice ciągów 2 Obliczanie granic 2 Szeregi geometryczne 2 Powtórzenie i praca klasowa 3 Figury podobne 12 Wielokąty podobne 2 Jednokładność 2 Cechy podobieństwa trójkątów. Twierdzenie Talesa 3 Pola figur podobnych 2 Powtórzenie i praca klasowa 3 Statystyka 10 Przybliżenia 1 Średnia arytmetyczna, mediana, dominanta 2 Średnia ważona 2 Odchylenie standardowe 2 Powtórzenie i praca klasowa 3 RAZEM W CIĄGU ROKU 155

5 Potęgi, pierwiastki, logarytmy 28 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 5 PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES ROZSZERZONY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W wykraczający ocena celująca (6) CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ JEDNOSTKA TEMATYCZNA podstawowe ponadpodstawowe KATEGORIA A Uczeń zna: KATEGORIA B Uczeń rozumie: KATEGORIA C Uczeń potrafi: KATEGORIA D Uczeń potrafi: 1 Lekcja organizacyjna. 2 4 Potęgi. definicję potęgi o wykładniku naturalnym i całkowitym ujemnym pojęcie notacji wykładniczej prawa działań na potęgach potrzebę stosowania notacji wykładniczej w praktyce obliczać potęgi o wykładnikach naturalnych i całkowitych ujemnych (K P) zapisywać liczby w postaci potęg zapisywać liczby w postaci iloczynu potęg zapisywać liczby w notacji wykładniczej mnożyć i dzielić potęgi o jednakowych podstawach mnożyć i dzielić potęgi o jednakowych wykładnikach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych podstawach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych wykładnikach potęgować potęgi przedstawiać potęgi jako potęgi potęg porównywać potęgi (P-R) rozwiązywać nietypowe zadania z zastosowaniem działań na potęgach (D W) porównywać ilorazowo i różnicowo liczby podane w notacji wykładniczej (R)

6 6 5 7 Pierwiastki. definicję pierwiastka arytmetycznego n tego stopnia (n N i n > 1) prawa działań na pierwiastkach; w tym wzór na obliczanie pierwiastka n tego stopnia z n tej potęgi oraz wzór na obliczanie n tej potęgi pierwiastka n tego stopnia 8 9 Potęgi o wykładnikach wymiernych Potęgi o wykładnikach rzeczywistych. definicję potęgi o wykładniku wymiernym prawa działań na potęgach o wykładnikach wymiernych pojęcia potęg o wykładnikach : definicję pierwiastka arytmetycznego n tego stopnia (n N i n > 1) jak oblicza się pierwiastek n tego stopnia z n tej potęgi oraz jak oblicza się n tą potęgę pierwiastka n tego stopnia z liczby nieujemnej definicję potęgi o wykładniku wymiernym pojęcia potęg o wykładnikach : potęgować iloczyny i ilorazy doprowadzać wyrażenia do najprostszych postaci, stosując działania na potęgach obliczać wartości wyrażeń arytmetycznych, w których występują potęgi przekształcać wyrażenia algebraiczne, w których występują potęgi rozwiązywać zadania tekstowe z zastosowaniem potęg (R) stosować notację wykładniczą do zamiany jednostek (R) obliczać pierwiastki n tego stopnia (n N i n > 1) obliczać wartości wyrażeń arytmetycznych zawierających pierwiastki obliczać pierwiastki iloczynu i ilorazu liczb nieujemnych obliczać iloczyny i ilorazy pierwiastków z liczb nieujemnych wyłączać czynnik przed znak pierwiastka włączać czynnik pod pierwiastek oszacować wartość wyrażenia arytmetycznego zawierającego pierwiastek usunąć niewymierność z mianownika obliczać potęgi o wykładnikach wymiernych zapisywać potęgi o wykładnikach wymiernych w postaci pierwiastków (K-P) porównywać potęgi o wykładnikach wymiernych (P-R) wykonywać działania na potęgach o wykładnikach wymiernych (P-R) obliczać potęgi o wykładnikach wymiernych (K-R) obliczać wartości wyrażeń arytmetycznych zawierających pierwiastki (R przekształcać wyrażenia zawierające potęgi i pierwiastki (R) porównać wyrażenia zawierające pierwiastki ( przekształcać wyrażenia arytmetyczne z zastosowaniem praw działań na potęgach o wykładnikach wymiernych (R zastosowaniem działań na

7 7 - całkowitym - wymiernym - rzeczywistym prawa działań na potęgach Logarytmy. pojęcie logarytmu pojęcia: logarytm dziesiętny oraz logarytm naturalny własności logarytmów (K P) Własności logarytmów. twierdzenia o: logarytmie iloczynu logarytmie ilorazu logarytmie potęgi zmianie podstawy logarytmu Funkcje wykładnicze. definicję funkcji wykładniczej własności funkcji wykładniczych Funkcje logarytmiczne. definicję funkcji logarytmicznej własności funkcji logarytmicznych Równania i nierówności wykładnicze. własność różnowartościowości funkcji wykładniczej równań wykładniczych (K R) nierówności wykładniczych - całkowitym - wymiernym - rzeczywistym prawa działań na potęgach pojęcie logarytmu pojęcia: logarytm dziesiętny oraz logarytm naturalny własności logarytmów (K P) twierdzenia o: logarytmie iloczynu logarytmie ilorazu logarytmie potęgi zmianie podstawy logarytmu definicję funkcji wykładniczej własności funkcji wykładniczych definicję funkcji logarytmicznej własności funkcji logarytmicznych własność różnowartościowości funkcji wykładniczej równań wykładniczych (K R) nierówności wykładniczych zapisywać liczby w postaci potęg wykonywać działania na potęgach (K-R) porównywać potęgi o wykładnikach rzeczywistych (P-R) obliczać logarytmy (K R) wykorzystywać kalkulator do obliczania logarytmów dziesiętnych oraz naturalnych (K P) rozwiązywać równania, stosując definicję logarytmu (K R) wykonywać działania na logarytmach, stosując poznane twierdzenia sporządzać wykresy i określać własności funkcji wykładniczych dopasowywać wzory do wykresów funkcji wykładniczych określać wzory funkcji wykładniczych spełniających określone warunki (R sporządzać wykresy i określać własności funkcji logarytmicznych dopasowywać wzory do wykresów funkcji logarytmicznych (PR) określać wzory funkcji logarytmicznych spełniających dane warunki (R rozwiązywać równania wykładnicze (K R) rozwiązywać nierówności wykładnicze potęgach (R- zastosowaniem definicji oraz własności logarytmów (R zastosowaniem poznanych twierdzeń (R przekształcać wykresy funkcji wykładniczych (R-W) zastosowaniem funkcji wykładniczych i ich własności (R-W) przekształcać wykresy funkcji logarytmicznych (R-W) zastosowaniem funkcji logarytmicznych i ich własności (R-W) rozwiązywać równania i nierówności wykładnicze (R W)

8 Wielomiany 23 h Matematyka z plusem dla szkoły ponadgimnazjalnej Równania i nierówności logarytmiczne Zastosowania funkcji wykładniczych i logarytmicznych. 27 Powtórzenie wiadomości. własność różnowartościowości funkcji logarytmicznej równań logarytmicznych (K R) nierówności logarytmicznych własność różnowartościowości funkcji logarytmicznej równań logarytmicznych (K R) nierówności logarytmicznych potrzebę stosowania funkcji wykładniczych i logarytmicznych do opisu zjawisk z różnych dziedzin (R W) rozwiązywać równania logarytmiczne (K R) rozwiązywać nierówności logarytmiczne określać własności funkcji wykładniczych i logarytmicznych opisujących zjawiska z różnych dziedzin ( rozwiązywać równania i nierówności logarytmiczne (R W) stosować model wykładniczy do opisu wielkości, które zmieniają się w stałym tempie (R W) Praca klasowa i jej omówienie Przykłady wielomianów. pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie wielomianu zerowego pojęcie wielomianów równych pojęcia: dwumian, trójmian, trójmian kwadratowy Rozkład wielomianu na czynniki Równania wielomianowe. pojęcie rozkładu wielomianu na czynniki wzory skróconego mnożenia: kwadrat sumy, kwadrat różnicy, różnica kwadratów dwóch wyrażeń, suma i różnica sześcianów, sześcian sumy i sześcian różnicy dwóch wyrażeń (K-P) własność rozkładu wielomianu na czynniki stopnia co najwyżej drugiego pojęcie równania wielomianowego stopnia n pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie wielomianu zerowego pojęcie wielomianów równych pojęcia: dwumian, trójmian, trójmian kwadratowy pojęcie rozkładu wielomianu na czynniki wzory skróconego mnożenia: kwadrat sumy, kwadrat różnicy, różnica kwadratów dwóch wyra-żeń, suma i różnica sześcianów, sześcian sumy i sześcian różnicy dwóch wyrażeń (K P) własność rozkładu wielomianu na czynniki stopnia co najwyżej drugiego pojęcie równania wielomianowego stopnia n określać stopień wielomianu dodawać, odejmować, mnożyć wielomiany (K R) przekształcać wielomiany do najprostszej postaci (K-R) przedstawiać wyrażenia w postaci jednomianów (K- P) obliczać wartości wielomianów (K P) obliczać, dla jakich wartości współczynników wielomiany są równe rozkładać wielomiany na czynniki, stosując: wyłączanie wspólnego czynnika poza nawias, wzory skróconego mnożenia metodę grupowania wyrazów (K rozwiązywać równania wielomianowe (K wykonywać działania na wielomianach i przedstawiać otrzymane wielomiany w najprostszej postaci (R obliczać wartości współczynników wielomianu, gdy dane są wartości wielomianu dla określonych wartości zmiennych (R podawać przykłady wielomianów spełniających określone warunki (R określać, dla jakich wartości zmiennej wielomian przyjmuje wartości dodatnie, ujemne (P uzasadniać, że dane wielomiany spełniają określone warunki (R W) podawać przykłady wielomianów spełniających

9 9 pojęcie pierwiastka wielomianu pojęcie k-krotnego pierwiastka wielomianu pojęcie postaci iloczynowej wielomianu drugiego stopnia Dzielenie wielomianów. określenie podzielności wielomianu przez dwumian metodę dzielenia wielomianu przez jednomian metodę dzielenia wielomianu przez dwumian (K R) pojęcie reszty z dzielenia wielomianu przez dwumian (K P) 39 Twierdzenie Bezout. twierdzenie Bezout własność wielomianu dotyczącą reszty z dzielenia wielomianu W (x) przez x a Równania wielomianowe (cd.). zastosowanie twierdzenia Bezout do rozwiązywania równań wielomianowych twierdzenie o rozwiązaniach całkowitych równania pojęcie pierwiastka wielomianu pojęcie k-krotnego pierwiastka wielomianu pojęcie postaci iloczynowej wielomianu drugiego stopnia określenie podzielności wielomianu przez dwumian metodę dzielenia wielomianu przez jednomian metodę dzielenia wielomianu przez dwumian (K R) pojęcie reszty z dzielenia wielomianu przez dwumian (K R) twierdzenie Bezout własność wielomianu dotyczącą reszty z dzielenia wielomianu W (x)przez x a potrzebę stosowania twierdzenia Bezout do rozwiązywania równań wielomianowych twierdzenie o rozwiązaniach całkowitych równania znajdować pierwiastki danych wielomianów i ustalać ich krotności (P dzielić wielomiany przez jednomiany i przez dwumiany (P- podawać przykłady wielomianów podzielnych przez dane dwumiany obliczać resztę z dzielenia wielomianu znajdować wielomiany spełniające określone warunki wykonywać dzielenie wielomianu przez dwu-mian, korzystając ze schematu Hornera (R) rozwiązywać równania, korzystając z twierdzenia Bezout (P sprawdzać, że dana liczba jest pierwiastkiem wielomianu rozwiązywać równania wielomianowe, stosując twierdzenie o rozwiązaniach całkowitych określone warunki (R-W) ustalać liczbę rozwiązań równania wielomianowego (R ustalać wartości parametrów, dla których wielomian ma określoną liczbę pierwiastków (R znajdować wielomiany spełniające określone warunki (R znajdować wielomiany spełniające określone warunki, korzystając ze schematu Hornera (R znajdować resztę z dzielenia wielomianu przez wielomian (R-W) rozwiązywać zadania, korzystając z twierdzenia Bezout (R rozwiązywać zadania, korzystając z twierdzenia o rozwiązaniach całkowitych równania wielomianowego (R Rozwiązania wymierne równań wielomianowych. twierdzenie o rozwiązaniach wymiernych równania wielomianowego twierdzenie o rozwiązaniach wymiernych równania wielomianowego sprawdzać, czy dana liczba wymierna jest rozwiązaniem równania wielomianowego (K P) znajdować wszystkie rozwiązania wymierne danych równań wielomianowych (P uzasadniać niewymierność liczb, korzystając z twierdzenia o rozwiązaniach wymiernych (R uzasadniać, że dane równanie wielomianowe nie ma pierwiastków wymiernych (R określać, dla jakich wartości parametru dane równanie wielomianowe ma pierwiastek wymierny (R

10 Figury i przekształcenia 24 h Matematyka z plusem dla szkoły ponadgimnazjalnej Nierówności wielomianowe. pojęcie nierówności wielomianowej Funkcje wielomianowe pojęcie funkcji wielomianowej własności funkcji wielomianowych Nierówności wielomianowe (cd.). 50 Powtórzenie wiadomości Praca klasowa i jej omówienie. Przekształcenia geometryczne. Symetrie sposób szkicowania wykresu przedstawiającego zmianę znaku wartości funkcji wielomianowej (K-P) pojęcia przekształcenia geometrycznego pojęcie izometrii pojęcie obrazu punktu (figury) w przekształceniu geometrycznym pojęcia: symetria osiowa i środkowa pojęcia: figura osiowosymetryczna oraz oś symetrii figury pojęcia: figura środkowosymetryczna oraz środek symetrii figury pojęcie nierówności wielomianowej pojęcie funkcji wielomianowej własności funkcji wielomianowych sposób szkicowania wykresu przedstawiającego zmianę znaku wartości funkcji wielomianowej (K-P) pojęcia przekształcenia geometrycznego pojęcie izometrii pojęcie obrazu punktu (figury) w przekształceniu geometrycznym pojęcia: symetria osiowa i środkowa pojęcia: figura osiowosymetryczna oraz oś symetrii figury pojęcia: figura środkowosymetryczna oraz środek symetrii figury rozwiązywać nierówności wielomianowe, wykorzystując wiedzę o znaku iloczynu dwóch liczb oraz wykresy funkcji liniowej i kwadratowej rozwiązywać nie-równości wielomianowe, korzystając z twierdzenia Bezout (K R) określać dziedzinę funkcji (R badać własności funkcji wielomianowych (K- rozwiązywać nierówności wielomianowe (K- wyznaczać punkty symetryczne do danych punktów względem danej prostej oraz proste, względem których dane punkty są symetryczne (K P) wskazywać figury osiowo i środkowosymetryczne (K P) wskazywać osie i środki symetrii danych figur (K P) wyznaczać punkty (figury) symetryczne do danych względem danego punktu (K P) określać, dla jakich wartości parametru zbiorem rozwiązań nierówności wielomianowej jest dany zbiór (R zastosowaniem nierówności wielomianowych (R- podawać przykłady funkcji wielomianowych spełniających określone warunki (R- szkicować wy-kresy funkcji wielomianowych (R- znajdować argumenty, dla których dane funkcje wielomianowe spełniają określone warunki (R- zastosowaniem symetrii osiowej i środkowej (R Przesunięcie pojęcia: wektor, wektor zerowy, wektory równe, wektory przeciwne pojęcie przesunięcia równoległego o wektor pojęcia: wektor, wektor zerowy, wektory równe, wektory przeciwne pojęcie przesunięcia równoległego o wektor wskazywać wektory równe i wektory przeciwne wskazywać obrazy punktów w przesunięciu równoległym o dany wektor rysować obrazy figur w zastosowaniem przesunięcia równoległego (R

11 Działania na wektorach. Przekształcenia w układzie współrzędnych. pojęcia: suma wektorów, różnica wektorów, iloczyn wektora przez liczbę (K P) własności działań na wektorach zależności między współrzędnymi punktów symetrycznych względem osi układu współrzędnych zależności między współrzędnymi punktów symetrycznych względem początku układu współrzędnych wzór na współrzędne środka odcinka wzór na odległość punktów na płaszczyźnie pojęcia: suma wektorów, różnica wektorów, iloczyn wektora przez liczbę (K P) własności działań na wektorach zależności między współrzędnymi punktów symetrycznych względem osi układu współrzędnych zależności między współrzędnymi punktów symetrycznych względem początku układu współrzędnych wzór na współrzędne środka odcinka wzór na odległość punktów na płaszczyźnie przesunięciu równoległym o dany wektor (K-P) wykonywać działania na wektorach (K R) wyznaczać współrzędne punktów symetrycznych do danych punktów względem osi lub początku układu współrzędnych wyznaczać współrzędne obrazów danych punktów w symetrii względem prostej równoległej do osi x oraz osi y wyznaczać równanie prostej, względem której dane punkty są symetryczne wyznaczać środek symetrii figury złożonej z dwóch punktów (K P) obliczać odległość punktów na płaszczyźnie zastosowaniem działań na wektorach (R uzasadniać twierdzenia, korzystając z własności wektorów i własności działań na wektorach (R W) rozwiązywać zadania, korzystając z zależności między współrzędnymi punktów symetrycznych względem osi lub początku układu współrzędnych (R) zastosowaniem przekształceń w układzie współrzędnych (R Równanie prostej. pojęcia: ogólne równanie prostej, kierunkowe równanie prostej pojęcie współczynnika kierunkowego prostej związek między tangensem kąta nachylenia prostej y = ax + b do osi x a jej współczynnikiem kierunkowym warunek równoległości prostych warunek prostopadłości prostych pojęcia: ogólne równanie prostej, kierunkowe równanie prostej pojęcie współczynnika kierunkowego prostej związek między tangensem kąta nachylenia prostej y = ax + b do osi x a jej współczynnikiem kierunkowym interpretację geometryczną układu dwóch równań liniowych przekształcać ogólne równanie prostej na równanie kierunkowe i odwrotnie obliczać współrzędne punktów przecięcia danej prostej z osiami układu znajdować równanie prostej: przechodzącej przez dwa dane punkty przechodzącej przez dany punkt i równo-ległej do danej prostej przechodzącej przez dany punkt i prostopadłej do danej prostej określać liczbę rozwiązań układu równań liniowych, korzystając z jego interpretacji geometrycznej sprawdzać, czy dane trzy punkty są współliniowe obliczać, dla jakich wartości parametrów dany układ dwóch równań liniowych ma określoną liczbę rozwiązań (R obliczać miarę kąta, pod jakim przecinają się proste o danych równaniach (R rozwiązywać zadania dotyczące równania prostej (R W) Długość odcinka. wzór na odległość równanie okręgu (R) obliczać odległość punktów na wyznaczać równanie okręgu o

12 Równanie okręgu. punktów na płaszczyźnie (wzór na długość odcinka) równanie okręgu (R) warunek koła (R) interpretację geometryczną zbioru punktów, których współrzędne spełniają określone warunki (R) warunek koła (R) interpretację geometryczną zbioru punktów, których współrzędne spełniają określone warunki (R) płaszczyźnie (długość odcinka) zastosowaniem obliczeń długości odcinka (P-R) danym środku i promieniu (R) rozwiązywać zadania dot. okręgu (R) opisać koło za pomocą nierówności (R) zaznaczać w układzie współrzędnych zbiory punktów, których współrzędne spełniają określone warunki, i opisywać zaznaczone zbiory punktów (R zastosowaniem równania okręgu (R Proste i okręgi. Wektory w układzie współrzędnych. Działania na wektorach (cd.). sposoby wzajemnego położenia prostej i okręgu na płaszczyźnie wzór określający odległość punktu od prostej pojęcia: współrzędne wektora, długość wektora wzór określający współrzędne obrazu punktu w przesunięciu równoległym o dany wektor wzory na współrzędne sumy, różnicy wektorów oraz współrzędne iloczynu danego wektora przez liczbę warunek równoległości wektorów sposoby wzajemnego położenia prostej i okręgu na płaszczyźnie wzór określający odległość punktu od prostej pojęcia: współrzędne wektora, długość wektora wzór określający współrzędne obrazu punktu w przesunięciu równoległym o dany wektor wzory na współrzędne sumy, różnicy wektorów oraz współrzędne iloczynu danego wektora przez liczbę warunek równoległości wektorów wyznaczać współrzędne punktów wspólnych: prostych i okręgów dwóch okręgów okręgu i paraboli (P obliczać: odległość punktu od prostej odległość między dwoma prostymi obliczać współrzędne i długości wektorów (K P) obliczać współrzędne obrazów punktów w przesunięciu równoległym o dany wektor (K P) obliczać współrzędne sumy oraz różnicy danych wektorów (K P) obliczać współrzędne iloczynu danego wektora przez liczbę (K P) wyznaczać równania okręgów spełniających określone warunki (R wyznaczać równania stycznych do danych okręgów spełniających określone warunki (R rozwiązywać zadania dotyczące wzajemnego położenia prostej i okręgu oraz obliczania odległości punktu od prostej (R) wyznaczać wartości parametrów, dla których wektor spełnia określone warunki (R zastosowaniem obliczania współrzędnych i długości wektorów oraz współrzędnych obrazów punktów w przesunięciach równoległych o dane wektory (R zastosowaniem obliczania współrzędnych sumy, różnicy danych wektorów oraz iloczynu danego wektora przez liczbę (R

13 Trygonometria 38 h Matematyka z plusem dla szkoły ponadgimnazjalnej Powtórzenie wiadomości. Praca klasowa i jej omówienie. Funkcje trygonometryczne kąta ostrego. Kąty o miarach dodatnich i ujemnych. pojęcia: funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym wartości funkcji trygonometrycznych kątów o miarach 30, 45º, 60º pojęcia: kąt o mierze dodatniej, kąt o mierze ujemnej pojęcie kąta umieszczonego w układzie współrzędnych pojęcia: funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym pojęcia: kąt o mierze dodatniej, kąt o mierze ujemnej pojęcie kąta umieszczonego w układzie współrzędnych rozwiązywać trójkąty prostokątne (P-R) konstruować kąty ostre, mając dane wartości funkcji trygonometrycznych (K P) korzystać z tablic wartości funkcji trygonometrycznych rysować kąty dodatnie i ujemne o danych miarach zaznaczać w układzie współrzędnych kąty o podanych miarach (K-P) ustalać, w której ćwiartce układu współrzędnych leży drugie ramię kąta o podanej mierze (K P) zastosowaniem warunku równoległości wektorów (R rozwiązywać zadania stosując wiadomości o funkcjach trygonometrycznych kąta ostrego w trójkącie prostokątnym (R- porządkować kąty ostre, znając wartości ich funkcji trygonometrycznych i odwrotnie (R- podawać przykłady kątów spełniających określone warunki (R) Funkcje trygonometryczne dowolnego kąta definicje funkcji trygonometrycznych dowolnego kąta znaki wartości funkcji trygonometrycznych kątów z poszczególnych ćwiartek układu współrzędnych zależności: sin(α + k 360 )=sin α cos(α + k 360 )=cos α tg(α + k 180 )=tg α definicje funkcji trygonometrycznych dowolnego kąta obliczać wartości funkcji trygonometrycznych kąta, gdy dane są współrzędne punktu leżącego na drugim ramieniu kąta (K P) ustalać znaki wartości funkcji trygonometrycznych kątów z poszczególnych ćwiartek układu określać, w której ćwiartce układu leży końcowe ramię kąta, mając dane wartości funkcji trygonometrycznych kąta (K P) obliczać wartości funkcji trygonometrycznych kątów, których końcowe ramię leży na prostej o równaniu y = ax rysować w układzie kąt, mając dane wartości funkcji trygonometrycznych (K P) obliczać wartości funkcji trygonometrycznych danych kątów dodatnich i ujemnych, wykorzystując definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym oraz wartości funkcji trygonometrycznych kątów o miarach 30,45,60 (P podawać wszystkie kąty spełniające określone warunki, korzystając z definicji funkcji trygonometrycznych (R obliczać wartości wyra-żeń, w których występują funkcje trygonometryczne dowolnych kątów (R Podstawowe związki związki między funkcjami związki między funkcjami obliczać wartości pozostałych rozwiązywać zadania,

14 między funkcjami trygonometrycznymi. Wykres funkcji y = sin α. Wykres funkcji y = cos α. Wykres funkcji y = tg α trygonometrycznymi tego samego kąta (tożsamości trygonometryczne) sposób sporządzania wykresu funkcji y =sin α własności funkcji y =sin α wzór na pole trójkąta, gdy dane są długości dwóch jego boków i sinus kąta zawartego między nimi wzory: sin α = sin (α + k 360º), sin α = sin (180º α) sin ( α) = sin α związek cos α = sin(α +90º) sposoby sporządzania wykresu funkcji y =cos α własności funkcji y =cos α wzory: cos α = cos (α +k 360º), cos α = cos (180º α) cos ( α)= cos α wykres funkcji y =tg α pojęcie asymptoty wykresu trygonometrycznymi tego samego kąta własności funkcji y = sin α wzór na pole trójkąta, gdy dane są długości dwóch jego boków i sinus kąta zawartego między nimi wzory: sin α = sin (α + k 360º ), sin α = sin (180º α) sin ( α) = sin α związek cos α = sin (α +90º) sposoby sporządzania wykresu funkcji y = cos α własności funkcji y = cos α pojęcie asymptoty wykresu własności funkcji tangens funkcji trygonometrycznych, gdy dana jest jedna z nich (K R) sprawdzać tożsamości trygonometryczne (P upraszczać wyrażenia zawierające funkcje trygonometryczne (P ustalać najmniejszą i największą wartość wyrażenia zawierającego funkcje trygonometryczne (P narysować wykres funkcji y = sin α,wykorzystując koło trygonometryczne odczytywać z wykresu własności funkcji y = sin α ustalać znak i porównywać wartości funkcji sinus dla podanego kąta, korzystając z sinusoidy (K P) obliczać i porównywać wartości funkcji sinus dla podanych kątów, posługując się sinusoidą (K P) obliczać pole trójkąta, gdy dane są długości dwóch jego boków i sinus kąta zawartego między nimi (K P) zastosowaniem wzoru na pole trójkąta narysować wykres funkcji y =cos α, wykorzystując koło trygonometryczne lub związek cos α = sin(α +90º) odczytywać z wykresu własności funkcji y =cos α (K-R) ustalać znak funkcji cosinus dla podanego kąta, korzystając z cosinusoidy (K P) obliczać wartości funkcji cosinus dla podanych kątów, wykorzystując cosinusoidę (K P) porównywać wartości i własności funkcji y =sin α i y =cos α (K P) narysować wykres funkcji y =tg α, wykorzystując koło trygonometryczne wykorzystując podstawowe tożsamości trygonometryczne (R ustalać wartości funkcji sinus dowolnego kąta, wykorzystując tablice wartości funkcji trygonometrycznych oraz: sin α = sin (α + k 360º), sin α = sin (180º α) sin ( α)= sin α (R) znajdować argumenty, dla których funkcja sinus spełnia określone warunki (R ustalać wartości funkcji cosinus dowolnego kąta, wykorzystując tablice wartości funkcji trygonometrycznych oraz wzory: cos α =cos (α +k 360º), cos α = cos (180º α) cos ( α)= cos α (R) znajdować argumenty, dla których wartości funkcji cosinus spełniają określone warunki (R ustalać argumenty, dla których wartości funkcji sinus i cosinus spełniają określone warunki (R ustalać argumenty, dla których wartości funkcji trygonometrycznych spełniają

15 Miara łukowa kąta. własności funkcji tangens związek tg α =tg(α + 180º) zasadę sporządzania wykresów funkcji: y = f (x), y = f (x + a), gdy dany jest wykres funkcji y = f (x) wzór na długość łuku definicję miary łukowej kąta środkowego zależność między miarą łukową a stopniową kąta związki: tg α =tg(α + 180º) zasadę sporządzania wykresów funkcji: y = f (x), y = f (x + a), gdy dany jest wykres funkcji y = f (x) wzór na długość łuku definicję miary łukowej kąta środkowego jednostkę miary łukowej kąta zależność między miarą łukową a stopniową kąta odczytywać własności funkcji y =tg α z wykresu (R) obliczać miarę łukową kąta środkowego (K P) rozwiązywać zadania, stosując wzór na miarę łukową kąta środkowego (K P) zamieniać miarę łukową kąta na miarę stopniową i odwrotnie (K P) określone warunki (R ustalać wartości funkcji dowolnego kąta, wykorzystując tablice oraz związki: tg α =tg (α + k 180º) tg ( α)= tg α (R) znajdować argumenty, dla których wartości funkcji tangens spełniają określone warunki (R zastosowaniem miary łukowej i stopniowej (R Funkcje trygonometryczne zmiennej rzeczywistej. Powtórzenie i praca klasowa Funkcje y =sin ax, y = a sin x... Przekształcanie wykresów funkcji. własności funkcji trygonometrycznych zmiennej rzeczywistej (P własności funkcji: okresowość, parzystość, nieparzystość zasady sporządzania wykresów funkcji y =sin ax, y = a sin x... (P R) zasady sporządzania wykresów funkcji: y = f(x), y = f(x + a)+ b, y = f(x), gdy dany jest wykres funkcji y = f(x) (P własności funkcji trygonometrycznych zmiennej rzeczywistej (P własności funkcji: okresowość, parzystość, nieparzystość zasady sporządzania wykresów funkcji y =sin ax, y = a sin x... zasady sporządzania wykresów funkcji: y = f(x), y = f(x + a)+ b, y = f(x), gdy dany jest wykres funkcji y = f(x) (P rysować wykresy funkcji trygonometrycznych zmiennej rzeczywistej i określać ich własności (P wyznaczać argumenty, dla których funkcje trygonometryczne przyjmują określone wartości rysować wykresy funkcji y =sin ax, y = a sin x... odczytywać własności funkcji y =sin ax, y = a sin x..., korzystając z wykresów (R sporządzać wykresy przekształconych funkcji, mając dany wykres funkcji y = f(x) (P odczytywać własności funkcji z wykresów (P określać własności funkcji trygonometrycznych zmiennej rzeczywistej (okresowość, parzystość, nieparzystość) (R) wyznaczać argumenty, dla których wartości funkcji spełniają dane warunki (R określać wzory funkcji y =sin ax, y = a sin x... spełniających określone warunki (R rysować wykresy funkcji y =sin ax, y = a sin x... i określać ich własności (R-W) przekształcać wykresy funkcji trygonometrycznych (R-W) Równania trygonometryczne. równań i nierówności trygonometrycznych (P sposoby wykorzystania wykresów funkcji trygonometrycznych do rozwiązywać równania trygonometryczne postaci sin x = a, cos x = a, tg x = a, (PR) rozwiązywać trudniejsze równania i nierówności

16 Ciągi 20 h Matematyka z plusem dla szkoły ponadgimnazjalnej Sinus i cosinus sumy i różnicy kątów. Suma i różnica sinusów i cosinusów kątów Powtórzenie i sprawdzian Przykłady ciągów Ciągi arytmetyczne. sposoby zapisywania rozwiązań niektóre wzory trygonometryczne ( wzory na sinus i cosinus sumy i różnicy kątów wzory na sinus i cosinus podwojonego kąta wzory na sumę i różnicę sinusów i cosinusów kątów pojęcia: ciąg, wyrazy ciągu pojęcia: ciąg skończony, ciąg nieskończony pojęcie ciągu liczbowego pojęcie wzoru ogólnego ciągu (K P) pojęcie wzoru rekurencyjnego ciągu (K P) pojęcia: monotoniczność ciągu, ciąg malejący, ciąg rosnący, ciąg stały pojęcia: ciąg arytmetyczny, różnica ciągu arytmetycznego rozwiązywania równań i nierówności równań i nie-równości trygonometrycznych (P przydatność wzorów na sinus i cosinus sumy i różnicy kątów do wyznaczania dokładnych wartości funkcji trygonometrycznych nietypowych kątów np. 75 stopni przydatność wzorów na sinus i cosinus podwojonego kąta w rozwiązywaniu równań trygonometrycznych przydatność wzorów na sumę i różnicę sinusów i cosinusów kątów przy rozwiązywaniu równań i dowodzeniu tożsamości trygonometrycznych pojęcia: ciąg, wyrazy ciągu pojęcia: ciąg skończony, ciąg nieskończony pojęcie ciągu liczbowego sposób określania ciągu za pomocą wzoru ogólnego (K P) sposób określania ciągu za pomocą wzoru rekurencyjnego pojęcia: ciąg malejący, ciąg rosnący, ciąg stały pojęcia: ciąg arytmetyczny, różnica ciągu arytmetycznego rozwiązywać proste nie-równości trygonometryczne, np. sin x a (P stosować wzory na sinus i cosinus sumy i różnicy kątów do wyznaczania dokładnych wartości funkcji trygonometrycznych nietypowych kątów rozwiązywać proste równania i nierówności trygonometryczne, stosując wzory na sinus i cosinus podwojonego kąta stosować wzory na sumę i różnicę sinusów i cosinusów kątów do uproszczenia wyrażeń zawierających funkcje trygonometryczne zapisywać dowolne wyrazy ciągów na podstawie ich wzorów ogólnych (K P) zapisywać dowolne wyrazy ciągów na podstawie ich wzorów rekurencyjnych (K P) podawać przykłady ciągów (K P) określać monotoniczność ciągu na podstawie wzoru ogólnego określać monotoniczność ciągu na podstawie wzoru rekurencyjnego określać ciąg za pomocą wzoru ogólnego (P określać ciąg za pomocą wzoru rekurencyjnego obliczać różnicę i kolejne wyrazy danego ciągu arytmetycznego obliczać dowolne wyrazy ciągu trygonometryczne (R-W) np. sin 2x =1/2 sin 2 x +cos x =1 cos 2x<1/2 rozwiązywać trudniejsze równania i nierówności trygonometryczne, stosując wzory na sinus i cosinus sumy i różnicy kątów stosować wzory na sumę i różnicę sinusów i cosinusów kątów w rozwiązywaniu równań i dowodzeniu tożsamości trygonometrycznych obliczać sumę k początkowych wyrazów ciągu na podstawie jego wzoru ogólnego (R obliczać kolejne wyrazy ciągu oraz określać ogólny wzór ciągu na podstawie danego wzoru na sumę n początkowych wyrazów ciągu znajdować wzór ogólny ciągu określonego rekurencyjnie (R- W) określać wartości parametru, dla którego podane wyrażenia są kolejnymi wyrazami ciągu

17 Ciągi geometryczne. Procent składany. Granice ciągów wzór ogólny ciągu arytmetycznego wzór na sumę n początkowych wyrazów ciągu arytmetycznego pojęcia: ciąg geometryczny, iloraz ciągu geometrycznego wzór ogólny ciągu geometrycznego wzór na sumę n początkowych wyrazów ciągu geometrycznego pojęcie średniej geometrycznej dwóch liczb nieujemnych pojęcia: procent prosty, procent składany definicję granicy ciągu pojęcia: ciąg zbieżny, ciąg wzór ogólny ciągu arytmetycznego wzór na sumę n początkowych wyrazów ciągu arytmetycznego pojęcia: ciąg geometryczny, iloraz ciągu geometrycznego wzór ogólny ciągu geometrycznego wzór na sumę n początkowych wyrazów ciągu geometrycznego pojęcie średniej geometrycznej dwóch liczb nieujemnych pojęcia: procent prosty, procent składany definicję granicy ciągu pojęcia: ciąg zbieżny, ciąg arytmetycznego, gdy dane są jeden wyraz i różnica ciągu lub dwa dowolne wyrazy tego ciągu (K R) podawać przykłady ciągów arytmetycznych spełniających dane warunki (K P) zapisywać wzory ciągów arytmetycznych zapisywać wzory ogólne ciągów arytmie-tycznych określonych rekurencyjnie i odwrotnie obliczać sumę kolejnych wyrazów ciągu arytmetycznego (K R) sprawdzać, czy dana liczba jest wyrazem danego ciągu arytmetycznego ustalać, ile wyrazów ma podany ciąg arytmetyczny obliczać ilorazy oraz kolejne wyrazy danych ciągów geometrycznych (K P) sprawdzać, czy podany ciąg jest ciągiem geometrycznym (K P) zapisywać dowolne wyrazy ciągu geometrycznego, gdy dany jest: iloraz i dowolny wyraz tego ciągu dwa dowolne wyrazy ciągu geometrycznego (K R) sprawdzać, czy dana liczba jest wyrazem danego ciągu geometrycznego określać monotoniczność ciągów geometrycznych (R) zapisywać wzory ogólne ciągów geometrycznych określonych rekurencyjnie i odwrotnie (P obliczać sumę wyrazów ciągu geometrycznego zastosowaniem procentu prostego i składanego obliczać granice niektórych ciągów (P- arytmetycznego (R) rozwiązywać zadania dotyczące ciągu arytmetycznego (R rozwiązywać równania, których jedna strona jest sumą wyrazów ciągu arytmetycznego (R obliczać wartości zmiennych, które wraz z danymi liczbami tworzą ciąg geometryczny (R rozwiązywać zadania dotyczące ciągów geometrycznych (R W) zastosowaniem procentu prostego i składanego (R na podstawie wzoru ogólnego określać zbieżność oraz

18 Wielokąty. Figury podobne 12 h Matematyka z plusem dla szkoły ponadgimnazjalnej Obliczanie granic Szeregi geometryczne 132 Powtórzenie wiadomości Praca klasowa i jej omówienie. Wielokąty podobne rozbieżny, ciąg rozbieżny do +, ciąg rozbieżny do -, warunek zbieżności i rozbieżności ciągu geometrycznego własności granic ciągów własności granic ciągów rozbieżnych symbole nieoznaczone pojęcie szeregu geometrycznego wzór na sumę wszystkich wyrazów nieskończonego ciągu geometrycznego o ilorazie q <1 pojęcie figur podobnych pojęcie skali podobieństwa własności figur podobnych rozbieżny, ciąg rozbieżny do +, ciąg rozbieżny do -, warunek zbieżności i rozbieżności ciągu geometrycznego własności granic ciągów własności granic ciągów rozbieżnych pojęcie szeregu geometrycznego wzór na sumę wszystkich wyrazów nieskończonego ciągu geometrycznego o ilorazie q <1 pojęcie figur podobnych pojęcie skali podobieństwa własności figur podobnych podawać przykłady ciągów zbieżnych oraz rozbieżnych określać zbieżność oraz rozbieżność ciągu na podstawie jego wykresu (P- obliczać granice ciągów z wykorzystaniem własności granic (P-R) obliczać sumy szeregów geometrycznych (P-R) rozpoznawać figury podobne (K P) znajdować długości boków wielokątów podobnych, gdy dana jest skala podobieństwa i odwrotnie (R) rozbieżność ciągu (R- określać wartość parametru, dla którego granica danego ciągu spełnia określone warunki (R- obliczać granice ciągów z wykorzystaniem własności granic (R- zastosowaniem obliczania sum szeregów geometrycznych (R zastosowaniem własności podobieństwa (R Jednokładność. Cechy podobieństwa trójkątów. Twierdzenie Talesa. pojęcie jednokładności własności figur jednokładnych (K P) cechy podobieństwa trójkątów twierdzenie Talesa twierdzenie odwrotne do twierdzenia Talesa pojęcie jednokładności własności figur jednokładnych (K P) cechy podobieństwa trójkątów twierdzenie Talesa twierdzenie odwrotne do twierdzenia Talesa rozpoznawać figury jednokładne konstruować figury jednokładne obliczać współrzędne obrazów punktów w jednokładności o danym środku i skali zastosowaniem cech podobieństwa trójkątów (K R) stosować twierdzenie Talesa oraz twierdzenie do niego odwrotne w zadaniach rachunkowych obliczać współrzędne środka jednokładności, gdy dane są współrzędne punktu i jego obrazu obliczać skalę jednokładności, gdy dane są współrzędne środka jednokładności oraz punktu i jego obrazu rozwiązywać zadania, stosując definicję i własności jednokładności (R zastosowaniem twierdzenia Talesa i twierdzenia do niego odwrotnego (R

19 Statystyka 10 h Matematyka z plusem dla szkoły ponadgimnazjalnej 19 stosować twierdzenie Talesa w zadaniach konstrukcyjnych (PR) Pola figur podobnych. 144 Powtórzenie wiadomości Praca klasowa i jej omówienie. Przybliżenia Średnia arytmetyczna, mediana, dominanta. Średnia ważona. Odchylenie standardowe. zależność między stosunkiem pól figur podobnych a skalą podobieństwa sposoby zaokrąglania liczb pojęcie średniej arytmetycznej pojęcia: mediana, dominanta pojęcia: dolny kwartyl, górny kwartyl, rozstęp danych, rozstęp międzykwartylowy (R) pojęcie średniej ważonej pojęcie odchylenia standardowego 154 Powtórzenie wiadomości Praca klasowa. Pozostałe godziny do dyspozycji nauczyciela zależność między stosunkiem pól figur podobnych a skalą podobieństwa potrzebę zaokrąglania liczb różnicę między błędem bezwzględnym a błędem względnym pojęcie średniej arytmetycznej pojęcia: mediana, dominanta pojęcia: dolny kwartyl, górny kwartyl, rozstęp danych, rozstęp międzykwartylowy (R) pojęcie średniej ważonej pojęcie odchylenia standardowego interpretację wartości przeciętnej i odchylenia standardowego obliczać pola figur podobnych (P R) obliczać skalę podobieństwa, gdy dane są pola figur podobnych wykonywać obliczenia na liczbach rzeczywistych oraz szacować różne wielkości i wyniki działań obliczać błędy bezwzględne i błędy względne przybliżeń obliczać dokładne wartości, znając błąd bezwzględny oraz rodzaj przybliżenia (P-R) obliczać średnią arytmetyczną, medianę i dominantę (K R) rysować diagramy pudełkowe oraz obliczać dolny i górny kwartyl oraz rozstęp danych i rozstęp międzykwartylowy (R obliczać średnie ważone zestawu danych (K P) obliczać odchylenie standardowe interpretować wartości przeciętne i odchylenia standardowe rozwiązywać zadania dotyczące pól figur podobnych (R zastosowaniem obliczania średniej arytmetycznej, mediany i dominanty (R zastosowaniem obliczania dolnego i górnego kwartyla oraz rozstępu danych i rozstępu międzykwartylowego (R-W) zastosowaniem obliczania średniej ważonej ( zastosowaniem obliczania odchylenia standardowego (R

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony)

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony) DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA 1 Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 160 PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY ORAZ PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Przedmiotowe Zasady Oceniania

Przedmiotowe Zasady Oceniania Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Prosto do matury 2 2. M. Antek, K. Belka, P. Grabowski 3. Nowa era Forma 1. Formy sprawdzania

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Klasa II - zakres podstawowy i rozszerzony

Klasa II - zakres podstawowy i rozszerzony Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.

WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (ZAKRES PODSTAWOWY)

ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (ZAKRES PODSTAWOWY) 1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (ZAKRES PODSTAWOWY) Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 100 Kursywą zaznaczone zostały treści,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III A LP

Wymagania edukacyjne z matematyki w klasie III A LP Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY

PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era

Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY 1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R. ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Plan wynikowy klasa 2

Plan wynikowy klasa 2 Plan wynikowy klasa 2 Przedmiot: matematyka Klasa 2 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 36 tyg. 3 h = 108 h (94 h + 14 h do dyspozycji

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo