Model predykcji natężenia ruchu pojazdów z użyciem sztucznych sieci neuronowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Model predykcji natężenia ruchu pojazdów z użyciem sztucznych sieci neuronowych"

Transkrypt

1 PAMUŁA Teresa Model predykcji natężenia ruchu pojazdów z użyciem sztucznych sieci neuronowych WSTĘP Charakterystyki natężenia ruchu pojazdów są warunkiem identyfikacji trendów w podziale ruchu w sieci dróg, określania przepustowości dróg oraz zmienności ruchu w czasie. Opis danych ruchu drogowego odgrywa kluczową rolę w funkcjonowaniu Inteligentnych Systemów Transportowych (ITS). Systemy te dostarczają użytkownikom dróg, informacji pomocnych do szybkiego przemieszczania się w sieci ulic oraz umożliwiają organom nadzoru ruchu drogowego dostosowanie strategii zarządzania ruchem do aktualnych warunków ruchu []. Sieci neuronowe () są skutecznym narzędziem do klasyfikacji oraz identyfikacji cech parametrów ruchu drogowego [2], [6]. Ze względu na swoje właściwości, polegające przede wszystkim na zdolności odwzorowania wieloparametrowych zależności w toku uczenia, są wykorzystywane do prognozowania wartości natężeń ruchu w różnych horyzontach czasowych. Przewidywanie krótkoterminowe natężenia ruchu jest szczególnie przydatne do podejmowania decyzji sterujących na skrzyżowaniach [4], []. Modelowanie przebiegu natężeń ruchu za pomocą jest elementem adaptacyjnych algorytmów sterowania ruchem [], []. Zastosowanie do szacowania natężenia ruchu wymaga starannego określenia parametrów i struktury sieci, ich prawidłowego wytrenowania oraz przetestowania. Struktura sieci określona przez liczbę warstw i rodzaje połączeń wewnętrznych sieci decyduje o jej elastyczności w procesie uczenia. admiernie rozbudowana struktura sieci może stracić zdolność do ekstrakcji cech danych wejściowych i odpowiadać zapamiętanymi danymi. Przygotowanie sekwencji treningowych, w wielu przypadkach decyduje o sukcesie dokładnego modelowania zjawisk - w tym przypadku natężenia ruchu. Dodatkowo trudnym zadaniem, w przygotowaniu sekwencji, związanym z użyciem rzeczywistych danych pomiarowych jest eliminacja szumu pomiaru [2], [4]. Rozmiar okna oraz współczynnik wygładzania to kluczowe parametry, które są optymalizowane w celu osiągnięcia pożądanej jakości sekwencji treningowych jak i ciągów testowych dla walidacji działania sieci. W artykule przedstawiono porównanie własności predykcyjnych opracowanego neuronowego modelu predykcji z modelem prognozowania wykorzystującym regresję wielokrotną. Przygotowany model zawiera dwuwarstwową sztuczną sieć neuronową. Do trenowania i walidacji wykorzystano dane z rzeczywistych pomiarów w sieci drogowej miasta Gliwice. W badaniach uwzględnione zostały trzy klasy szeregów czasowych wyznaczone na podstawie analizy statystycznej [9] związane z charakterem ruchu w różnych dniach tygodnia. Wyniki predykcji znajdą zastosowanie do wyboru planów sygnalizacji w obrębie skrzyżowań oraz do wspomagania obszarowego zarządzania ruchem. Opracowanie modelu oparto na historycznych danych o przebiegu ruchu drogowego. Rozdział pierwszy artykułu przedstawia zasoby pomiarowe wykorzystane w pracy. W drugim rozdziale zaproponowano rozwiązanie neuronowego modelu wskazując na specyfikę struktury związaną z zadaniem predykcji natężeń ruchu. Kolejny rozdział prezentuje konstrukcję modelu predykcji opartego na regresji wielokrotnej. Rozwiązanie to stosowane jest w zadaniach prognozowania. Wyniki porównania predykcji dla obu modeli zestawiono w tabelach w rozdziale czwartym. a zakończenie podsumowano wyniki badań i zaproponowano dalsze tematy badawcze mające na celu poprawienie wyników predykcji. Wydział Transportu, Politechnika Śląska, Krasińskiego 8, Katowice, teresa.pamula@polsl.pl 4946

2 . AKWIZYCJA I WYBÓR DAYCH DO PREDYKCJI Baza danych natężenia ruchu została przygotowana z użyciem danych z detektorów pojazdów umieszczonych na głównej drodze dojazdowej do Gliwic. Gliwice znajdujące się na obrzeżach aglomeracji Śląskiej z liczbą prawie 200 tys. mieszkańców i rozbudowanym systemem transportowym stanowią reprezentatywny dla średniej wielkości miast poligon pomiarowy. Uzyskane pomiary obejmują szeroki zakres natężeń ruchu i pozwalają obserwować utrwalone schematy przebiegów zmienności. Mapa na rysunku przedstawia położenie detektorów. Detektory rejestrowały strumienie wideo z kamer zamontowanych nad pasami ruchu. Wiarygodność danych została potwierdzona przez ręczne liczenie pojazdów przeprowadzane w losowych odstępach czasu w trakcie zbierania pomiarów do bazy danych. Rys.. Lokalizacja detektorów atężenie ruchu było rejestrowane w interwałach 5 minutowych w okresie od sierpnia 20 do 3 maja 202 roku. Do badań dane zostały przeliczone na 30 min natężenia ruchu obliczane w odstępach 5 minutowych. Przeprowadzono analizę statystyczną zarejestrowanych pomiarów i zaobserwowano charakterystyczne zachowanie zmienności natężeń ruchu w zależnościom dni pomiarów. W dniach roboczych szczyty ruchu pokrywały się w czasie, w soboty przypadały później w ciągu dnia, a w dni świąteczne natężenie ruchu nie miało wyraźnych ekstremów. Bazując na doświadczeniach w optymalizacji działania sieci neuronowych zaproponowano podział danych o ruchu na 4 klasy obejmujące pomiary z dni roboczych (od poniedziałku do piątku), sobót, niedziel i świąt [8]. W artykule pominięto analizę klasy dni świątecznych, ze względu na duże różnice natężenia ruchu np. między pierwszym a drugim dniem Świąt Bożego arodzenia czy Wielkanocy. Przygotowano ciągi uczące dla sieci neuronowej z użyciem danych o natężeniu ruchu z miesięcy: sierpnia, września, listopada, stycznia i marca. Do testów opracowanego modelu użyto losowo wybranych danych z pozostałych miesięcy. Zaobserwowana w pomiarach dynamika zmian natężeń ruchu wskazuje, że 5 minutowy, pokrywający się z okresem pomiaru, horyzont predykcji uwzględnia najszybsze zmiany natężeń w potokach ruchu. Do predykcji przyjęto okno czasowe o długości 6 okresów pomiarowych. Oznacza to, że wprowadzane do modelu predykcji dane o ruchu, określają sześć wcześniejszych wartości 4947

3 natężeń ruchu w okresie 30 min. Wynikiem działania modelu jest przewidywana wartość natężenia ruchu po upływie następnych 5 minut. 2. MODEL PREDYKCJI Z UŻYCIEM SIECI EUROOWEJ Do predykcji natężenia ruchu zaproponowano sieć jednokierunkową z sigmoidalną funkcją przejścia dla każdego neuronu. Rozważano wykorzystanie sieci rekurencyjnej i z funkcjami radialnymi, ale niewielka przewaga jakości predykcji po wstępnych eksperymentach nie przeważyła decyzji o ich wykorzystaniu w modelowaniu. Wrażliwe na zmiany parametrów procedury uczenia dodatkowo zniechęcały do zastosowania. Wybrano dwuwarstwową strukturę sieci, ponieważ odwzorowanie własności przebiegów wymaga wielowymiarowego obszaru decyzyjnego. Uwzględnione muszą zostać cechy ruchu takie, jak cykliczność zmian, fluktuacje zmian, różne prędkości, przyspieszenia zmian. 2.. Struktura sieci neuronowej Zaproponowana sieć ma strukturę a wejście sieci podawane jest 6 kolejnych poprzednich pomiarów wartości natężeń ruchu stanowiących wektor wejściowy. Zastosowano 5 minutowy okres pomiarowy co oznacza, że sieć otrzymuje na wejściu półgodzinne okna ruchu w interwałach 5-minutowych. Okno czasowe zawiera 6 elementów szeregu czasowego natężeń. Liczbę neuronów w warstwie ukrytej określono doświadczalnie. Jako kryterium oceny wyboru przyjęto błąd predykcji. Sprawdzono sieci mające 6, 2 oraz 8 neuronów w warstwie ukrytej. ajlepszą siecią okazała się sieć zawierającą 8 neuronów w warstwie ukrytej. Strukturę sieci przedstawia rys. 2. Sieć posiada jedno wyjście, które odpowiada następnej wartości natężenia ruchu w analizowanym szeregu czasowym. Rys. 2. Struktura zastosowanej sieci neuronowej Dla każdej klasy ruchu opracowano odrębną sieć neuronową. Wagi neuronów w sieciach uzyskano metodą propagacji wstecznej z wykorzystaniem zbioru ciągów uczących Ciąg uczący i parametry procesu uczenia Przygotowano ciągi uczące dla badanych klas ruchu o długości od 2000 do 3000 wektorów. Dla klasy reprezentującej dni robocze ciąg uczący był najdłuższy, dla sobót i niedziel krótszy. Proces uczenia kończył się, gdy błąd średniokwadratowy (RMS) osiągał wartość od 0,025 do 0,034. Mniejszą wartość błędu uzyskiwano dla klasy dni roboczych co wynikało z dokładniejszej powtarzalności wartości szeregu czasowego niż w przypadku klasy sobót czy niedziel. Współczynnik uczenia przyjmował wartości z zakresu 0,5 do 0,9, a momentum od 0,4 do 0,7. 3. MODEL PREDYKCJI Z UŻYCIEM REGRESJI WIELOKROTEJ W celu porównania wyników predykcji za pomocą sieci neuronowej zaproponowano sprowadzenie zagadnienia współzależności zmiennych losowych (danych o natężeniu ruchu) do zależności funkcyjnej. W tym celu wykorzystano wielokrotną regresję liniową stosowaną w zadaniach prognozowania. 4948

4 Model predykcji natężenia ruchu z użyciem wielokrotnej regresji liniowej dla sześciu danych wejściowych zdefiniowano następująco: q(t+) = m *q(t-5) + m 2 *q(t-4)+ m 3 *q(t-3)+ m 4 *q(t-2)+ m 5 *q(t-)+ m 6 *q(t)+b gdzie: q(t+) wartość prognozowana natężenia ruchu, q(t-5) q(t) sześć poprzednich wartości natężenia będących podstawą prognozy, m, m2, m3, m4, m5, m6 współczynniki odpowiadające odpowiednim wartościom natężenia ruchu, b stała równania. Współczynniki funkcji regresji zostały wyliczone metodą najmniejszych kwadratów. Wykorzystano jako dane wejściowe wartości wektorów, przygotowanych dla sieci, ciągów uczących. Podobnie jak w przypadku sieci wyliczana wartość funkcji stanowiła przewidywana wartość natężenia ruchu w kolejnym okresie pomiarowym. Przygotowano modele regresji dla każdej klasy ruchu. Sprawdzono korelacje między uzyskiwanymi wartościami a rzeczywistymi. Współczynnik determinacji R 2 wahał się w przedziale (0,98-0,99) co świadczy o dobrej zgodności predykcji. 4. WYIKI TESTÓW Po wytrenowaniu 6 sieci (po 3 klasy dla każdego z detektorów) sprawdzono poprawność ich działania. Zestaw wektorów testowych składał się z danych o natężeniu ruchu z jednej doby i zawierał 288 ciągów, po 6 wartości natężenia ruchu w każdym ciągu. astępna, 7 wartość, była prognozowana. Dane testowe nie były częścią zestawu użytego do trenowania sieci. Sprawdzono losowo wybrane dni. Rys.3. Wyniki predykcji dla dnia roboczego Dane z ciągu uczącego zostały wykorzystane także do obliczenia współczynników funkcji regresji wielokrotnej dla sześciu zmiennych. Wartość tej funkcji dla sekwencji sześciu kolejnych danych o natężeniu ruchu była wartością prognozowaną. a rysunku 3 przedstawiono wykresy dla danych pomiarowych wartości rzeczywistych oraz wartości predykcji dla obu modeli dla detektora nr i dnia roboczego roku. Przebiegi prognoz obu modeli zachowują charakter zmian przebiegu natężeń ruchu. Model zaniża wartości, natomiast regresja wielokrotna daje wartości oscylujące wokół rzeczywistych natężeń. Przeprowadzono analizę błędów predykcji obliczając dla wyznaczonych wartości: średni błąd predykcji ME (mean error), 4949

5 ME n ( q n q f ) średni błąd bezwzględny (MAE): MAE q n q f n średni bezwzględny błąd procentowy MAPE (mean absolute percentage error), MAPE n q n q q n f *00% pierwiastek błędu średniokwadratowego RMSE (root mean squared error) RMSE n ( q n q f 2 ). gdzie: całkowita liczba analizowanych danych, q n wartości zmierzone, q f wartości prognozowane dla n-tego pomiaru (q n ) Tabele, 2 przedstawiają zestawienie wyznaczonych błędów dla detektorów i klas związanych z dniami tygodnia dla liczącego 6 pomiarów, 30 min okna czasowego. Znak średniego błędu pozwala wnioskować o odchyleniu wartości prognoz. W przypadku potwierdza się obserwacja z rysunku 3, czyli uzyskiwane prognozy są mniejsze wartości od rzeczywistych. Tab. Tabela wyników prognozy dla detektora Klasa szeregu Model neuronowy det Model regresyjny det czasowego ME MAE MAPE RMSE ME MAE MAPE RMSE Pon-Pt 4,53 8,68 6%,50 0,3 8,03 6% 0,8 Sobota -5,56 9,30 4%,28-0,8 7,06 8% 9,4 iedziela -5,89 9,62 5%,77-0,09 6,9 8% 9,29 Tab 2. Tabela wyników prognozy dla detektora 2 Klasa szeregu Model neuronowy det2 Model regresyjny det2 czasowego ME MAE MAPE RMSE ME MAE MAPE RMSE Pon-Pt -,35 7,63 6% 0,7 0,09 7,47 5% 9,93 Sobota -2,77 7,79 4% 9,33-0,26 5,59 6% 7,58 iedziela -2,95 6,87 0% 9,9-0, 5,87 7% 8,29 Błędy średnie predykcji modelu z regresją wielokrotną również potwierdzają graficzną ilustrację. Dla obu modeli występuje około 30% różnica między wartościami MAE i RMSE co wskazuje na występowanie podobnego rozrzutu wartości błędów. W wielu przypadkach wartości prognoz znacząco odbiegały od mierzonych wartości. Średni bezwzględny błąd procentowy MAPE w przypadku modelu regresji wielokrotnej zachowuje bliską, średniej 6%, wartość dla wszystkich klas ruchu, natomiast sieciowy model wykazuje prawie dwukrotnie większe błędy dla ruchu w soboty i dni świąteczne. WIOSKI Uzyskane wyniki porównania modeli predykcji z użyciem sieci neuronowej i regresji wielokrotnej wskazują na niewielkie różnice w zachowaniu. Średni błąd prognozy wyniósł 6%. Oba modele 4950

6 wykazują zbliżony rozrzut wartości prognoz. Model sieciowy zaniża wartości prognoz, a w przypadku ruchu w soboty i dni świąteczne generuje gorsze prognozy. ajlepsze wyniki predykcji uzyskano dla ruchu w dni robocze. Analiza danych pomiarowych i zachowań modeli wskazują, że aby zmniejszyć błąd prognozy należy uwzględnić dodatkowe parametry, takie jak pory roku, święta, wakacje, zdarzenia losowe itp. Planuje się uzupełnienie badań z użyciem rozszerzonej struktury sieci. Rozszerzona sieć zawierałaby sparametryzowane wejścia reprezentujące dodatkowe warunki prognozowania. Uzyskanie wyniki predykcji pozwalają na zastosowanie zaproponowanego modelu do wyboru planów sygnalizacji w obrębie skrzyżowań oraz do wspomagania obszarowego zarządzania ruchem. Streszczenie W artykule zaproponowano wykorzystanie zbioru sieci neuronowych do predykcji wartości natężeń ruchu. Predykcja natężenia ruchu wykorzystywana w systemach sterowania ruchem pozwala zwiększyć płynność ruchu i poprawić jego bezpieczeństwo. Opracowany model predykcji wykorzystuje klasyfikację danych ze względu na charakter ruchu (w zależności od typu dnia, np. dni robocze, święta). Wyznaczanie nowych wartości natężeń dla każdej z klas określane jest z użyciem odrębnej sieci neuronowej. Dokonano walidacji modelu z użyciem historycznych danych otrzymanych z Centrum Sterowania Ruchem w Gliwicach. Baza danych obejmuje dane o natężeniu ruchu z 0 miesięcznego okresu rejestracji w 203 roku. atężenia rejestrowane były w odstępach 5 minutowych. Uzyskane wyniki predykcji porównano z wynikami uzyskanymi z użyciem modelu opartego na regresji wielokrotnej. The traffic flow forecasting model using neural network Abstract The paper presents the properties of a proposed neural network for prediction of values of road traffic flow. Prediction of traffic flow is used in traffic control systems for streamlining the flow and enhancing the safety of traffic. The proposed prediction model uses traffic flow data divided into classes based on the character of the traffic flow (related to day type eg. work days, holidays). The flows are predicted within each of the classes with separate neural networks. The model was validated with real traffic data acquired from the Road Traffic Control Centre in Gliwice. The data base encompasses values of road traffic flow registered during 0 months of 203. The values of traffic flow were registered every 5 minutes. The prediction results are compared to prediction values obtained from a traffic model based on multiple regression. BIBLIOGRAFIA. Cai, C., Wong, C.K., Heydecker, B.G. Adaptive traffic signal control using approximate dynamic programming, Transportation Research Part C, 7(5), pp , Chrobok, R., Kaumann, O., Wahle, J., Schreckenberg, M.: Different methods of traffic forecast based on real data. European Journal of Operational Research 55 (3), pp , Chen H., Grant-Muller S., Mussone L., Montgomery F.: A study of hybrid neural network approaches and the effects of missing data on traffic forecasting, eural Computing and Applications vol. 0, pp , Man-Chun Tan, S. C. Wong, Jian-Min Xu, Zhan-Rong Guan, Peng Zhang: An Aggregation Approach to Short-Term Traffic Flow Prediction, IEEE Transactions on Intelligent Transportation Systems, vol. 0, pp , Karlaftis, M.G., Vlahogianni, E.I.,: Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transportation Research, Part C. Emerging Technologies 9 (3), pp , Pamuła T.: Road traffic parameters prediction in urban traffic management systems using neural networks, Transport Problems, Vol. 6, Issue 3, Wyd. Pol. Śląskiej, pp , Pamuła T.: Prognozowanie natężenia ruchu pojazdów na skrzyżowaniu za pomocą sieci neuronowej. Zeszyty aukowe PŚl. nr 862 Transp. z. 74, s ,

7 8. Pamuła T.: Traffic flow analysis based on the real data using neural networks. Telematics in the transport environment. Selected papers. Ed. Jerzy Mikulski. Berlin : Springer, s , Pamuła T.: Classification and prediction of traffic flow based on real data using neural networks, Archive of Transport, vol. 24 no. 4, s , Quek C., Pasquier M., Boon B., Lim S.: POP-TRAFFIC A ovel Fuzzy eural Approach to Road Traffic Analysis and Prediction IEEE Transactions On Intelligent Transportation Systems, Vol. 7, o. 2, pp , Srinivasan D., Choy M. C., and Cheu R. L.: eural networks for real-time traffic signal control, IEEE Trans. Intelligent Transportation Systems, vol. 7, no. 3, pp.26-27, Sep Vlahogianni E.I., Karlaftis M.G., Golias J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction:agenetic approach, Transportation Research Part C vol.3, pp.2 234,

Transportu SIECI NEURONOWYCH. : marzec w przypadku awarii detektora. Opracowany we pomiarów ruchu

Transportu SIECI NEURONOWYCH. : marzec w przypadku awarii detektora. Opracowany we pomiarów ruchu PRACE AUKOWE POLITECHIKI WARSZAWSKIEJ z. 113 Transport 2016 Transportu PREDYK A SIECI EUROOWYCH : marzec 2016 Streszczenie: W artykule zaproponowano wykorzystanie jednej sieci neuronowej do krótko- podstawie

Bardziej szczegółowo

PRZESTRZENNO-CZASOWY MODEL PREDYKCJI NATĘŻENIA RUCHU Z UŻYCIEM SIECI NEURONOWYCH

PRZESTRZENNO-CZASOWY MODEL PREDYKCJI NATĘŻENIA RUCHU Z UŻYCIEM SIECI NEURONOWYCH PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 117 Transport 2017 Teresa Pamuła Politechnika Śląska, Wydział Transportu PRZESTRZENNO-CZASOWY MODEL PREDYKCJI NATĘŻENIA RUCHU Z UŻYCIEM SIECI NEURONOWYCH Rękopis

Bardziej szczegółowo

PROGNOZOWANIE NATĘŻENIA RUCHU POJAZDÓW NA SKRZYŻOWANIU ZA POMOCĄ SIECI NEURONOWEJ PREDICTION OF TRAFFIC VOLUME AT THE JUNCTION USING NEURAL NETWORK

PROGNOZOWANIE NATĘŻENIA RUCHU POJAZDÓW NA SKRZYŻOWANIU ZA POMOCĄ SIECI NEURONOWEJ PREDICTION OF TRAFFIC VOLUME AT THE JUNCTION USING NEURAL NETWORK ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2012 Seria: TRANSPORT z. 74 Nr kol. 1862 Teresa PAMUŁA PROGNOZOWANIE NATĘŻENIA RUCHU POJAZDÓW NA SKRZYŻOWANIU ZA POMOCĄ SIECI NEURONOWEJ Streszczenie. Artykuł zawiera

Bardziej szczegółowo

WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH

WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Inżynieria Rolnicza 1(110)/2009 WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Małgorzata Trojanowska Katedra Energetyki

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII Autor: Katarzyna Halicka ( Rynek Energii nr 1/2010) Słowa kluczowe: giełda energii, prognozowanie cen energii elektrycznej,

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

BADANIA ZRÓŻNICOWANIA RYZYKA WYPADKÓW PRZY PRACY NA PRZYKŁADZIE ANALIZY STATYSTYKI WYPADKÓW DLA BRANŻY GÓRNICTWA I POLSKI

BADANIA ZRÓŻNICOWANIA RYZYKA WYPADKÓW PRZY PRACY NA PRZYKŁADZIE ANALIZY STATYSTYKI WYPADKÓW DLA BRANŻY GÓRNICTWA I POLSKI 14 BADANIA ZRÓŻNICOWANIA RYZYKA WYPADKÓW PRZY PRACY NA PRZYKŁADZIE ANALIZY STATYSTYKI WYPADKÓW DLA BRANŻY GÓRNICTWA I POLSKI 14.1 WSTĘP Ogólne wymagania prawne dotyczące przy pracy określają m.in. przepisy

Bardziej szczegółowo

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO

KRÓTKOTERMINOWE PROGNOZOWANIE ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH PRZY WYKORZYSTANIU MODELI MAMDANIEGO Problemy Inżynierii Rolniczej nr 3/2007 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie KRÓTKOTERMINOWE PROGNOZOWANIE

Bardziej szczegółowo

DRZEWA REGRESYJNE I LASY LOSOWE JAKO

DRZEWA REGRESYJNE I LASY LOSOWE JAKO DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

ALGORYTM UZUPEŁNIANIA BRAKUJĄCYCH DANYCH W ZBIORACH REJESTROWANYCH NA STACJACH MONITORINGU POWIETRZA

ALGORYTM UZUPEŁNIANIA BRAKUJĄCYCH DANYCH W ZBIORACH REJESTROWANYCH NA STACJACH MONITORINGU POWIETRZA ALGORYTM UZUPEŁNIANIA BRAKUJĄCYCH DANYCH W ZBIORACH REJESTROWANYCH NA STACJACH MONITORINGU POWIETRZA Szymon HOFFMAN, Rafał JASIŃSKI Politechnika Częstochowska Wydział Inżynierii i Ochrony Środowiska ul.

Bardziej szczegółowo

APROKSYMACJA POZIOMU IMISJI NA STACJACH MONITORINGU POWIETRZA ZA POMOCĄ AUTONOMICZNYCH MODELI NEURONOWYCH

APROKSYMACJA POZIOMU IMISJI NA STACJACH MONITORINGU POWIETRZA ZA POMOCĄ AUTONOMICZNYCH MODELI NEURONOWYCH APROKSYMACJA POZIOMU IMISJI NA STACJACH MONITORINGU POWIETRZA ZA POMOCĄ AUTONOMICZNYCH MODELI NEURONOWYCH Szymon HOFFMAN Katedra Chemii, Technologii Wody i Ścieków, Politechnika Częstochowska ul. Dąbrowskiego

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych prof. zw. dr hab. inż. Stanisław Osowski dr inż. Krzysztof Siwek Politechnika Warszawska Kontynuacja prac Prace prowadzone w roku

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY

BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: BUDOWNICTWO z. 102 2004 Nr kol. 1644 Anna OLMA Politechnika Śląska BADANIE WAHAŃ NATĘŻEŃ RUCHU Z POMIARÓW CIĄGŁYCH W PRZEKROJU ULICY Streszczenie.. Ciągłe pomiary

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

Inżynieria Rolnicza 5(114)/2009

Inżynieria Rolnicza 5(114)/2009 Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH

Bardziej szczegółowo

MODEL SYSTEMU ZARZĄDZANIA RUCHEM POJAZDÓW W OBSZARZE MIEJSKIM Z WYKORZYSTANIEM SIECI NEURONOWYCH

MODEL SYSTEMU ZARZĄDZANIA RUCHEM POJAZDÓW W OBSZARZE MIEJSKIM Z WYKORZYSTANIEM SIECI NEURONOWYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2010 Seria: TRANSPORT z. 67 Nr kol. 1832 Teresa PAMUŁA, Aleksander KRÓL MODEL SYSTEMU ZARZĄDZANIA RUCHEM POJAZDÓW W OBSZARZE MIEJSKIM Z WYKORZYSTANIEM SIECI NEURONOWYCH

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Ćwiczenie 5 PROGNOZOWANIE

Ćwiczenie 5 PROGNOZOWANIE Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,

Bardziej szczegółowo

Porównanie dokładności różnych metod predykcji stężeń zanieczyszczeń powietrza

Porównanie dokładności różnych metod predykcji stężeń zanieczyszczeń powietrza Inżynieria i Ochrona Środowiska 9, t. 1, nr, s. 37-35 Szymon HOFFMAN, Rafał JASIŃSKI Politechnika Częstochowska, Katedra Chemii, Technologii Wody i Ścieków ul. Dąbrowskiego 9, - Częstochowa Porównanie

Bardziej szczegółowo

Zachowania odbiorców. Grupa taryfowa G

Zachowania odbiorców. Grupa taryfowa G Zachowania odbiorców. Grupa taryfowa G Autor: Jarosław Tomczykowski Biuro PTPiREE ( Energia elektryczna luty 2013) Jednym z założeń wprowadzania smart meteringu jest optymalizacja zużycia energii elektrycznej,

Bardziej szczegółowo

Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych

Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH

Bardziej szczegółowo

KRÓTKOTERMINOWE PROGNOZOWANIE ZUŻYCIA ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM SZTUCZNEJ SIECI NEURONOWEJ

KRÓTKOTERMINOWE PROGNOZOWANIE ZUŻYCIA ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM SZTUCZNEJ SIECI NEURONOWEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 79 Electrical Engineering 2014 Tomasz JEŻYK* Andrzej TOMCZEWSKI* KRÓTKOTERMINOWE PROGNOZOWANIE ZUŻYCIA ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM SZTUCZNEJ

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB

Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO. Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja metod wykrywania, identyfikacji i ilościowego oznaczania GMO Magdalena Żurawska-Zajfert Laboratorium Kontroli GMO IHAR-PIB Walidacja Walidacja jest potwierdzeniem przez zbadanie i przedstawienie

Bardziej szczegółowo

PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ SPEED AND TRAFFIC VOLUME ON THE MULTILANE HIGHWAY

PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ SPEED AND TRAFFIC VOLUME ON THE MULTILANE HIGHWAY ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol.1807 Aleksander SOBOTA PRĘDKOŚĆ A NATĘŻENIE RUCHU NA DRODZE WIELOPASOWEJ Streszczenie. Celem artykułu jest analiza zależności pomiędzy

Bardziej szczegółowo

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM 2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.

Bardziej szczegółowo

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr

Bardziej szczegółowo

I EKSPLORACJA DANYCH

I EKSPLORACJA DANYCH I EKSPLORACJA DANYCH Zadania eksploracji danych: przewidywanie Przewidywanie jest podobne do klasyfikacji i szacowania, z wyjątkiem faktu, że w przewidywaniu wynik dotyczy przyszłości. Typowe zadania przewidywania

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO ESTYMACJI WARTOŚCI WILGOTNOŚCI WZGLĘDNEJ POWIETRZA NA PODSTAWIE WARTOŚCI JEGO TEMPERATURY

WYKORZYSTANIE SIECI NEURONOWEJ DO ESTYMACJI WARTOŚCI WILGOTNOŚCI WZGLĘDNEJ POWIETRZA NA PODSTAWIE WARTOŚCI JEGO TEMPERATURY Wykorzystanie sieci neuronowej... Ireneusz Białobrzewski Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie WYKORZYSTANIE SIECI NEURONOWEJ DO ESTYMACJI WARTOŚCI WILGOTNOŚCI

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

Problemy eksploatacyjne stacji monitorujących hałas i ruch pojazdów drogowych

Problemy eksploatacyjne stacji monitorujących hałas i ruch pojazdów drogowych Kielce University of Technology Faculty of Mechatronics and Mechanical Engineering Problemy eksploatacyjne stacji monitorujących hałas i ruch pojazdów drogowych Bąkowski Andrzej Radziszewski Leszek Skrobacki

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Statystyczna analiza zmienności obciążeń w sieciach rozdzielczych Statistical Analysis of the Load Variability in Distribution Network

Statystyczna analiza zmienności obciążeń w sieciach rozdzielczych Statistical Analysis of the Load Variability in Distribution Network Statystyczna analiza zmienności obciążeń w sieciach rozdzielczych Statistical Analysis of the Load Variability in Distribution Network Wojciech Zalewski Politechnika Białostocka, Wydział Zarządzania, Katedra

Bardziej szczegółowo

Modelowanie odległości pomiędzy pojazdami w kongestii w skali nanoskopowej

Modelowanie odległości pomiędzy pojazdami w kongestii w skali nanoskopowej SZCZUPAKOWSKI Seweryn Modelowanie odległości pomiędzy pojazdami w kongestii w skali nanoskopowej WSTĘP Wzrost współczynnika motoryzacji przy ograniczonym rozwoju sieci drogowej spowodował zwiększenie zatłoczenia,

Bardziej szczegółowo

PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM

PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM "DIALOG 0047/2016" PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM WYDZIAŁ ELEKT RYCZ N Y Prof. dr hab. inż. Tomasz Popławski Moc zamówiona 600 Rynek bilansujący Moc faktycznie pobrana Energia zakupiona

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO

ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Adam Stawowy Paweł Jastrzębski Wydział Zarządzania AGH Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Jedną z najczęściej podejmowanych decyzji w działalności

Bardziej szczegółowo

KONCEPCJA ZASTOSOWANIA INTELIGENTNYCH SYSTEMÓW TRANSPORTOWYCH W DZIELNICY MOKOTÓW W WARSZAWIE

KONCEPCJA ZASTOSOWANIA INTELIGENTNYCH SYSTEMÓW TRANSPORTOWYCH W DZIELNICY MOKOTÓW W WARSZAWIE PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Zbigniew Kasprzyk, Mariusz Rychlicki, Kinga Tatar KONCEPCJA ZASTOSOWANIA INTELIGENTNYCH SYSTEMÓW TRANSPORTOWYCH W DZIELNICY MOKOTÓW W WARSZAWIE

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption

Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption Wojciech Zalewski Politechnika Białostocka, Wydział Zarządzania,

Bardziej szczegółowo

ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH

ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Wpływ zanieczyszczenia torowiska na drogę hamowania tramwaju

Wpływ zanieczyszczenia torowiska na drogę hamowania tramwaju DYCHTO Rafał 1 PIETRUSZEWSKI Robert 2 Wpływ zanieczyszczenia torowiska na drogę hamowania tramwaju WSTĘP W Katedrze Pojazdów i Podstaw Budowy Maszyn Politechniki Łódzkiej prowadzone są badania, których

Bardziej szczegółowo

Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4

Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych sieci neuronowych 4 Wojciech Sikora 1 AGH w Krakowie Grzegorz Wiązania 2 AGH w Krakowie Maksymilian Smolnik 3 AGH w Krakowie Analiza możliwości szacowania parametrów mieszanin rozkładów prawdopodobieństwa za pomocą sztucznych

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i

Bardziej szczegółowo

Inżynieria Rolnicza 3(121)/2010

Inżynieria Rolnicza 3(121)/2010 Inżynieria Rolnicza 3(121)/2010 METODA OCENY NOWOCZESNOŚCI TECHNICZNO- -KONSTRUKCYJNEJ CIĄGNIKÓW ROLNICZYCH WYKORZYSTUJĄCA SZTUCZNE SIECI NEURONOWE. CZ. III: PRZYKŁADY ZASTOSOWANIA METODY Sławomir Francik

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

THE DEPENDENCE OF TIME DELAY FROM QUEUE LENGTH ON INLET OF SIGNALIZED INTERSECTION

THE DEPENDENCE OF TIME DELAY FROM QUEUE LENGTH ON INLET OF SIGNALIZED INTERSECTION ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 28 Seria: TRANSPORT z. 64 Nr kol. 183 Grzegorz SIERPIŃSKI STRATY CZASU A DŁUGOŚĆ KOLEJKI NA WLOCIE SKRZYŻOWANIA Z SYGNALIZACJĄ ŚWIETLNĄ Streszczenie. W artykule przedstawiono

Bardziej szczegółowo

W PROGNOZOWANIU ZAPOTRZEBOWANIA

W PROGNOZOWANIU ZAPOTRZEBOWANIA ANALIZA RYZYKA NA GAZ ZIEMNY W PROGNOZOWANIU ZAPOTRZEBOWANIA Autorzy: Jolanta Szoplik, Michał Oszczyk ("Rynek Energii" - czerwiec 215) Słowa kluczowe: prognozowanie zapotrzebowania na gaz, ryzyko prognozy,

Bardziej szczegółowo

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH

WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH Inżynieria Rolnicza 9(107)/2008 WYKORZYSTANIE MODELI MAMDANIEGO DO PREDYKCJI DOBOWYCH OBCIĄŻEŃ WIEJSKICH SIECI ELEKTROENERGETYCZNYCH Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki, Uniwersytet

Bardziej szczegółowo

Arkadiusz Łapiński ETI V gr.9.4. Sieć neuronowa w inteligentnym pojeździe, Tribolite

Arkadiusz Łapiński ETI V gr.9.4. Sieć neuronowa w inteligentnym pojeździe, Tribolite Arkadiusz Łapiński ETI V gr.9.4 Sieć neuronowa w inteligentnym pojeździe, Tribolite 1 Cel: Określenie czy określony obszar jest drogą (betonową) czy nie. Główne cechy: wykorzystuje kamerę (przechwytującą

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

Inteligentne Systemy Transportowe

Inteligentne Systemy Transportowe w Bydgoszczy dr inż. Jacek Chmielewski inż. Damian Iwanowicz Katedra Budownictwa Drogowego Wydział Budownictwa i Inżynierii Środowiska Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich

Bardziej szczegółowo

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO 5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU

Bardziej szczegółowo