Andrzej Leśnicki Laboratorium CPS Ćwiczenie 11 1/9 ĆWICZENIE 11. Filtry IIR

Wielkość: px
Rozpocząć pokaz od strony:

Download "Andrzej Leśnicki Laboratorium CPS Ćwiczenie 11 1/9 ĆWICZENIE 11. Filtry IIR"

Transkrypt

1 Adre Leśicki Lbororium CPS Ćwiceie /9 ĆWICZENIE Filry IIR. Cel ćwicei Prycyowy yem DLS łużący do filrowi yłów i mący iekońcoą odpowiedź impulową yw ię w krócie filrem IIR (. ifiie impule repoe,w lierure polkie używ ię eż króu NOI). W porówiu filrmi FIR, filry IIR powlą uykć dowlącą prokymcę chrkeryyk cęoliwościowych pry cie mieym rędie filru. Ich wdą e o, że moą oe być iebile i ą włściwość reb wrcć uwę w proceie proekowi filru. Nie e eż możliwe, by prycyowy i bily filr IIR był liiowo fowy. W ćwiceiu będą bde podwowe włściwości filrów IIR.. Wprowdeie rmic filru IIR m ępuącą poć fukci wymiere b 0 M ( ) N 0 b K b K N M, 0 0 () die N e rędem filru. Odpowiedź impulow filru h[ ] ( ( ) ) Z e iekońco, co udi wę filru. O włściwościch filru IIR decydue mieiący ię w leżości od wrości wpółcyików i, b i rokłd er i bieuów rmici (). Iieą meody proekowi cyfrowych filrów IIR oprcowe k, by prokymowć chrkeryyki filrów loowych. Zim chrkeryuemy e meody proekowi, pierw oą pode rmice wybrych ypów doloprepuowych filrów loowych. rmice filrów loowych mkymlie płką chrkeryyką mpliudową (i. filry Buerworh) o edokowe pulci rice ω, o: () (3) (4) 3 () ( )( ) 4 (), id. (5) Gdyby pulc ric ie był edokow, o leżłoby używć rumeu mi rumeu. ω

2 Adre Leśicki Lbororium CPS Ćwiceie /9 rmice filrów rówoflią chrkeryyką mpliudową (i. filry Cebyew ypu I) pry flowiu w pśmie prepuowym rówym 3 db i edokowe pulci rice o: () (6) (7) 3 () () ( 0.980)( ) 0.50, id. (8) 4 ( )( ) Iieą eż filry rówoflią chrkeryyką mpliudową w pśmie porowym (filry Cebyew ypu II) i filry rówoflią chrkeryyką mpliudową w pmch prepuowym i porowym (filry elipyce), le ymi filrmi ie będiemy ię u mowli. rmice filrów mkymlie liiową fą (i. filr Beel lub hompo) o edokowym opóźieiu o: 3 () (9) () (0) (), id. () Nie e celem ćwicei yemyce omwiie meod proekowi filrów IIR - miemy ię ylko kilkom meodmi podwowymi. W edym popredich ćwiceń opio meodę proekowi filrów poleącą dobore rokłdu er i bieuów. W ym ćwiceiu oą kicowe ry meody proekowi: ) meod rformci dwuliiowe; b) meod iemieości odpowiedi impulowe; c) meod iemieości odpowiedi kokowe. Meod rformci dwuliiowe. Międy mieą w prekłceiu Z i mieą w prekłceiu Lplce chodi leżość e, die e okreem próbkowi. Jeżeli leżość oie prokymow fukcą dwuliiową () o odwróceie fukci () de fukcę

3 Adre Leśicki Lbororium CPS Ćwiceie 3/9 (3) kór e kże fukcą dwuliiową i e podwieie do wymiere rmici filru looweo de wymierą rmicę filru IIR () ( ) ( ) (4) Prykłd. Zproekuemy filr Buerworh druieo rędu o edokowe pulci rice ω. Z rmici () filru looweo orymuemy po rformci dwuliiowe ępuącą rmicę filru cyfroweo ( ) ( ) Prymuąc orymmy rmicę filru cyfroweo ( ) (6) 5 6 ( 5 ) odpowidąceo filrowi loowemu o cęoliwości rice f π π 0,59. ω Chrkeryyki proekoweo filru uyke pomocą ierfeu rficeo repoe wykreśloo ry.. Prycikiem oriil.wv powoduemy odworeie w łuchwkch oryileo uworu muyceo, prycikiem filered.wv uworu prefilroweo pre proekowy filr. (5)

4 Adre Leśicki Lbororium CPS Ćwiceie 4/9 Ry.. Chrkeryyki cyfroweo filru Buerworh proekoweo meodą rformci dwuliiowe Meod iemieości odpowiedi impulowe. meod pole kim h był próbkmi odpowiedi proekowiu filru IIR, by eo odpowiedź impulow [ ] impulowe filru looweo h () h[] h ( ) (7) Prykłd. Zproekuemy filr IIR, kóreo odpowiedź impulow h[] e próbkmi odpowiedi impulowe filru looweo. W prypdku filru Buerworh druieo h ( ) rędu o edokowe pulci rice ω wyiki ą ępuące () (8)

5 Adre Leśicki Lbororium CPS Ćwiceie 5/9 h () e i, 0 (9) h (0) [] e i u[] ( ) e e i co e e e () Rokłdąc rmicę ( ) ułmki proe moż połużyć ię fukcą [ r, p, k] reidue( b, ), die b, ą wekormi wpółcyików wielomiów MALAB licik i miowik, r e wekorem reiduów, p wekorem bieuów, k wekorem rey: >> b[]; >> [,qr(),]; >> [r,p,k]reidue(b,) r i i p i i k [] rmic () e rmicą filru IIR, kóreo odpowiedź impulow e próbkmi odpowiedi impulowe rówowżeo filru looweo. Prymuąc edokowy okre próbkowi i połuuąc ię ierfeem rficym repoe orymuemy chrkeryyki proekoweo filru IIR kie k o poko ry.. Uyke chrkeryyki cęoliwościowe ą mie korye od ych, kóre uyko proekuąc filr meodą rformci dwuliiowe (filr m mieą elekywość, miee łumieie w pśmie porowym, chociż m brdie liiową fę, brdie płką chrkeryykę opóźiei rupoweo).

6 Adre Leśicki Lbororium CPS Ćwiceie 6/9 Ry.. Chrkeryyki cyfroweo filru Buerworh proekoweo meodą iemieości odpowiedi impulowe Meod iemieości odpowiedi kokowe. meod pole kim proekowiu filru IIR, by eo odpowiedź kokow [ ] był próbkmi odpowiedi kokowe filru looweo () () [] ( ) Prykłd 3. Zproekuemy filr IIR, kóreo odpowiedź kokow e próbkmi odpowiedi kokowe filru looweo [] ( ). W prypdku filru Buerworh druieo rędu o edokowe pulci rice ω wyiki ą ępuące () () G (3)

7 Adre Leśicki Lbororium CPS Ćwiceie 7/9 () e co i, 0 (4) (5) [] e co i u[] G ( ) e e co co i e (6) ( ) e i co e e co e e i co (7) Rokłdąc fukcę wymierą G ( ) ułmki proe moż połużyć ię fukcą [ r, p, k] reidue( b, ), die b, ą wekormi wpółcyików wielomiów MALAB licik i miowik, r e wekorem reiduów, p wekorem bieuów, k wekorem rey: >> b[]; >> [,qr(),,0]; >> [r,p,k]reidue(b,) r i i.0000 p i i 0 k [] rmic (7) e rmicą filru IIR, kóreo odpowiedź kokow e próbkmi odpowiedi kokowe rówowżeo filru looweo. Prymuąc edokowy okre próbkowi i połuuąc ię ierfeem rficym repoe orymuemy chrkeryyki proekoweo filru IIR kie k o poko ry. 3. Uyke chrkeryyki cęoliwościowe ie ą k korye k e, kóre uyko proekuąc filr meodą rformci dwuliiowe, le lepe iż e, kóre uyko meodą iemieości odpowiedi impulowe.

8 Adre Leśicki Lbororium CPS Ćwiceie 8/9 Ry. 3. Chrkeryyki cyfroweo filru Buerworh proekoweo meodą iemieości odpowiedi kokowe 3. Wykoie ćwicei. Zproeku filr IIR Buerworh lub Cebyew lub Beel meodą dwuliiowe rformci miee podobie k w prykłdie. Nryu chrkeryyki proekoweo filru. Predykuu uyke wyiki.. Zproeku filr IIR Buerworh lub Cebyew lub Beel meodą iemiee odpowiedi impulowe podobie k w prykłdie. Nryu chrkeryyki proekoweo filru. Predykuu uyke wyiki. 3. Zproeku filr IIR Buerworh lub Cebyew lub Beel meodą iemiee odpowiedi kokowe podobie k w prykłdie 3. Nryu chrkeryyki proekoweo filru. Predykuu uyke wyiki. 4. Zdi eowe weściówki i prwdiy. Zproeku meodą rformci dwuliiowe filr cyfrowy IIR prokymuący chrkeryyki doloprepuoweo filru looweo: ) Buerworh, rędu, ω ;

9 Adre Leśicki Lbororium CPS Ćwiceie 9/9 b) Cebyew ypu I, flowie 3-dB, rędu, ω ; c) Beel, opóźieie edokowe, rędu. Wyc rmicę ( ). Nryu rokłd er i bieuów. Wykreśl chrkeryyki cęoliwościowe filru cyfroweo i porów e chrkeryykmi filru looweo.. Zproeku meodą iemiee odpowiedi impulowe filr cyfrowy IIR prokymuący chrkeryyki doloprepuoweo filru looweo: d) Buerworh, rędu, ω ; e) Cebyew ypu I, flowie 3-dB, rędu, ω ; f) Beel, opóźieie edokowe, rędu. Wyc odpowiedź impulową filru looweo, ryu ą i próbku. Wyc rmicę ( ). Nryu rokłd er i bieuów. Wykreśl chrkeryyki cęoliwościowe filru cyfroweo i porów e chrkeryykmi filru looweo. 3. Zproeku meodą iemiee odpowiedi kokowe filr cyfrowy IIR prokymuący chrkeryyki doloprepuoweo filru looweo: ) Buerworh, rędu, ω ; h) Cebyew ypu I, flowie 3-dB, rędu, ω ; i) Beel, opóźieie edokowe, rędu. Wyc odpowiedź kokową filru looweo, ryu ą i próbku. Wyc rmicę ( ). Nryu rokłd er i bieuów. Wykreśl chrkeryyki cęoliwościowe filru cyfroweo i porów e chrkeryykmi filru looweo.

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

Laboratorium Metod i Algorytmów Sterowania Cyfrowego

Laboratorium Metod i Algorytmów Sterowania Cyfrowego Meody i Alorymy Serowi Cyroweo Lbororium Meod i Alorymów Serowi Cyroweo Ćwiceie 4 Projekowie cyrowych korekorów ieodporych i odporych I. Cel ćwicei. Poie sd projekowi cyrowych reulorów dedykowych do deo

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

Ę ą Ó Ó Ó Ż ę Ę Ę Ź ó ć Ń Ą ć Ę Ę ó ó ę Ź ą ą ą ź ó Ś ęć Ś Ć ęć ą ą ą Ę ć Ó ó Ż ó Ż ó Ź ęó ą Ś ęć ą ą Ć ć ć Ó Ś Ą ć ć ó ć Ą ó ó ć ć Ą ę Ę ą ęć Ż ó Ę Ę Ó Ę Ą Ń Ę Ą ę ą ęć ą ą ą ć ę ć ć ó Ó ó ó ę Ż Ę ęó

Bardziej szczegółowo

Ą Ę Ó ć ż ż ż ż ĘĆ Ą ź ć ż Ę ĘÓ Ł Ó Ś Ó ź ć ż ć ż ż ć ż ć ć ć ż ć ć ż ż ć Ę Ą Ó ć ż ć ż ć ż ć ć ć ż ć ć ć ż ć ć ż ć ż ć ć ć ż Ę ć ż ż ż ż ż ć ż ć ć ż ć ć ż ć ć ć ć ź ź ć Ł Ę Ó ź ć ż ż ć ć ż Ą ź ć ż ć ż

Bardziej szczegółowo

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

Bardziej szczegółowo

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ FILTRY ZE SKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ FIR od ag. Fiite Impule Repoe Spi treści 1. Deiicja iltru FIR. Caraktertki cętotliwościo 3. Filtr FIR liiową caraktertką aową 4. Projektowaie iltrów pr pomoc eregów

Bardziej szczegółowo

Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż

Bardziej szczegółowo

Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 7. Stabilność

PODSTAWY AUTOMATYKI 7. Stabilność Poliechik Wrzwk Iyu Auomyki i Roboyki Prof. dr hb. iż. J Mciej Kościely PODSTAWY AUTOMATYKI 7. Sbilość Sbilość Sbilość je cechą ukłdu, polegjącą powrciu do u rówowgi łej po uiu dziłi zkłócei, kóre wyrąciło

Bardziej szczegółowo

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją

Bardziej szczegółowo

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe. Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Ćwiczenie 7. Filtry LC

Ćwiczenie 7. Filtry LC Adrzej Leśicki Lbortorium Syłów Aloowych, Ćwiczeie 7 /8. Wtęp Ćwiczeie 7 Filtry L Filtry elektrycze ą ukłdmi liiowymi łużącymi do przekztłci yłów elektryczych. W dziedziie czętotliwości ozcz to wytłumieie

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 8. Stabilność

PODSTAWY AUTOMATYKI 8. Stabilność Poliechik Wrzwk Iyu Auomyki i Roboyki Prof. dr hb. iż. J Mciej Kościely PODSTAWY AUTOMATYKI 8. Sbilość Sbilość Sbilość je cechą ukłdu, polegjącą powrciu do u rówowgi łej po uiu dziłi zkłócei, kóre wyrąciło

Bardziej szczegółowo

ź -- ć ł ź ł -ł ł --

ź -- ć ł ź ł -ł ł -- ------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą

Bardziej szczegółowo

DLSX - dualna metoda simpleks

DLSX - dualna metoda simpleks Mrek Miyńki KO UŁ 6 - dul metod implek (DLSX)_(poprwioy)_Dorot Miyńk DLSX - dul metod implek WPROWADZENIE Rowżmy tępuąe die PL: m m m(mi) m DEFINICJE. ę ywmy prymlie dopulą eżeli pełioy et wruek. ę ywmy

Bardziej szczegółowo

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że

Bardziej szczegółowo

Upiór opery The Phantom Of The Opera

Upiór opery The Phantom Of The Opera Upiór opery The Phatom O The Opera Allegrovivace 4 4 5 10 10 CHRISTINE P Te głos a ie dzał mie przyy ał sach () 15 15 Wy iał i mię me aż a stał rzask 2007 y TM ROMA Upiór opery 2 19 19 23 23 I chy a da

Bardziej szczegółowo

latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.

latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól. T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z

Bardziej szczegółowo

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Ą Ł Ś ą Źą Ó Ż ŁŃĄ ś ą ś ą ą ż ó ń ą ż ś ś ć ą ś ą ś ć ż ść ó ś ó ą ó ą ń ą ę ą ę ż ń ą ś ó ś ą ą ą ś ś ń ą Ę ą ą ś ś ą ń ó ż ść ęż ęś ś śą ęś ś ą ą ś ż ź ś Ęść ż Ś ń ń ą Ź Ęó ę ó Żą Ń Ń ń ś ż ż ń ó ś

Bardziej szczegółowo

Z e s p ó ł d s. H A L i Z

Z e s p ó ł d s. H A L i Z C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g

Bardziej szczegółowo

Ę ę ę Łó-ź ----

Ę ę ę Łó-ź ---- -Ę- - - - - - -ę- ę- - Łó-ź -ś - - ó -ą-ę- - -ł - -ą-ę - Ń - - -Ł - - - - - -óż - - - - - - - - - - -ż - - - - - -ś - - - - ł - - - -ą-ę- - - - - - - - - - -ę - - - - - - - - - - - - - ł - - Ł -ń ł - -

Bardziej szczegółowo

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

Ź Ę ą ć Ź Ź Ń ą ą Ź ą ę ę Ę Ń Ć ą Ę Ę ą Ć Ń ę Ń ę ę ą Ś ę ę ę Ę ę ą Ś Ę ę ą Ś ą Ź ą ę ą ę ą Ź Ś ę ą ą ę ę ęź ęź Ś Ę Ś Ć ą Ź Ś Ś ę ę Ź ę ą ą Ź ę Ź ą ą ą ą ę ę ę Ź ę Ź Ę ę Ś ź Ś Ę Ć ę Ź Ź ą Ń Ś ąą Ś Ź Ę

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Sprawozdanie z badań próbki osadu pobranej na plaży w miejscowości Czołpina.

Sprawozdanie z badań próbki osadu pobranej na plaży w miejscowości Czołpina. Lbororum Az Specjlych Trów, 31.05.2012 Sprwozde z bdń próbk osdu pobrej plży w mejscowośc Czołp. D 28 mj 2012 dosrczoo próbkę w posc czrego elsyczego osdu zurzoego w wodze opsego jko próbk osdu pobr plży

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

2 p. d p. ( r y s. 4 ). dv dt

2 p. d p. ( r y s. 4 ). dv dt M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

3. 4 n a k r ę t k i M k o r p u s m i s a n a w o d ę m i s a n a w ę g i e l 6. 4 n o g i

3. 4 n a k r ę t k i M k o r p u s m i s a n a w o d ę m i s a n a w ę g i e l 6. 4 n o g i M G 5 0 4 W Ę D Z A R K A M G 5 0 4 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p r o d u k t u M a s t e r G r i l l

Bardziej szczegółowo

REGULAMIN CASTINGU DO KAMPANII MARKI PRETTY ONE

REGULAMIN CASTINGU DO KAMPANII MARKI PRETTY ONE REGULAMIN CASTINGU DO KAMPANII MARKI PRETTY ONE I. Organizator i Producentem castingu do Kampanii modowej marki Pretty One Jesień-Zima e e es, est Pretty O e Kuł k ski sp. J. s ie si 26 Maja w Warszawie

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

ą ą ą ą ż ż ć ó ą ć ą ą ć ń ż ć ó ó ą ó ą ą ą ę ż ń ó ą ą ą ą ń ą ą ą ń ź ęż ż ą ą ń ą ń ż Ć Ś Ź Ź ż ęż ęż ó ń ó ó ć ź ż ą ą ę ó ó ż ó ó ą ą ę ó ó Ó ż ę ó Ćó ą ż ć ą ę ż ó ą ę ć ó ć ó ć Ź ę ą ą ę ó ż ą

Bardziej szczegółowo

ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10. Filtry FIR

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10. Filtry FIR Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10 Filtry FIR 1. Cel ćwiczenia Przyczynowy system DLS służący do filtrowania synałów i mający skończoną odpowiedź impulsową nazywa się w skrócie

Bardziej szczegółowo

POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ

POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ POLSKI NARODOWY KATOLICKI KOŚCIÓŁ W RZECZYPOSPOLITEJ POLSKIEJ Ekumeniczna Wspólnota Modlitewna świętego Pawła Apostoła REGUŁA Ojcze spraw, aby stanowili jedno (J 17, 21) WARSZAWA 2010 E k u me n i c z

Bardziej szczegółowo

Zanim zapytasz prawnika

Zanim zapytasz prawnika 2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n

Bardziej szczegółowo

Ą ć ę ż ż Ż ć ć Ż ć ń ę ę Ż ń ż ęż ę ę Ę ż ż ĘŚ ę Ż Ż Ż Ż Ż Ż Ż Ż ż ż ń ę ęż ęż Ó ęź Ą ń ę Ś Ż ć ę Ą ę ż ę ż ć ę ę Ż ę ż ż ę ń ń ę Ą ż ę Ł Ą ę ż ę Ą ę ę Ę Ą ę ę ęć ż Ę ęż ż ę Ą Ę ę ę Ą ę ę Ą Ą Ż ć ć Ń

Bardziej szczegółowo

( t) dt. ( t) = ( t)

( t) dt. ( t) = ( t) TRANSFORMATA APACE A ROZWIĄZWANIE RÓWNAŃ RÓŻNICZKOWCH Zi Rchuk Oprorow Problm: Rozwiązć moą oprorową rówi różiczkow prz wrukch począkowch T x x. b.,5 c... Rozwiązi: Soując przkzłci plc z uwzglęiim wruków

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć

Bardziej szczegółowo

ŁĄ ę ł

ŁĄ ę ł ŁĄ ę ł ł ń ł ł ł ł ł ó ą Ń ł ń ł ł ł ż Ł ń ąó ż ąó ó ą ę ó ąę ą ł ą ę ń ł ś ół ż ł ł ł ą ń ś ół ń ł ł ę ł ó ł Ćć ć Ą ż ł ć ć ć ł ł ż ó ąę ó ó ą ś ó ół ż ą ń ł ó ą ę ą ó ę ś ś ó ą ę ą ą ęś ć ś ę ą ę ł ę

Bardziej szczegółowo

5.4. Połączenia spawane

5.4. Połączenia spawane 5.0. ołąceni 5.4. ołąceni spwne 5.4.1. Konsrukcj Spoiny Cołowe chwinowe Inne Jednosronne Dwusronne Jednosron. Dwusronne Breżn Grbieow Oworow ys. 5.8. odił spoin (nd prekrojmi predswiono symbole po. w rys.

Bardziej szczegółowo

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ

FILTRY ZE SKOŃCZONĄ ODPOWIEDZIĄ IMPULSOWĄ FILTRY ZE SKOŃCZOĄ ODPOWIEDZIĄ IMPULSOWĄ FIR od ag. Fiite Impule Repoe Spi treści. Deiicja iltru FIR. Caraktertki cętotliwościo 3. Filtr FIR liiową caraktertką aową 4. Projektowaie iltrów pr pomoc eregów

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 1 ĆWICZENIA

PODSTAWY AUTOMATYKI 1 ĆWICZENIA Automatyka i Robotyka Podtawy Automatyki PODSTAWY AUTOMATYKI ĆWICZENIA lita adań nr Tranformata Laplace a. Korytając wprot definicji naleźć tranformatę Laplace a funkcji: y t y t y t y e t. Dana jet odpowiedź

Bardziej szczegółowo

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych

Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Zadanie domowe.

Zadanie domowe. Zdnie doowe www.izyk-kury.pl Dźwi unoi w órę iężr o ie =500k ze łą wrośią przypiezeni =,/ n wyokośd h=0. Obliz prę W jką wykon ilnik dźwiu. Odp. 55 kj www.izyk-kury.pl W prku rozrywki znjduje ię oron kruzel,

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)

Bardziej szczegółowo

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11) PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr INSTYTUT ENERGOEEKTRYKI POITECHNIKI WROCŁAWSKIEJ Rpor serii SPRAWOZDANIA Nr N prwch rękopisu do użyku służboweo ABORATORIU TEORII I TEHCNIKI STEROWANIA dl kieruku AiR Wydziłu echiczeo INSTRUKCJA ABORATORYJNA

Bardziej szczegółowo

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy.

1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy. W Z Ó R U M O W Y N r :: k J Bk 2 0 1 5 Z a ł» c z n i k n r 4 A z a w a r t a w G d y n i d n i a :::::: 2 0 1 5 r o k u p o m i d z y G d y s k i m C e n t r u m S p o r t u j e d n o s t k» b u d e

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

ć Ę ó ó Ź ó ó ć ź ć ć Ś ć Ź ó Ó ó ó Ś ó ó ć ó ć Ź ź ć ó ź ć ó ź ó ó ó ó ć Ą ó ó ź ó ó ó ć ź ć ć ź ź Ś ó ó ó ć ó Ź ó ó ć ó ó ó ó Ę ó ó ź Ę ó ó ó ć ó ó ź Ć Ź ź ó ó ó ó ó ó ó óź ź ó ź ó ó ó ó ć ó ó ć ó ó

Bardziej szczegółowo

ć Ź Ę ź Ó ż ż Ś Ć Ś

ć Ź Ę ź Ó ż ż Ś Ć Ś Ż Ę Ę Ó Ę Ś ż ć Ź Ę ź Ó ż ż Ś Ć Ś Ż ć Ć ć Ś ć Ó Ń Ż ć Ć Ż Ą Ę Ż Ż Ż Ó Ż Ó Ó Ś Ż Ć Ę Ź ć ż Ó ÓĘ ż Ż Ó Ę Ż ż Ą Ą Ż Ś Ć ż Ź Ż ć ć Ś ć ż Ą Ś Ó ć Ź ć Ó Ó Ść ż Ó Ó Ć Ó Ó Ść ć Ś ć ż ć Ó Ó ć ć ć Ó ć Ó ć Ó ć Ó

Bardziej szczegółowo

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej

CHEMIA KWANTOWA Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej CHEMI KWTOW CHEMI KWTOW Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:

Bardziej szczegółowo

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę

Bardziej szczegółowo

Teoria sygnałów. ID II semestr zimowy. Henryka Danuta Stryczewska. 30 h wykładu +30 h ćwiczeń rachunkowych

Teoria sygnałów. ID II semestr zimowy. Henryka Danuta Stryczewska. 30 h wykładu +30 h ćwiczeń rachunkowych Teori sygłów ID II semesr imowy 3 h wyłdu 3 h ćwiceń rchuowych Hery Du Srycews ISTYTUT PODSTAW ELEKTROTECHIKI I ELEKTROTECHOLOGII Progrm wyłdów. Wprowdeie. Lierur. Widomości orgicyje. Podswowe pojęci eorii

Bardziej szczegółowo

Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomeryczne modele nelnowe Wykład 5 Progowe modele regrej Leraura Hanen B. E. 997 Inference n TAR Model, Sude n Nonlnear Dynamc and Economerc,. Tek na rone nerneowej wykładu Dodakowa leraura Hanen B.

Bardziej szczegółowo

I V. N a d z ó r... 6

I V. N a d z ó r... 6 C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 1 d o U c h w a ł y n r 2 2. / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. P

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż

ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ

POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ Meriły konferencji nukowo-echnicznej PPM 0 Poliechnik Lubelsk Kedr Auomyki i Merologii POMIARY MAŁYCH CZĘSTOTLIWOŚCI W OBECNOŚCI ZAKŁÓCEŃ W prcy porusz się problemykę pomiru młych częsoliwości w obecności

Bardziej szczegółowo