Laureaci Nagrody Nobla z fizyki w 2007 r.
|
|
- Weronika Czech
- 8 lat temu
- Przeglądów:
Transkrypt
1 Witold Szmaja, Leszek Wojtczak Nagroda Nobla z fizyki w 2007 r. zjawisko gigantycznego magnetooporu i jego praktyczne wykorzystanie Łódź 2008
2 Laureaci Nagrody Nobla z fizyki w 2007 r. Peter Grünberg (Centrum Badawcze w Jülich, Niemcy) Albert Fert (Uniwersytet Paris-Sud w Orsay, Francja)
3 Zjawisko gigantycznego magnetooporu (ang. giant magnetoresistance GM) Warstwa ferromagn. 1 Warstwa niemagn. Warstwa ferromagn Grupa Ferta Grupa Grünberga 50% w temp. 4,2 K 10% w temp. 5 K 25% w temp. pok. 3% w temp. pok. dla [(Fe 3 nm)/(cr 0,9 nm)] 40 dla (Fe 8 nm)/(cr 1 nm)/fe/cr/fe
4 Odkrycie zjawiska gigantycznego magnetooporu przez Ferta i Grünberga w 1988 r. zapoczątkowało nową erę w fizyce. Era spintroniki (albo magnetoelektroniki)
5 Nanotechnologia bardzo cienkich warstw i wielowarstw o bardzo wysokiej jakości metoda epitaksji z wiązki molekularnej, metoda rozpylania jonowego Fe Cr Fe 1 nm Fe Cr Fe Cr Fe Cr Fe Cr Fe
6 Zależność gigantycznego magnetooporu od grubości warstwy rozdzielającej H = 0 T = 4.2 K Pole magnetyczne (kg) M. N. Baibich et al., Phys. ev. Lett. 61 (1988) 2472.
7 Teoretyczne wyjaśnienie zjawiska gigantycznego magnetooporu m1 m 1 2 m The oyal Swedish Academy of Sciences.
8 Teoretyczne wyjaśnienie zjawiska gigantycznego magnetooporu m1 m 1 2 m The oyal Swedish Academy of Sciences.
9 Józef Barnaś (Uniwersytet im. Adama Mickiewicza w Poznaniu)
10 Wcześniejsze publikacje relacjonujące występowanie efektu podwyższonego magnetooporu M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. A 54 (1975) 225. S. Maekawa, U. Gäfvert, Electron tunneling between ferromagnetic films, IEEE Trans. Magn. 18 (1982) 707. I. Schuller, C. M. Falco, J. Williard, J. Ketterson, B. Thaler,. Lacos,. Dee, Transport properties of the compositionally modulated alloy Cu/Ni AIP Conf. Proc. 53 (1979) 417. J. P. enard, P. Beauvillain, Interface effects in ultrathin ferromagnetic films, Physica Scripta T19 (1987) 405. E. Vélu, C. Dupas, D. enard, J. P. enard, J. Seiden, Enhanced magnetoresistance of ultrathin (Au/Co) n multilayers with perpendicular anisotropy, Phys. ev. B 37 (1988) 668. H. Sato, P. A. Schroeder, J. Slaughter, W. P. Pratt Jr., W. Abdul-azzaq, Galvanomagnetic properties of Ag/M (M = Fe, Ni, Co) layered metallic films, Superlattices and Microstructures 4 (1988) 45.
11 Przewodnictwo G(V) złącza Fe Ge Co jest badane, gdy średnie namagnesowania dwóch warstw ferromagnetycznych są równoległe albo antyrównoległe. Pomiar przewodnictwa w tych dwóch przypadkach jest związany ze spinowymi polaryzacjami elektronów przewodnictwa. ys. 2. Względne przewodnictwo ΔG/G V=0 złącz Fe Ge Co w temperaturze 4,2 K. ΔG oznacza różnicę pomiędzy przewodnictwami odpowiadającymi równoległym i antyrównoległym namagnesowaniom dwóch warstw ferromagnetycznych.
12 Spinowo zależne tunelowanie elektronów przez złącza Ni NiO Ni, Co i Fe jest dyskutowane. Histereza oporu tunelowania w polu magnetycznym jest związana z procesem magnesowania i demonstruje nową, wzajemną zależność elektronowych i magnetycznych właściwości metali ferromagnetycznych. ys. 1. Zależność względnego oporu Δ/ V=0 od zewnętrznego pola magnetycznego H dla złącza Ni NiO Co w temperaturze 4,2 K. Opisaliśmy nowe zjawisko tunelowania: opór tunelowania zależy od procesu magnesowania w metalach ferromagnetycznych.
13 Główne czynniki, które zdecydowały o przyznaniu Nagrody Nobla Fertowi i Grünbergowi Opublikowanie wyników dotyczących zjawiska gigantycznego magnetooporu w bardzo renomowanych czasopismach (Physical eview Letters, Physical eview B). Wykonanie pomiarów gigantycznego magnetooporu nie tylko w bardzo niskich temperaturach, ale również w temperaturze pokojowej. Zasygnalizowanie możliwości praktycznych zastosowań zjawiska gigantycznego magnetooporu. Zainteresowanie się wynikami grupy Ferta i grupy Grünberga przez IBM (grupa Parkina) i opracowanie w 1997 r. technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu. W tym wszystkim potrzeba było również trochę szczęścia!
14 Główne czynniki, które zdecydowały o przyznaniu Nagrody Nobla Fertowi i Grünbergowi Opublikowanie wyników dotyczących zjawiska gigantycznego magnetooporu w bardzo renomowanych czasopismach (Physical eview Letters, Physical eview B). Wykonanie pomiarów gigantycznego magnetooporu nie tylko w bardzo niskich temperaturach, ale również w temperaturze pokojowej. Zasygnalizowanie możliwości praktycznych zastosowań zjawiska gigantycznego magnetooporu. Zainteresowanie się wynikami grupy Ferta i grupy Grünberga przez IBM (grupa Parkina) i opracowanie w 1997 r. technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu. W tym wszystkim potrzeba było również trochę szczęścia!
15 Główne czynniki, które zdecydowały o przyznaniu Nagrody Nobla Fertowi i Grünbergowi Opublikowanie wyników dotyczących zjawiska gigantycznego magnetooporu w bardzo renomowanych czasopismach (Physical eview Letters, Physical eview B). Wykonanie pomiarów gigantycznego magnetooporu nie tylko w bardzo niskich temperaturach, ale również w temperaturze pokojowej. Zasygnalizowanie możliwości praktycznych zastosowań zjawiska gigantycznego magnetooporu. Zainteresowanie się wynikami grupy Ferta i grupy Grünberga przez IBM (grupa Parkina) i opracowanie w 1997 r. technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu. W tym wszystkim potrzeba było również trochę szczęścia!
16 Główne czynniki, które zdecydowały o przyznaniu Nagrody Nobla Fertowi i Grünbergowi Opublikowanie wyników dotyczących zjawiska gigantycznego magnetooporu w bardzo renomowanych czasopismach (Physical eview Letters, Physical eview B). Wykonanie pomiarów gigantycznego magnetooporu nie tylko w bardzo niskich temperaturach, ale również w temperaturze pokojowej. Zasygnalizowanie możliwości praktycznych zastosowań zjawiska gigantycznego magnetooporu. Zainteresowanie się wynikami grupy Ferta i grupy Grünberga przez IBM (grupa Parkina) i opracowanie w 1997 r. technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu. W tym wszystkim potrzeba było również trochę szczęścia!
17 Główne czynniki, które zdecydowały o przyznaniu Nagrody Nobla Fertowi i Grünbergowi Opublikowanie wyników dotyczących zjawiska gigantycznego magnetooporu w bardzo renomowanych czasopismach (Physical eview Letters, Physical eview B). Wykonanie pomiarów gigantycznego magnetooporu nie tylko w bardzo niskich temperaturach, ale również w temperaturze pokojowej. Zasygnalizowanie możliwości praktycznych zastosowań zjawiska gigantycznego magnetooporu. Zainteresowanie się wynikami grupy Ferta i grupy Grünberga przez IBM (grupa Parkina) i opracowanie w 1997 r. technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu. W tym wszystkim potrzeba było również trochę szczęścia!
18 IBM (grupa Stuarta Parkina) opracowanie technologii wytwarzania głowic odczytujących wykorzystujących zjawisko gigantycznego magnetooporu (1997 r.) Gęstość zapisu, Gb/cm M GM ok IBM Almaden esearch Center, USA; The oyal Swedish Academy of Sciences.
19 Magnetyczne środki zapisu danych o wysokiej gęstości
20 Twarde dyski Głowica zapisująca Materiał o wysokim namagnesowaniu NiFe (7 nm) Cu (5 nm) NiFe (4 nm) MnFe (10 nm) Głowica odczytująca Sprzężenie wymienne J. Stöhr, IBM Almaden esearch Center, USA.
21 Zawory spinowe i magnetyczne złącza tunelowe NiFe (7 nm) Cu (5 nm) NiFe (4 nm) MnFe (10 nm) Warstwa ferromagn. 1 Warstwa niemagn. + Warstwa ferromagn. 2 + J. Stöhr, IBM J. es. Develop. 44 (2000) 535.
22 Metody magnetycznego zapisu danych z namagnesowaniem równoległym z namagnesowaniem prostopadłym Głowica odczyt. Cewka zapis. Głowica odczyt. Cewka zapis. Pole magnetyczne Warstwa magnet. twarda Warstwa magnet. twarda Podkładka magnet. miękka Gęstość zapisu 8 Gb/cm 2 Szerokość bitu 100 nm CoPtCrB CoPt Cr, B d = 8 nm K u V/k B T > 60 dla stabilności bitu przez 10 lat CoPtCr d = 6 nm Gęstość zapisu 35 Gb/cm 2 Szerokość bitu 25 nm G. Srajer et al., J. Magn. Magn. Mater. 307 (2006) 1.
23 Pamięci magnetyczne o swobodnym dostępie
24 Pamięci magnetyczne o swobodnym dostępie Linia zapisu Komórka pamięci magnetycznej H Prąd Linia odczytu J. Stöhr, IBM Almaden esearch Center, USA.
25 Pamięci magnetyczne o swobodnym dostępie t = 0 2 ns S. Tehrani et al., Proc. IEEE 91 (2003) 703.
26 Nanocząstki magnetyczne i ich układy
27 Układy nanocząstek magnetycznych Nanocząstki kobaltu wytworzone przy użyciu litografii 200 nm 100 nm Samoorganizujące się nanocząstki kobaltu 50 nm 100 nm J. Y. Cheng et al., Phys. ev. B 70 (2004) ; Y. Bao et al., J. Magn. Magn. Mater. 266 (2003) L245; D. Farrell et al., J. Phys.: Conf. Ser. 17 (2005) 185; F. Q. Zhu et al., Adv. Mater. 16 (2004) 2155.
28 Nanocząstki magnetyczne otrzymane poprzez wykorzystanie wirusów Schemat procesu Obróbka alkaliczna S. D. Bader, ev. Mod. Phys. 78 (2006) 1; C. Liu et al., J. Magn. Magn. Mater. 302 (2006) 47.
29 Nanocząstki magnetyczne otrzymane poprzez wykorzystanie wirusów Eksperyment (obrazy z elektronowego mikroskopu transmisyjnego) S. D. Bader, ev. Mod. Phys. 78 (2006) 1; C. Liu et al., J. Magn. Magn. Mater. 302 (2006) 47.
30 Magnetyczne środki zapisu danych o bardzo wysokiej gęstości koncepcja hybrydowa ( od góry do dołu / od dołu do góry ) S. D. Bader, ev. Mod. Phys. 78 (2006) 1; S. B. Darling et al., Adv. Mater. 17 (2005) 2446.
31 Laureaci Nagrody Nobla z fizyki Albert Fert (Uniwersytet Paris-Sud w Orsay, Francja) Peter Grünberg (Centrum Badawcze w Jülich, Niemcy)
32 12th International Colloquium on Magnetic Films and Surfaces, Le Creusot (France), 1988
33 Dziękujemy za uwagę
Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych
SEMINARIUM SPRAWOZDAWCZE z prac naukowych prowadzonych w IFM PAN w 2014 roku projekt badawczy: Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych Umowa nr UMO-2013/08/M/ST3/00960
Bardziej szczegółowoBadanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu
Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu Uczestnicy: Łukasz Grabowski Barbara Latacz Kamil Mrzygłód Michał Papaj Opiekunowie naukowi: prof. dr hab. Jan
Bardziej szczegółowoNagroda Nobla 2007 efekt GMR
Nagroda Nobla 2007 efekt GMR Wykład wygłoszony na AGH przez prof. Józefa Barnasia z Uniwersytetu im. A. Mickiewicza z Poznania w styczniu 2008. Prof. J. Barnaś jest współautorem wielu wspólnych publikacji
Bardziej szczegółowoPodstawy Mikroelektroniki
Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ
Bardziej szczegółowoSiła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Bardziej szczegółowoJak zmieścid 50 TB na twardym dysku, czyli o fizyce zapisu informacji. Michał Krupioski
Jak zmieścid 50 TB na twardym dysku, czyli o fizyce zapisu informacji Michał Krupioski Instytut Fizyki Jądrowej im. H. Niewodniczaoskiego, 2010 O czym jest ta prezentacja? Jak działają twarde dyski? Jak
Bardziej szczegółowoZastosowanie GMR w dyskach twardych HDD i pamięci MRAM
Część 3 Zastosowanie GMR w dyskach twardych HDD i pamięci MRAM wiadomości wstępne krótka historia dysków od czasu odkrycia GMR rozwój głowic MR i GMR odczyt danych, ogólna budowa głowicy budowa i działanie
Bardziej szczegółowoMATERIAŁY XXXVI ZJAZDU FIZYKÓW POLSKICH TORUŃ 2001 WYKŁADY PLENARNE. Spin w elektronice. Józef Barnaś
Spin w elektronice Józef Barnaś Wydział Fizyki, Uniwersytet im. Adama Mickiewicza, Poznań oraz Instytut Fizyki Molekularnej PAN, Poznań 1. Wstęp W konwencjonalnych układach elektronicznych aktywnym elementem
Bardziej szczegółowoPrzegląd Elektrotechniczny
Przegląd Elektrotechniczny 5 Rok LXXVIII Organ Stowarzyszenia Elektryków Polskich Wydawnictwo SIGMA NOT Sp. z o.o. GMR gigantyczny magnetoopór prof. dr hab. inż. SŁAWOMIR TUMAŃSKI Politechnika Warszawska
Bardziej szczegółowoBadanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Bardziej szczegółowoMetody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla
Bardziej szczegółowoProf. dr hab. Tomasz Stobiecki Kraków, Recenzja. pracy doktorskiej mgr inż. Kingi Aleksandry Lasek
Prof. dr hab. Tomasz Stobiecki Kraków, 24. 04. 2018 Wydział Fizyki i Informatyki Stosowanej AGH Katedra Fizyki Ciała Stałego e-mail:stobieck@agh.edu.pl Recenzja pracy doktorskiej mgr inż. Kingi Aleksandry
Bardziej szczegółowoStanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego
Stanowisko do pomiaru magnetorezystancji elementu odczytowego głowicy dysku twardego Opracował : Witold Skowroński Konsultacja: prof. Tomasz Stobiecki Dr Maciej Czapkiewicz Dr inż. Mirosław Żołądź 1. Opis
Bardziej szczegółowoTechnologie plazmowe. Paweł Strzyżewski. Instytut Problemów Jądrowych im. Andrzeja Sołtana Zakład PV Fizyki i Technologii Plazmy Otwock-Świerk
Technologie plazmowe Paweł Strzyżewski p.strzyzewski@ipj.gov.pl Instytut Problemów Jądrowych im. Andrzeja Sołtana Zakład PV Fizyki i Technologii Plazmy 05-400 Otwock-Świerk 1 Informacje: Skład osobowy
Bardziej szczegółowoWŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO
WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm
Bardziej szczegółowoSPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
Bardziej szczegółowoPolitechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych
Bardziej szczegółowoSpintronika i jej zastosowania pomiarowe w konstrukcji czujników
Sławomir TUMAŃSKI Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych Spintronika i jej zastosowania pomiarowe w konstrukcji czujników Streszczenie. W artykule
Bardziej szczegółowoNanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Bardziej szczegółowoF = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Bardziej szczegółowoIndukowana prądem dynamika momentu magnetycznego w złączach tunelowych
Indukowana prądem dynamika momentu magnetycznego w złączach tunelowych mgr inż. Piotr Ogrodnik Warszawa, 19-05-2015 Promotor: prof. dr hab. Renata Świrkowicz Plan wystąpienia Przedmiot badań i motywacja
Bardziej szczegółowoWłasności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Bardziej szczegółowoBADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,
Bardziej szczegółowoLecture 2. Spin depend electron transport: AMR, GMR
Lecture 2 Spin depend electron transport: AMR, GMR Magnetorezystancja Anizotropowa Magnetorezystancja AMR origin spin orbit coupling ( 1960) Gigantyczna Magnetorezystancja GMR 1986 oscillatory interlayer
Bardziej szczegółowoPodstawy fizyki wykład 2
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Bardziej szczegółowoWłasności magnetyczne materii
Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:
Bardziej szczegółowoWykład 21: Studnie i bariery cz.2.
Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza
Bardziej szczegółowo30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych
Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Bardziej szczegółowoDynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur.
Dynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur. Hubert Głowiński, IFM PAN promotor: prof. Janusz Dubowik 09.06.2015 1 Praca była częściowo finansowana z grantu Polsko-Szwajcarskiego
Bardziej szczegółowoMikroskopie skaningowe
SPM Scanning Probe Microscopy Mikroskopie skaningowe (SPM- Sharp Probe Microscopy) Mikroskopy skanujące 1. Efekt tunelowania (STM). Stały prąd, stała wysokość. 2. Oddziaływania sił atomowych(afm). W kontakcie,
Bardziej szczegółowoWykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Bardziej szczegółowoTechnika sensorowa. Czujniki magnetyczne cz.2
Technika sensorowa Czujniki magnetyczne cz.2 dr inż. Wojciech Maziarz, prof. dr hab. T. Pisarkiewicz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Kontakt: Wojciech.Maziarz@agh.edu.pl 1 Magnetorezystory
Bardziej szczegółowoDynamika w magnetycznych złączach tunelowych
Dynamika w magnetycznych złączach tunelowych Witold Skowroński Katedra Elektroniki Wydział Informatyki Elektroniki i Telekomunikacji Witold Skowroński, Kraków 17.01.2014 1/43 Motywacja Badania magnetycznych
Bardziej szczegółowoMarcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Bardziej szczegółowoMAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych
MAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych na obwody magnetyczne 2012-03-09 MAGNETO Sp. z o.o. Jesteśmy producentem rdzeni magnetycznych oraz różnych komponentów
Bardziej szczegółowoElektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład dwudziesty piąty 6 czerwca 2017 Z poprzedniego wykładu Prawo Curie i Curie-Weissa Model paramagnetyzmu
Bardziej szczegółowoPytania z przedmiotu Inżynieria materiałowa
Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie
Bardziej szczegółowoII.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Bardziej szczegółowoMikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK
Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny
Bardziej szczegółowoMaciej Czapkiewicz. Magnetic domain imaging
Maciej Czapkiewicz Magnetic domain imaging Phase diagram of the domain walls Kerr geometry MOKE (Kerr) Magnetometer MOKE signal hysteresis loops [Pt/ Co] 3 [Pt/Co] 3 /Pt(0.1 nm)/irmn 10 2 5 1 Rotation
Bardziej szczegółowoReplikacja domen magnetycznych w warstwach wielokrotnych
Replikacja domen magnetycznych w warstwach wielokrotnych Maciej Urbaniak, IFM PAN 16.03.2007 Poznań Replikacja domen magnetycznych w warstwach wielokrotnych Wprowadzenie Replikacja w układach z anizotropią
Bardziej szczegółowoElektronika spinowa i główne kierunki jej rozwoju
NAUKA 4/2012 87-99 JÓZEF BARNAŚ Elektronika spinowa i główne kierunki jej rozwoju Od dawna już wiadomo, że prąd elektryczny płynący w układach przewodzących, na przykład w metalach lub półprzewodnikach,
Bardziej szczegółowoZjawiska fizyczne wykorzystywane w czujnikach i nastawnikach urządze. dzeń mechatronicznych
Zjawiska fizyczne wykorzystywane w czujnikach i nastawnikach urządze dzeń mechatronicznych Zjawisko fizyczne Zjawisko fizyczne przemiana, na skutek której zmieniają się tylko właściwości fizyczne ciała
Bardziej szczegółowoWyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Bardziej szczegółowoOd fal spinowych do gigantycznego magnetooporu (GMR) i dalej
WYKŁAD NOBLOWSKI 2007 Od fal spinowych do gigantycznego magnetooporu (GMR) i dalej Peter A. Grünberg Institut für Festkörperforschung, Forschungszentrum Jülich, Niemcy From spin waves to giant magnetoresistance
Bardziej szczegółowoNADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Bardziej szczegółowoMaciej Czapkiewicz Katedra Elektroniki, WIEiT, AGH
Model dyspersji barier energetycznych aktywowanego termicznie procesu przełączania magnetyzacji w układach cienkich warstw z magnetyczną anizotropią prostopadłą Maciej Czapkiewicz Katedra Elektroniki,
Bardziej szczegółowoSkaningowy mikroskop tunelowy STM
Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy (ang. Scanning Tunneling Microscope; STM) należy do szerszej rodziny mikroskopów ze sondą skanującą. Wykorzystuje on zjawisko tunelowania
Bardziej szczegółowoMIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach
Bardziej szczegółowoNanotechnologia. Nanotechnologia: gdzie jesteśmy i gdzie idziemy. Tomasz Dietl
Nanotechnologia Nanotechnologia: gdzie jesteśmy i gdzie idziemy Tomasz Dietl Laboratorium Kriogeniki i Spintroniki Instytutu Fizyki PAN Instytut Fizyki Teoretycznej UW Rewolucja informacyjna tworzenie
Bardziej szczegółowoZjawisko magnetooporu
Maciej Misiorny Seminarium do przedmiotu Teoria Ciała Stałego Wydział Fizyki UAM Zakład Fizyki Mezoskopowej Poznań, 31.03.2005 Celem tego seminarium jest zaprezentowanie podstaw teoretycznych zjawiska
Bardziej szczegółowoWykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Bardziej szczegółowoSPINTRONIKA. Przyszłość i prawie teraźniejszość
SPINTRONIKA Przyszłość i prawie teraźniejszość ZWYKŁA ELEKTRONIKA Wykorzystuje ładunek elektronu jako cechę użyteczną pozwalającą tworzyć rozmaite układy elektroniczne. Powszechnie sądzi się, że możliwości
Bardziej szczegółowoLekcja 59. Histereza magnetyczna
Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach
Bardziej szczegółowoPL B1. UNIWERSYTET W BIAŁYMSTOKU, Białystok, PL BUP 23/14
PL 220183 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220183 (13) B1 (21) Numer zgłoszenia: 403760 (51) Int.Cl. G01N 1/42 (2006.01) G01N 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Bardziej szczegółowo2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
Bardziej szczegółowoWybrane czujniki wytwarzane w technologiach półprzewodnikowych
Wybrane czujniki wytwarzane w technologiach półprzewodnikowych Czujnik (sensor) urządzenie przetwarzające jedną wielkość fizyczną na inną - najczęściej elektryczną (napięcie, natężenie prądu, opór elektryczny).
Bardziej szczegółowoNanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
Bardziej szczegółowoSamoorganizujące się nanokompozyty na bazie metali przejściowych w GaN i ZnO
Samoorganizujące się nanokompozyty na bazie metali przejściowych w GaN i ZnO M. Sawicki, S. Dobkowska, W. Stefanowicz, D. Sztenkiel, T. Dietl Instytut Fizyki PAN, Warszawa Pakiet zadaniowy: PZ2. Lider:
Bardziej szczegółowoNadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Bardziej szczegółowoPamięci magnetorezystywne MRAM czy nowa technologia podbije rynek pamięci RAM?
1 Pamięci magnetorezystywne MRAM czy nowa technologia podbije Pamięci magnetorezystywne MRAM czy nowa technologia podbije rynek pamięci RAM? Na rynku pamięci RAM od dawna dominują układy zawierające pamięci
Bardziej szczegółowoNadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Bardziej szczegółowoIX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Bardziej szczegółowoOptymalizacja mechanizmów fizycznych indukujących prostopadłą orientację wektora namagnesowania w heterostrukturach typu magnetyczne złącze tunelowe
Optymalizacja mechanizmów fizycznych indukujących prostopadłą orientację wektora namagnesowania w heterostrukturach typu magnetyczne złącze tunelowe mgr inż. Kinga Aleksandra Lasek Rozprawa doktorska wykonana
Bardziej szczegółowoMateriały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz
Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych Jacek Mostowicz Plan seminarium Wstęp Materiały magnetycznie miękkie Podstawowe pojęcia Prądy wirowe Lepkość magnetyczna
Bardziej szczegółowodr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr
dr Rafał Szukiewicz WROCŁAWSKIE CENTRUM BADAŃ EIT+ WYDZIAŁ FIZYKI I ASTRONOMI UWr WYTWARZANIE I ZASTOSOWANIE NANOCZĄSTEK O OKREŚLONYCH WŁAŚCIWOŚCIACH WROCŁAWSKIE CENTRUM BADAŃ EIT+ WIELKOŚCI OBSERWOWANYCH
Bardziej szczegółowoPoznań, 11 sierpnia 2014 r.
Kierownik Zakładu: prof. dr hab. Ryszard Czajka e-mail: ryszard.czajka@put.poznan.pl tel.: 61-665 3234, 61-665 3162 Wydział Fizyki Technicznej Instytut Fizyki, ul. Nieszawska 13 A, 60-965 POZNAŃ Zakład
Bardziej szczegółowoPolitechnika Politechnika Koszalińska
Politechnika Politechnika Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych NOWE MATERIAŁY NOWE TECHNOLOGIE W PRZEMYŚLE OKRĘTOWYM I MASZYNOWYM IIM ZUT Szczecin, 28 31 maja 2012, Międzyzdroje
Bardziej szczegółowoMenu. Badające rozproszenie światła,
Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»
Bardziej szczegółowoCzy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem
Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem Piotr Konieczny Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Kraków 22.06.2017 Efekt magnetokaloryczny
Bardziej szczegółowoWyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
Bardziej szczegółowoRepeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Bardziej szczegółowoWykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Bardziej szczegółowoMagdalena Fitta. Zakład Materiałów Magnetycznych i Nanostruktur NZ34
Magdalena Fitta Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Wstęp Funkcjonalność magnetyków molekularnych Efekt magnetokaloryczny- definicja MCE w konwencjonalnych magnetykach MCE w magnetykach
Bardziej szczegółowo!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Bardziej szczegółowoAparatura do osadzania warstw metodami:
Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera
Bardziej szczegółowo30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie
Wykład XI: Właściwości elektryczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wprowadzenie 2. a) wiadomości podstawowe b) przewodniki
Bardziej szczegółowoSpektroskopia mionów w badaniach wybranych materiałów magnetycznych. Piotr M. Zieliński NZ35 IFJ PAN
Spektroskopia mionów w badaniach wybranych materiałów magnetycznych Piotr M. Zieliński NZ35 IFJ PAN 1. Fundamenty spektroskopii mionów. Typowy eksperyment 3. Cel i obiekty badań 4. Przykłady otrzymanych
Bardziej szczegółowoZakład Inżynierii Materiałowej i Systemów Pomiarowych
Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII
Bardziej szczegółowoUKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
Bardziej szczegółowoPole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Bardziej szczegółowoWykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Bardziej szczegółowoSkaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz
Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek
Bardziej szczegółowoUkłady cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym A. Kozioł-Rachwał Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science
Bardziej szczegółowoWytwarzanie niskowymiarowych struktur półprzewodnikowych
Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja
Bardziej szczegółowoFizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Bardziej szczegółowoWpływ temperatury wygrzewania na właściwości magnetyczne i skład fazowy taśm stopu Fe 64,32 Nd 9,6 B 22,08 W 4
Wpływ temperatury wygrzewania na właściwości magnetyczne i skład fazowy taśm stopu Fe 64,32 Nd 9,6 B 22,08 W 4 Katarzyna Filipecka*, Katarzyna Pawlik, Piotr Pawlik, Jerzy J. Wysłocki, Piotr Gębara, Anna
Bardziej szczegółowoCharakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Bardziej szczegółowoNadprzewodnictwo w materiałach konwencjonalnych i topologicznych
LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach
Bardziej szczegółowoZakład 53 Fizyki i Inżynierii Materiałowej Oddział V Zastosowań Fizyki i Badań Interdyscyplinarnych
Zakład 53 Fizyki i Inżynierii Materiałowej dr hab. Marta Wolny-Marszałek - omówienie działalności Zakładu. dr Żaneta Świątkowska-Warkocka - Nanokompozyty magnetyczne otrzymywane metodą impulsowego naświetlania
Bardziej szczegółowoStruktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
Bardziej szczegółowoForum BIZNES- NAUKA Obserwatorium. Kliknij, aby edytować styl wzorca podtytułu. NANO jako droga do innowacji
Forum BIZNES- NAUKA Obserwatorium Kliknij, aby edytować styl wzorca podtytułu NANO jako droga do innowacji Uniwersytet Śląski w Katowicach Oferta dla partnerów biznesowych Potencjał badawczy Założony w
Bardziej szczegółowoPL B1. INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK, Warszawa, PL BUP 11/
PL 218778 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218778 (13) B1 (21) Numer zgłoszenia: 389634 (51) Int.Cl. G01N 29/24 (2006.01) G01N 29/07 (2006.01) Urząd Patentowy Rzeczypospolitej
Bardziej szczegółowoPodstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Bardziej szczegółowoKsięgarnia PWN: R.W. Kelsall, I.W. Hamley, M. Geoghegan (red.) - Nanotechnologie
Księgarnia PWN: R.W. Kelsall, I.W. Hamley, M. Geoghegan (red.) - Nanotechnologie Przedmowa do wydania polskiego... Przedmowa... 1. Wytwarzanie i klasyfikacja nanostruktur Rik M. Brydson, Chris Hammond...
Bardziej szczegółowoBadania dyfrakcyjne cienkowarstwowych struktur pod kątem zastosowań w elektronice spinowej
Badania dyfrakcyjne cienkowarstwowych struktur pod kątem zastosowań w elektronice spinowej Jarosław Kanak Katedra Elektroniki, WIEiT AGH NCN grant DEC-2012/05/E/ST7/00240 Laboratorium Badań Strukturalnych
Bardziej szczegółowoNierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,
Bardziej szczegółowoZjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Bardziej szczegółowoZespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
Bardziej szczegółowo