Datowanie luminescencyjne
|
|
- Tomasz Kosiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Alicja Chruścińska Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń
2 Do czego może się przydać? Podstawowy model stymulowanej luminescencji Zasada datowania luminescencyjnego Dawka roczna główne problemy Ciekawe wyzwania Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń
3 Do czego może się przydać? Datowanie ceramiki archeologicznej
4 Do czego może się przydać? Datowanie czwartorzędowych osadów geologicznych
5 Do czego może się przydać? Upływ czasu jest odmierzany wielkością dawki naturalnego promieniowania tła absorbowaną przez badany obiekt. Promieniowanie jądrowe generuje w minerałach stymulowaną luminescencję.
6 Do czego może się przydać? Upływ czasu jest odmierzany wielkością dawki naturalnego promieniowania tła absorbowaną przez badany obiekt. Promieniowanie jądrowe generuje w minerałach stymulowaną luminescencję.
7 Do czego może się przydać? Upływ czasu jest odmierzany wielkością dawki naturalnego promieniowania paleodawka tła absorbowaną przez badany obiekt. wiek = dawka roczna Stymulowana luminescencja minerałów generowana jest przez promieniowanie jądrowe.
8 Podstawowy model stymulowanej luminescencji Wzbudzenie pasmo przewodnictwa 3 4 Stymulacja luminescencji pasmo przewodnictwa pasmo walencyjne pasmo walencyjne 1 wzbudzenie przez promieniowanie 2 rekombinacja promienista na centrum luminescencyjnym 3 transport w paśmie przewodnictwa 4 pułapkowanie 5 stymulacja luminescencji Wprowadzenie Datowanie Co jest luminescencyjne luminescencja stymulowana
9 Podstawowy model stymulowanej luminescencji pasmo przewodnictwa γ β m pasmo walencyjne A n c N, n dn dt dm dt dn c dt = f n + A = β m n c ; = I f ( t) n = A ( N n) ; n c ( N n) n β mn ; c i warunki początkowe dm dt c
10 Podstawowy model stymulowanej luminescencji pasmo przewodnictwa γ β m pasmo walencyjne A n c N, n Stymulacja dn dt dm dt dn c dt = f n + A = β m n c ; = I f ( t) n = A ( N n) ; n c ( N n) n β mn ; c i warunki początkowe dm dt c
11 Podstawowy model stymulowanej luminescencji Stymulacja Termiczna Optyczna TL - termoluminescencja: f = s exp(-e T /kt) E T termiczna głębokość pułapki s czynnik częstościowy T - temperatura OSL - optycznie stymulowana luminescencja: f = f σ (E T, hν, T) σ optyczny przekrój czynny φ strumień fotonów stymulacji TL i OSL wykorzystywane są do badania stanów pułapkowych parametry wyróżniające pułapkę: TL (E T, s) OSL σ
12 Podstawowy model stymulowanej luminescencji I dm dt E ( t) = ; f = s exp ; T = T +αt kt 0 dm I = dt ( t) = ; f = φ σ const Krzywa TL - krzywa jarzenia 3x10 4 Krzywa OSL 6x10 3 2x10 4 TL (a.u.) 4x10 3 2x10 3 I 1 T α T ( T ) = n f ( T ) exp f ( T ') 0 0 dt' OSL (a.u) 1x10 4 I ( t) = n f exp( ft) Temperatura ( O C) Czas (s)
13 Podstawowy model stymulowanej luminescencji TL kwarcu 8000 TL intensity (a.u) sum of peaks experimental curve fitting error Temperature ( o C)
14 Podstawowy model stymulowanej luminescencji OSL kwarcu 2x10 4 OSL intensity (a.u.) 1x Time (s)
15 Podstawowy model stymulowanej luminescencji Układ pomiarowy
16 Podstawowy model stymulowanej luminescencji Układ pomiarowy
17 Podstawowy model stymulowanej luminescencji Układ pomiarowy
18 Podstawowy model stymulowanej luminescencji natężenie luminescencji proporcjonalne do dawki wzbudzenia Krzywa TL 4x10 4 Krzywa OSL 8x10 3 TL (a.u.) 4x10 3 OSL (a.u) 3x10 4 2x10 4 1x Temperatura ( O C) Czas (s)
19 Podstawowy model stymulowanej luminescencji Zakres liniowej odpowiedzi dozymetrów TL/OSL na dawkę ( Gy) Natężenie OSL (a.u.) 3x10 4 2x10 4 1x10 4 LiF: Mg, Cu, P Czas (s) TL głównie LiF: Mg, Cu, P (pik około 200ºC /detekcja: ~410nm) OSL głównie Al 2 O 3 :C (stymulacja: 532nm /detekcja: ~410nm) OSL (a.u.) tzw. krzywa wzrostu dose (Gy) L. Bøtter-Jensen,S. W. S. McKeever,A. G. Wintle, Optically stimulated luminescence dosimetry, Elsevier Science B.V., Amsterdam 2003
20 Zastosowania dozymetria retrospektywna dawka retrospektywna = wiek dawka roczna dawka retrospektywna = wiek dawka roczna + dawka awaryjna np.: I.K. Bailiff, The use of ceramics for retrospective dosimetry in the Chernobyl exclusion zone, Radiat. Meas. 24, (1995),
21 Zastosowania pułapki = defekty badania jakości kryształów Luminescencja stymulowana jest niepożądana w materiałach, które powinny wydajnieświecić, np. w scyntylatorach Pasmo przewodnictwa A TL (a.u) R Pasmo walencyjne Tempertura ( O C) np.:s. Menon, et al.,tsl, OSL and ESR studies in ZnAl 2 O 4 :Tb phosphor J. Lumin. 128, (2008), 1673 S.S.Novosad, et al., Recombination processes in the Y 3 Al 5 O 12 :Ce 3+ scintillator, Inorg. Mat. 44 (2008 ), 515
22 Zastosowania obrazowanie diagnostyka rentgenowska: płytki PSP (Photostimulable Phosphor) Storage Materiały: BaFBr:Eu 2+, RbBr:Ga +, CsBr:Ga +, CsBr:Eu M. Sonoda et al., Computed Radiography Utilizing Scanning Laser Stimulated, Radiology 148, (1983), 833S. Schweizer, Physics and Current Understanding of X-Ray Storage Phosphors, Phys. Sta.t So. 187, (2001), 335
23 Zasada datowania luminescencyjnego Historia ziarna kwarcu wiek obiektu sygnał TL/OSL wzrost sygnału TL/OSL przed wygaszeniem wygaszenie sygnału TL/OSL w czasie transportu ziaren osadu lub w czasie wypalania ceramiki wzrost sygnału TL/OSL w czasie zalegania próbki t=0 powstanie osadu lub ceramiki czas pobór próby
24 Zasada datowania luminescencyjnego wiek = paleodawka dawka roczna TL/OSL paleodawka wiek obiektu TL/OSL TL/OSL naturalna TL/OSL x x x x paleodawka wzrost sygnału TL/OSL w czasie zalegania Dpróbki 1 D 2 czas D 3 pobór próby dawka laboratoryjna
25 Zasada datowania luminescencyjnego TL/OSL paleodawka wiek obiektu TL/OSL naturalna TL/OSL TL/OSL x x x x paleodawka wzrost sygnału TL/OSL w czasie zalegania D 1 D 2 próbkid 3 pobór próby czas dawka laboratoryjna
26 Zasada datowania luminescencyjnego wiek = paleodawka dawka roczna detektor germanowy XtRa GX1520 wydajność 15%, osłona pasywna; analizator wielokanałowy Model1510 Canberra System 100 MCA program do analizy widm SAMPO 90 spektrometria gamma dawka roczna? dozymetria TL/OSL
27 Dawka roczna Składniki dawki rocznej dla przeciętnej próbki ceramiki - ziarna do 8 µm α β γ razem Potas Rubid Tor (po 220 Rn) (1) (4) (6) (22) Uran ( 238 U+ 235 U) (po 222 Rn) (13) (5) (7) (25) Prom. kosm razem K 1%, 87 Rb 1 ppm, 232 Th 10 ppm, 238 U 3 ppm
28 Dawka roczna Składniki dawki rocznej dla przeciętnej próbki ceramiki - trawione ziarna o pierwotnej średnicy ok. 100 µm α β γ razem Potas Tor (po 220 Rn) - (6) (11) (17) Uran ( 238 U+ 235 U) (po 222 Rn) - (9) (11) (20) Prom. kosm razem K 1%, 87 Rb 1 ppm, 232 Th 10 ppm, 238 U 3 ppm
29 Dawka roczna Średnia dawka α zaabsorbowana przez ziarno kwarcu w matrycy o równej aktywności uranu i toru względem analogicznej dawki dla ziarna o średnicy 8 µm. 100
30 Dawka roczna Część dawki α zaabsorbowanej przez ziarno kwarcu usuwana przez trawienie powierzchni ziarna. Dawka usunięta/ dawka α Głębokość liczona od powierzchni ziarna
31 Dawka roczna Podstawowe złożenie: w czasie akumulacji paleodawki moc dawki promieniowania jest stała Najważniejsze problemy: ucieczka radonu ( 222 Rn T 1/2 = 3.8 dnia ) wilgotność i jej zmiany w czasie niejednorodność otoczenia obiektu
32 Dawka roczna najprostszy przypadek jednorodna warstwa osadu D r = D α + T β W β D β + W γ D γ poprawki uwzględniające wilgotność osadu: W β, W γ (wilgotność 20 40%) poprawka związana z absorpcją promieniowania β w ziarnie oraz trawieniem: T β (dla ziarna 100 µm T β = 0.9)
33 Dawka roczna ceramika archeologiczna D r = D α + T β W β D i β + D γ Dawka γ zewnętrzna i wewnętrzna D γ = p W i γ D i γ + (1-p) W e γ D e γ p - zależne od kształtu i rozmiaru próbki są dostępne tabele Problemy: - ograniczona masa próbki (D e β ) - niejednorodne otoczenie próbki (złożone D e γ)
34 Dawka roczna cegła zabytkowa D r = D α + T β W β D β + G γ W γ D γ G γ - poprawka związana z niepełną matrycą zależna od głębokości poboru Problemy: - niejednorodne otoczenie (zaprawa!) - kłopot z instalacją dozymetrów
35 Dawka roczna Mal1, Mal2 Mal3, Mal4 Mal5
36 Dawka roczna Próbka data Mal Mal Mal Mal Mal Mal1, Mal2 Mal3, Mal4 Mal5
37 Dawka roczna cegła archeologiczna Dr= Dα + Tβ Wβ Dβ + Dγ Dawka γ złożona, wyznaczana indywidualnie z uwzględnieniem niejednorodności otoczenia Dγ = pc Wcγ Dcγ + p1 W1γ D1γ + + p2 W2γ D2γ +...
38 Ciekawe wezwania Zalety datowania luminescencyjnego Określa wiek powstania obiektu Ziemski zakres datowania obejmuje czasy ostatnich zlodowaceń, czyli okres najbardziej interesujący z uwagi na zmiany klimatyczne. Technika jest sprawdzona i ugruntowana od wielu lat; Instrumenty pomiarowe do pomiaru TL/OSL nie są skomplikowane.
39 Ciekawe wezwania Datowanie osadów na Marsie... eolicznych
40 Ciekawe wezwania Datowanie osadów na Marsie... eolicznych
41 Ciekawe wezwania Datowanie osadów na Marsie... eolicznych, fluwialnych
42 Ciekawe wezwania Datowanie osadów na Marsie... eolicznych, fluwialnych i glacjalnych
43 Ciekawe wezwania Datowanie osadów na Marsie... eolicznych, fluwialnych i glacjalnych masa = 2 kg 10 tys. lat na powierzchni Zakres datowania osadów 2 mln lat m pod powierzchnią 15 cm
44 Dziękuję za uwagę
Zakład Fizyki Radiacyjnej i Dozymetrii Centrum Cyklotronowe Bronowice, Instytut Fizyki Jądrowej PAN
Kraków, 21.07.2016 r. Zakład Fizyki Radiacyjnej i Dozymetrii Centrum Cyklotronowe Bronowice, Instytut Fizyki Jądrowej PAN Raport do Umowy o dzieło autorskie Nr 247 z dnia: 11.04.2016r. Opracowanie danych
Recenzja. rozprawy doktorskiej mgr inż. Anny Mrozik
Dr hab. Marta Wasilewska-Radwańska, Prof. AGH (emerytowany) Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Ul. Reymonta 19 30-059 Kraków Kraków, dnia 18 listopada 2016 Recenzja rozprawy
Termoluminescencja. Ewelina Tyran Katarzyna Białek. Kraków,
Termoluminescencja Ewelina Tyran Katarzyna Białek Kraków, 26.03.2019 www.agh.edu.pl Plan prezentacji 1. Wprowadzenie 2. Podstawy fizyczne termoluminescencji 3. Ilość materiału badawczego 4. Stan skupienia
Osiągnięcia. Uzyskane wyniki
Osiągnięcia Zebranie krzywych świecenia termicznie i optycznie stymulowanej luminescencji domieszkowanych i niedomieszkowanych kryształów ortokrzemianów lutetu itru i gadolinu. Stwierdzenie różnic we własnościach
INSTYTUT FIZYKI JĄDROWEJ POLSKIEJ AKADEMII NAUK
GIS 5 XII 27 Poziomy dawek otrzymywanych przez pracowników narażonych na promieniowanie gamma i X w placówkach medycznych na przykładzie danych laboratorium dozymetrii IFJ PAN Maciej Budzanowski INSTYTUT
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO. Winicjusz Drozdowski
WŁAŚNOŚCI SCYNTYLACYJNE KRYSZTAŁU BGO z Laboratorium Wzrostu Kryształów IF PSz Winicjusz Drozdowski Zakład Optoelektroniki Instytut Fizyki Uniwersytet Mikołaja Kopernika Toruń SEM #12 (2005/2006) 6 marca
MONITORING DAWEK INDYWIDUALNYCH
MONITORING DAWEK INDYWIDUALNYCH Maciej Budzanowski, Akredytowane Laboratorium Dozymetrii Indywidualnej i Środowiskowej Instytut Fizyki Jądrowej PAN w Krakowie Kraków 26.11.2007 MONITORING DAWEK INDYWIDUALNYCH
Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.
Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Ćwiczenie nr 96: Dozymetria promieniowania γ
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 96: Dozymetria
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą
Spektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Datowanie metodą Elektronowego Rezonansu Paramagnetycznego (EPR) Daniel Roch Fizyka techniczna Sem IX
Datowanie metodą Elektronowego Rezonansu Paramagnetycznego (EPR) Daniel Roch Fizyka techniczna Sem IX Zarys prezentacji Metoda EPR Zarys teorii metody EPR Datowanie metodą EPR Przykłady zastosowań Aparatura
Spektrometr XRF THICK 800A
Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li)
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) Oskar Gawlik, Jacek Grela 3 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie
J8 - Badanie schematu rozpadu jodu 128 I
J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Dozymetria promieniowania jonizującego Rok akademicki: 2012/2013 Kod: JFM-1-504-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów:
NATURALNY REAKTOR JĄDROWY
Piotr Bednarczyk Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk NATURALNY REAKTOR JĄDROWY CZY WARTOŚĆ STAŁEJ STRUKTURY SUBTELNEJ ZMIENIA SIĘ W CZASIE? WYKŁAD HABILITACYJNY
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,
Karta zgłoszenia tematu pracy dyplomowej
Dzienne magisterskie Dzienne inżynierskie dr hab. inż. Andrzej Bluszcz, prof. Pol. Śl. opiekun pracy: dr inż. Jarosław Sikorski Określenie szybkości sedymentacji osadów metodą ołowiu 210 Pb z wykorzystaniem
Rozwój metod zapewnienia bezpieczeństwa jądrowego i ochrony radiologicznej dla bieżących i przyszłych potrzeb energetyki jądrowej
Rozwój metod zapewnienia bezpieczeństwa jądrowego i ochrony radiologicznej dla bieżących i przyszłych potrzeb energetyki jądrowej Cel 3 Nowe metody radiometryczne do zastosowań w ochronie radiologicznej
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie
Detekcja promieniowania jonizującego Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Człowiek oraz wszystkie żyjące na Ziemi organizmy są stale narażone na wpływ promieniowania jonizującego.
Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski
Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie
Detektory scyntylacyjne
Detektory scyntylacyjne Scyntylator materiał, który emituje światło (widzialne lub w zakresie bliskim widzialnemu) pod wpływem promieniowania jonizującego (X, γ, α, β, n, p,...). To świecenie jest luminescencją,
Rozpraszanie nieelastyczne
Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
Paulina Majczak-Ziarno, Paulina Janowska, Maciej Budzanowski, Renata Kopeć, Izabela Milcewicz- Mika, Tomasz Nowak
Pomiar rozkładu dawki od rozproszonego promieniowania wokół stanowiska gantry, w gabinecie stomatologicznym i stanowiska pomiarowego do defektoskopii przy użyciu detektorów MTS-N i MCP-N Paulina Majczak-Ziarno,
Repeta z wykładu nr 10. Detekcja światła. Kondensator MOS. Plan na dzisiaj. fotopowielacz, część 2 MCP (detektor wielokanałowy) streak camera
Repeta z wykładu nr 10 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 fotopowielacz,
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
MATEMATYKA - FIZYKA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ. Andrzej BLUSZCZ
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Andrzej BLUSZCZ DATOWANIE LUMINESCENCYJNE OSADÓW CZWARTORZDOWYCH TEORIA, OGRANICZENIA, PROBLEMY INTERPRETACYJNE MATEMATYKA - FIZYKA z. 86 GEOCHRONOMETRIA 17 GLIWICE
NOWE OBLICZE BADAŃ SPEKTRALNYCH TERMOLUMINOFORÓW
NOWE OBLICZE BADAŃ SPEKTRALNYCH TERMOLUMINOFORÓW Ewa Mandowska Akademia im. Jana Długosza, Wydział Matematyczno Przyrodniczy, Instytut Fizyki Częstochowa 1 PLAN Trochę historii Zastosowanie TL Metoda SR-TL
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE
X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie
THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.
THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE
LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie
Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009
Ćwiczenie LP1 Jacek Grela, Łukasz Marciniak 22 listopada 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
POLITECHNIKA WARSZAWSKA Wydział Fizyki
POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia Opracował:
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman
Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy
Nowe scyntylatory w ochronie granic
Agnieszka Syntfeld-KaŜuch Instytut Problemów Jądrowych, Świerk 13 maja 2009 Główne zagadnienia Scyntylatory najnowsze obserwacje, odkrycia Wykrywanie materiałów niebezpiecznych kryteria doboru optymalnego
J14. Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE
J14 Pomiar zasięgu, rozrzutu zasięgu i zdolności hamującej cząstek alfa w powietrzu PRZYGOTOWANIE 1. Oddziaływanie ciężkich cząstek naładowanych z materią [1, 2] a) straty energii na jonizację (wzór Bethego-Blocha,
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Automatyczne sterowanie gotowaniem cukrzycy z zastosowaniem pomiaru masy kryształów metodą spektrometrii w bliskiej podczerwieni
Automatyczne sterowanie gotowaniem cukrzycy z zastosowaniem pomiaru masy kryształów metodą spektrometrii w bliskiej podczerwieni Krajowa Spółka Cukrowa S.A. POLIMEX-CEKOP-MODER Sp. z o.o. Dr inż. Maciej
metoda analityczna, która polega na pobudzaniu (aktywacji) próbki w strumieniu neutronów - w roku 1936 Hevesy i Levi wykazali, że metoda ta może być
KTYWCJ NEUTRONOW Neutron ctivation nalysis - Instrumental Neutron ctivation nalysis metoda analityczna, która polega na pobudzaniu (aktywacji) próbki w strumieniu neutronów - w roku 936 Hevesy i Levi wykazali,
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA
Możliwości zastosowania dozymetrii promieniowania mieszanego n+γ. mgr inż. Iwona Pacyniak
Możliwości zastosowania dozymetrii promieniowania mieszanego n+γ mgr inż. Iwona Pacyniak Dr Maria Kowalska, Dr inż. Krzysztof W. Fornalski i.pacyniak@clor.waw.pl Centralne Laboratorium Ochrony Radiologicznej
P O L I T E C H N I K A W R O C Ł A W S K A
P O L I T E C H N I K A W R O C Ł A W S K A Wydział Chemiczny, Zakład Metalurgii Chemicznej Chemia Środowiska Laboratorium RADIOAKTYWNOŚĆ W BUDYNKACH CEL ĆWICZENIA : Wyznaczanie pola promieniowania jonizującego
Dozymetria promieniowania jonizującego
Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka
Dozymetria promieniowania jonizującego
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr. 15 Dozymetria promieniowania jonizującego SZCZECIN - 2004 WSTĘP Promieniowanie jonizujące występuje w przyrodzie
OCHRONA RADIOLOGICZNA 2. Osłony. Jakub Ośko
OCHRONA RADIOLOGICZNA 2 Osłony Jakub Ośko Osłabianie promieniowania elektromagnetycznego 2 Pochłanianie i rozpraszanie promieniowania elektromagmetycznego droga, jaką przebywają fotony w danym materiale
Repeta z wykładu nr 2. Detekcja światła. Parametry fotodetektorów. Co to jest detektor?
Repeta z wykładu nr 2 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Zespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
SPEKTROMETR FLUORESCENCJI RENTGENOWSKIEJ EDXRF DO PEŁNEJ ANALIZY PIERWIASTKOWEJ Energy dispersive X-Ray Fluorescence Spectrometer
EDX 3600B SPEKTROMETR FLUORESCENCJI RENTGENOWSKIEJ EDXRF DO PEŁNEJ ANALIZY PIERWIASTKOWEJ Energy dispersive X-Ray Fluorescence Spectrometer Przeznaczony do analizy pierwiastkowej: - w produkcji cementu,
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
POLITECHNIKA WARSZAWSKA Wydział Fizyki
POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia 1.
Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Radioaktywność w środowisku Rok akademicki: 2030/2031 Kod: STC-2-212-OS-s Punkty ECTS: 2 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Ochrona środowiska w energetyce
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
CERAMIKI PRZEZROCZYSTE
prof. ICiMB dr hab. inż. Adam Witek CERAMIKI PRZEZROCZYSTE Projekt współfinansowany z Europejskiego Funduszu Społecznego i Budżetu Państwa PO CO NAM PRZEZROCZYSTE CERAMIKI? Pręty laserowe dla laserów ciała
ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI
ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI Instrukcje do ćwiczeń laboratoryjnych CEL ĆWICZENIA Zapoznanie się z metodą spektrometrii promieniowania gamma
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 3-12 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Oddziaływanie z materią
WPOMAGANIE PROCESU IDENTYFIKACJI RADIACYJNYCH CENTRÓW DEFEKTOWYCH W MONOKRYSZTAŁACH KRZEMU BADANYCH METODĄ HRPITS
WPOMAGANIE PROCESU IDENTYFIKACJI RADIACYJNYCH CENTRÓW DEFEKTOWYCH W MONOKRYSZTAŁACH KRZEMU BADANYCH METODĄ HRPITS Marek SUPRONIUK 1, Paweł KAMIŃSKI 2, Roman KOZŁOWSKI 2, Jarosław ŻELAZKO 2, Michał KWESTRARZ
Dawki indywidualne. środowiskowe zmierzone w zakładach. adach przemysłowych objętych kontrolą dozymetryczną w LADIS IFJ PAN w Krakowie w latach 2006.
A. Woźniak, M. Budzanowski, A. Nowak, B. DzieŜa, K. Włodek Dawki indywidualne na całe e ciało o i dawki środowiskowe zmierzone w zakładach adach przemysłowych objętych kontrolą dozymetryczną w LADIS IFJ
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski
PODSTAWY DOZYMETRII Fot. M.Budzanowski Fot. M.Budzanowski NARAŻENIE CZŁOWIEKA Napromieniowanie zewnętrzne /γ,x,β,n,p/ (ważne: rodzaj promieniowania, cząstki i energia,) Wchłonięcie przez oddychanie i/lub
Badania fotoakustyczne widm absorpcji optycznej warstw krzemu porowatego na krzemie krystalicznym
Mirosław MALIŃSKI, Leszek BYCHTO, Łukasz CHROBAK Katedra Podstaw Elektroniki, Politechnika Koszalińska E-mail: miroslaw.malinski@tu.koszalin.pl, leszek.bychto@tu.koszalin.pl, lukasz.chrobak@tu.koszalin.pl
Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)
Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał
ul. Umultowska 89b, Collegium Chemicum, Poznań tel ; fax
Wydział Chemii Zakład Chemii Analitycznej Plazma kontra plazma: optyczna spektrometria emisyjna w badaniach środowiska Przemysław Niedzielski ul. Umultowska 89b, Collegium Chemicum, 61-614 Poznań tel.