POMIAR SKŁADOWEJ POZIOMEJ 55 INDUKCJI MAGNETYCZNEJ ZIEMI
|
|
- Weronika Karpińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 POMAR SKŁADOWEJ POZOMEJ 55 NDUKCJ MAGNETYCZNEJ ZEM. 1. Pole magnetyczne Źródłem pola magnetycznego są ładunki w ruchu (elektrony w przewodniku, przez który płynie prąd, jony w elektrolicie itd.). Pole magnetyczne opisują trzy wektory: wektor indukcji magnetycznej B, wektor natężenia pola H, oraz wektor namagnesowania M. Wiążą je wzory: B = µµ 0 Η, oraz: Β = µ 0 (H + M). Wielkości µ 0 i µ oznaczają odpowiednio tzw. przenikalność magnetyczną próżni (µ 0 = 10 7 [T. m /A] czyli tesla metr/amper), oraz względną przenikalność magnetyczną ośrodka. Wektor indukcji magnetycznej B definiuje się na podstawie prawa orenza określającego siłę F działającą na ładunek elektryczny Q, poruszający się w polu magnetycznym z prędkością v: F = Q (v B) (1) lub na podstawie prawa Ampera określającego siłę działającą na umieszczony w polu magnetycznym element przewodnika o długości l, w którym płynie prąd o natężeniu J: F = J ( l B) () Jeżeli wykonamy eksperyment w taki sposób, aby v B lub l B, to dla jednorodnego pola magnetycznego możemy zdefiniować wartość B: F F B =, lub B = (3) Q v J l N Jednostką indukcji magnetycznej B jest tesla (1 T), która jest równa [ T] = [ ]. (niuton na amper metr) Am Gdy potrafimy już mierzyć wartość indukcji magnetycznej B, zbadajmy, jakie pole magnetyczne powstaje wokół różnych przewodników, przez które płynie prąd. Wektor indukcji B w punkcie P znajdującym się w otoczeniu cienkiego przewodnika (drutu), oblicza się, sumując wkłady db P. r dl do pola od wszystkich nieskończenie małych odcinków dl (Rys. 1), na które można podzielić rozważany przewodnik z prądem. Zgodnie z pomiarami Biota i Savarta oraz obliczeniami aplace'a, wzory na db mają postać: J µµ J [dl r ] µµ J dl Rys. 1. Obliczanie B w pobliżu przewodnika z prądem ( dl, r ) o o o db=, lub skalarnie db = sin (4) r r gdzie: µ- względna przenikalność magnetyczna ośrodka, wielkość bezwymiarowa, charakteryzująca własności magnetyczne ośrodka, µ o - przenikalność magnetyczna próżni (wprowadzona w wyniku zastosowania układu jednostek S); J - natężenie prądu elektrycznego w przewodniku; r - długość (wartość) wektora r, łączącego odcinek dl z punktem P; r o - wersor pokazujący kierunek wektora r. Dla nieskończenie długiego prostoliniowego przewodnika, wartość wektora B w odległości r od tego przewodnika jest równa: µµ o Jsin B = db = r l 0 ( dl,r) µµ oj dl = πr Widzimy, że jeżeli r = const, to i B = const. Ponieważ B jest prostopadłe do r o i do dl, to izo-powierzchnie B = const mają kształt powierzchni walcowych, otaczających koncentrycznie przewodnik. W płaszczyźnie prostopadłej do osi walca, linie B mają kształt okręgów (patrz Rys. a). Okazuje się, że linie pola magnetycznego są zawsze liniami zamkniętymi, a pole o takiej własności nazywamy polem bezźródłowym. Takie pole ma swoją analogię w hydrodynamice, gdzie opis pola prędkości v powietrza w "trąbie powietrznej", jest bardzo zbliżony pod względem formalnym do opisu pola magnetycznego w otoczeniu przewodnika z prądem. (5)
2 Obliczmy indukcję pola magnetycznego w środku przewodnika kołowego o promieniu R (Rys. b). y linie B J x J a b Rys.. inie indukcji magnetycznej wytwarzanej przez przewodnik prostoliniowy (a) i przez pojedynczy zwój z prądem (b). Tym razem, ponieważ dl i R są w każdym punkcie tego przewodnika wzajemnie prostopadłe, możemy opuścić sinus (dl,r) we wzorze (4) i mamy: µµ o J µµ oj BK = dl = R R (6) l Pole B K wytwarzane przez przewodnik kołowy (pojedynczy zwój), przez który płynie prąd ma kierunek prostopadły do płaszczyzny zwoju. ndukcja pola magnetycznego wytwarzanego we wnętrzu solenoidu, czyli przewodnika nawiniętego spiralnie na cylindryczny rdzeń wyraża się wzorem: N J = µµ (7) Bs 0 gdzie N jest liczbą zwojów solenoidu, a jego długością. Względna przenikalność magnetyczna ośrodka µ dla powietrza jest praktycznie równa 1. Pole magnetyczne wewnątrz solenoidu możemy uważać za pole jednorodne, jeśli długość solenoidu jest znacznie większa od średnicy zwojów. Jego kierunek jest zgodny z osią solenoidu, a zwrot zależy od kierunku przepływu prądu, zgodnie z regułą śruby prawoskrętnej. Źródłem pola magnetycznego mogą być także magnesy trwałe takie jak np. igła kompasu, lub magnes sztabkowy. Wyróżniającą cechą magnesów jest fakt, że biegunów magnetycznych nazywanych N i S nie da się rozdzielić, czyli, że nawet najmniejszy magnes jest dipolem magnetycznym, który w zewnętrznym jednorodnym polu magnetycznym o indukcji B będzie zachowywał się podobnie, jak znany z elektrostatyki dipol elektryczny. W jednorodnym polu elektrycznym. będzie na niego działał moment siły M. Definiujemy wielkość zwaną dipolowym momentem magnetycznym p m magnesu, poprzez równanie: M = p m B (8) Moment siły M będzie dążył do ustawienia dipola magnetycznego tak, by kierunki i zwroty B i p m pokrywały się... Pole magnetyczne Ziemi W otoczeniu Ziemi istnieje słabe pole magnetyczne. Średnia wartość składowej poziomej wektora B przy powierzchni wynosi ok tesli. Kompasy wskazują kierunek linii tego pola i pozwalają określić (w przybliżeniu) położenie północnego bieguna geograficznego. Południki magnetyczne nie pokrywają się z południkami geograficznymi i tworzą z nimi kąt zwany deklinacją magnetyczną. Jego wartość jest różna dla różnych miejsc na powierzchni Ziemi. inie pola magnetycznego nie są styczne do powierzchni Ziemi, lecz nachylone pod kątem zwanym inklinacją magnetyczną. Na obu biegunach magnetycznych linie pola są nawet skierowane prostopadle do jej powierzchni. gła magnetyczna do precyzyjnych badań ziemskiego pola magnetycznego musi więc mieć możliwość obrotu wokół dwu osi: pionowej i poziomej. Aktualnie, zamiast igły magnetycznej do pomiaru pola magnetycznego stosuje się inne, bardziej nowoczesne czujniki, np. tzw. hallotrony, lub czujniki magneto-oporowe. Koniec igły kompasu oznaczony literą N pokazuje nam kierunek zbliżony do tego, w którym znajduje się północ geograficzna. Ze względu na to, że przyciągać się mogą bieguny różnoimienne, koniec ten pokazuje naprawdę południowy biegun magnetyczny. Analogiczne rozumowanie dotyczy drugiego bieguna. Położenia biegunów magnetycznych nie pokrywają się z położeniami biegunów geograficznych. Magnetyczny biegun S jest położony aktualnie na północ od zatoki Hudsona w Kanadzie, w odległości nieco ponad 000 km od geograficznego bieguna północnego, natomiast biegun magnetyczny N znajduje się w okolicach Ziemi Adeli na Antarktydzie, w odległości 1900 km od drugiego bieguna geograficznego. z B
3 3 Rys. 3. inie pola magnetycznego w otoczeniu Ziemi inia łącząca oba bieguny magnetyczne nie przechodzi przez środek Ziemi. Położenia biegunów ulegały zmianom w poprzednich epokach geologicznych. Oprócz pola, które jak się przyjmuje, jest generowane we wnętrzu Ziemi, istnieje składowa powodowana przez tzw. "wiatr słoneczny". Jest to strumień szybkich, naładowanych elektrycznie cząstek (głównie protonów), wyrzucanych przez wybuchy (protuberancje) słoneczne i odchylanych przez pole magnetyczne Ziemi. Ponieważ poruszające się ładunki wytwarzają własne pole magnetyczne, dodaje się ono (wektorowo) do pola magnetycznego wytwarzanego przez Ziemię, w wyniku czego w otoczeniu Ziemi powstaje tzw. magnetosfera (Rys. 3), która rozciąga się do odległości ok km od strony Słońca i 6.5 mln. km po stronie przeciwnej. Magnetosfera, dzięki temu, że odchyla tory wysoko energetycznych cząstek naładowanych wysłanych przez naszą gwiazdę i przez to nie dopuszcza ich do powierzchni Ziemi, stwarza warunki chroniące organizmy żywe przed zniszczeniem. Jak wiadomo, podobną rolę zabezpieczającą nas przed promieniowaniem ultrafioletowym Słońca, odgrywa atmosfera, a zwłaszcza tlen i jego trójatomowe cząsteczki - ozon. Pole magnetyczne Ziemi odgrywa także ważną rolę w powstawaniu tzw. zórz polarnych, czyli świecenia obserwowanego od czasu do czasu w obszarach podbiegunowych. Pole magnetyczne ma tę właściwość, że jeśli ładunki elektryczne poruszają się wzdłuż linii B, to ze strony pola magnetycznego nie działa na nie żadna siła. Jeśli więc, w wyniku rozproszeń strumienia naładowanych cząstek docierających ze Słońca, część z nich uzyska kierunek wektora prędkości v zgodny z liniami B, to cząstki takie będą poruszać się dalej po spiralnych torach wzdłuż linii pola magnetycznego (tzw. ogniskowanie magnetyczne) i dotrą do okolic obu biegunów magnetycznych Ziemi. Na wysokości ok. 100 km nad powierzchnią Ziemi będą one wzbudzać i jonizować atomy gazów. Procesowi rekombinacji będzie towarzyszyć emisja świecenia charakterystycznego dla zorzy polarnej. Zjawisko zorzy występuje szczególnie silnie po zwiększeniu intensywności wybuchów słonecznych. Bardzo istotnym potwierdzeniem opisanego mechanizmu są wyniki najnowszych badań, wykazujące, że zorze polarne pojawiają się i zmieniają swoją intensywność synchronicznie w obu strefach podbiegunowych. Przyczyna istnienia pola magnetycznego Ziemi nie jest jasna. stnieją tylko hipotezy robocze o dużym stopniu prawdopodobieństwa. Początkowo badacze zwrócili uwagę na fakt, że bieguny geograficzny i magnetyczny są położone stosunkowo blisko siebie, co wskazywałoby na związek kształtu tego pola z ruchem wirowym Ziemi dookoła własnej osi. Wiadomo też z danych uzyskanych przez sondy satelitarne, że pole magnetyczne Jowisza, który wiruje szybciej niż Ziemia (doba gwiazdowa trwa tam poniżej 10 godzin), jest w przybliżeniu o jeden rząd silniejsze od pola ziemskiego, natomiast pole magnetyczne Wenus, na której doba gwiazdowa jest bardzo długa (ok. 46 dni) jest bardzo słabe. Mimo tego, iż kształt pola magnetycznego zbliżony do tego, jaki wytwarza Ziemia, można uzyskać na modelu niemagnetycznej kuli z umieszczonym w jej wnętrzu magnesem sztabkowym, to koncepcja istnienia we wnętrzu Ziemi trwale namagnesowanych substancji jest nie do przyjęcia, ze względu na panujące tam bardzo wysokie temperatury, znacznie przekraczające temperaturę Curie T C ferromagnetyków 1. Nie ma więc we wnętrzu Ziemi substancji w fazie ferromagnetycznej choć jest tam żelazo i nikiel, ale są one w fazie paramagnetycznej. Małe kryształy ferromagnetyków występują jedynie w skałach na powierzchni Ziemi i w jej skorupie, przy temperaturach niższych od T C. Dlatego też jedynym powodem generowania pola magnetycznego we wnętrzu Ziemi przy tak wysokich temperaturach, może być przepływ prądu elektrycznego. Dokładniejsza analiza pokazała, że pole to mogą wytwarzać jedynie prądy, płynące na granicy ciekłego jądra i zestalonego płaszcza, czyli na głębokości ok km, w warstwie o grubości ok. 100 km. Płynne jądro dobrze przewodzi prąd elektryczny, ze względu na skład chemiczny (żelazo, nikiel), ale także warstwa przejściowa złożona z częściowo stopionych skał o wysokiej temperaturze ma dużą przewodność (jonową). Sama obecność przewodnika nie wystarcza jednak, aby płynął prąd. Aby mógł powstać prąd indukowany, np. tak, jak w doświadczeniu Faradaya, to przewodnik musi poruszać się w polu magnetycznym. Powodem takiego ruchu jest konwekcja cieczy w warstwie przejściowej, pomiędzy 1 Temperatura Curie T C dla ferromagnetyków to temperatura, po przekroczeniu której, ferromagnetyk przechodzi w stan paramagnetyczny i traci m. in. możliwość trwałego namagnesowania. Dla Fe T C wynosi C, a dla Ni C.
4 4 jądrem a płaszczem, spowodowana występującymi tam różnicami temperatury oraz składu chemicznego. Na granicy ciekłego jądra i płaszcza stale zachodzą procesy rozpuszczania się składników płaszcza oraz jednocześnie krzepnięcia składników ciekłego jądra. Ruchy konwekcyjne są zaburzane przez siły spowodowane obrotem Ziemi wokół własnej osi, a mianowicie przez siłę odśrodkową i siłę Coriolisa.. Znacznie trudniej jest wytłumaczyć skąd się wzięło pole magnetyczne, konieczne do powstania prądu indukowanego. Postuluje się, że początkowo było to pole magnetyczne pochodzenia kosmicznego, głównie generowane przez strumień naładowanych cząstek dochodzących do Ziemi ze Słońca. To pole według niektórych badaczy było wystarczające do wytworzenia pierwotnego prądu we wnętrzu Ziemi, a w konsekwencji do powstania własnego pola magnetycznego Ziemi. Elsasser zaproponował taki model ruchu substancji przewodzącej prąd, że indukowane pole magnetyczne ma taki sam kierunek, jak zewnętrzne pole indukujące. Według tego modelu, nawet, jeśli zaniknie pole zewnętrzne, ale ruch przewodzącej cieczy nie ustanie, to pole magnetyczne będzie podtrzymywane. Na podobnej zasadzie działa tzw. prądnica samowzbudna, czyli generator prądu stałego nie zawierający magnesów stałych, a tylko elektromagnesy. Rozwinięciem modelu Elsassera zajmuje się magnetohydrodynamika, dziedzina powstała z połączenia hydrodynamiki z elektrodynamiką. Brak precyzyjnej teorii tłumaczącej powstanie pola magnetycznego Ziemi wynika głównie z nieznajomości procesów zachodzących w jej wnętrzu, w warunkach jednocześnie wysokich ciśnień i wysokich temperatur, oraz z braku możliwości (jak dotychczas) wykonania doświadczeń laboratoryjnych w takich warunkach. Przedstawiona wyżej uproszczona hipoteza wydaje się być dość prawdopodobna, gdyż pozwala wytłumaczyć odkryte przez badaczy zmiany kierunku pola magnetycznego Ziemi w dawnych epokach geologicznych, w tym także jego rewersję (zmianę kierunku na przeciwny). Więcej informacji na temat topografii pola magnetycznego Ziemi można znaleźć w literaturze [1]. OPS EKSPERYMENTU Do zmierzenia składowej poziomej indukcji magnetycznej Ziemi B PZ zastosowano dwie metody: 1. metodę tzw. busoli stycznych i. metodę wahadła torsyjnego. W obu metodach, wartość B PZ wyznaczamy, porównując ją ze znanymi wartościami pola magnetycznego wytwarzanego przez przewodnik kołowy (B K -w metodzie busoli stycznych), lub solenoid (B S w metodzie wahadła torsyjnego)... 1 Metoda busoli stycznych. Szkic urządzenia pokazano na Rys. 4. W środku przewodnika kołowego (6 zwojów drutu miedzianego), ustawionego w płaszczyźnie pionowej, umieszczono igłę magnetyczną, która może się obracać w płaszczyźnie poziomej. Gdy w pobliżu przyrządu nie ma żadnych magnesów, przedmiotów stalowych, lub przewodników z prądem, to igła magnetyczna ustawia się w kierunku południka magnetycznego, t.j. w kierunku zgodnym z kierunkiem składowej poziomej indukcji magnetycznej Ziemi B PZ. Jeśli płaszczyznę zwoju (przewodnika kołowego) ustawimy tak, by kierunek pokazywany przez igłę pokrywał się z płaszczyzną zwoju (tak jak to pokazuje na Rys. 4 igła narysowana linią ciągłą), to po włączeniu prądu, pole o indukcji magnetycznej B K wytwarzane przez prąd spowoduje wychylenie igły o kąt α, do położenia wskazywanego przez sumę wektorów B PZ +B K (igła narysowana linią przerywaną).
5 5 gła magnetyczna B K α B PZ zwój R Rys. 4. Urządzenie pomiarowe Z Rys. 4. widzimy, że: BK BK tg α = a stąd BPZ = (9) B tg α PZ a po uwzględnieniu wzoru (6) B µµ = 0J PZ (10) R tg α Ponieważ w tym eksperymencie przewodnik kołowy ma 6 zwojów nawiniętych blisko siebie, to końcowy wzór na składową poziomą indukcji magnetycznej Ziemi w miejscu pomiaru będzie miał postać: 3µµ 0J BPZ = (11) R tg α gdzie µ 0 = 1, T m A -1, µ = 1 (pomiar w powietrzu), R = (0,15 ± 0,001)m, pozostałe wielkości objaśniono wyżej. Wzór (9) dla przewodnika zawierającego 6 zwojów możemy zapisać także w postaci: 3µµ 0J tg α = (1) R BPZ 3µµ 0 Jeśli oznaczymy tg α = y, J = x, to otrzymujemy równanie o postaci y = K x, gdzie K = jest R B współczynnikiem kierunkowym prostej. Tak więc z wykresu tg α = f (J) możemy wyznaczyć wartość K, a z niej także wartość B PZ... Metoda wahadła torsyjnego Gdy dipolowy moment magnetyczny p m magnesu tworzy kąt α z kierunkiem zewnętrznego pola magnetycznego o indukcji B, wówczas działa na niego moment siły M, którego wartość jest równa: M = pm B sin α, a dla małych kątów M = pm B α (13) Znak minus w tych wzorach wskazuje, że zwrot wektora M jest przeciwny do zwrotu wektora α, czyli że moment siły dąży do zmniejszenia kąta α. Zgodnie z drugą zasadą dynamiki dla ruchu obrotowego bryły sztywnej wokół ustalonej osi, która ma postać: d α M = (14) d t gdzie jest momentem bezwładności bryły. Porównując prawe strony równań (13) i (14) otrzymujemy równanie ruchu obrotowego magnesu w jednorodnym polu magnetycznym. Jest to ruch harmoniczny skrętny z okresem T: T = π (15) p B m PZ
6 6 Jeśli magnes wykonuje drgania wokół osi pionowej tylko pod wpływem ziemskiego pola magnetycznego, to B we wzorze (15) jest równe B PZ. Natomiast w przypadku, gdy ten sam magnes umieścimy w wytwarzanym przez solenoid polu magnetycznym o indukcji B S i kierunku zgodnym z polem ziemskim, to możemy zapisać skalarnie, że B = B PZ + B S. Przyjmujemy przy tym, że B S > 0 oraz J > 0 gdy zwroty B S i B PZ są zgodne, natomiast B S < 0 oraz J < 0 gdy B S i B PZ mają przeciwne zwroty. Okres drgań pod wpływem obu pól magnetycznych będzie wynosił: T = π (16) pm (BPZ + BS ) Ze względów praktycznych rozważymy tylko przypadek, gdy zwroty wektorów indukcji magnetycznej pola magnetycznego Ziemi i solenoidu są zgodne. Po przekształceniu wzoru (16) otrzymujemy: BPZ + BS = (17) pmt Podstawiając wyrażenie na B S podane we wzorze (7), otrzymujemy: N J = BPZ + µµ 0 (18) pmt W tym wzorze poza T oraz J wszystkie pozostałe wielkości mają wartość stałą. Jeżeli będziemy zmieniać wartość prądu J płynącego przez solenoid, to zmieniać się będzie okres T drgań magnesu. Jeśli 1 N wprowadzimy nowe zmienne y =, x = J, oraz oznaczymy = a, µµ 0 = b, to zamiast wzoru T pm (18) otrzymamy równanie prostej: a y = B z + b x (19) 1 Prosta = f(j) przecina oś J w punkcie (J0, 1/T = 0). Podstawiając wartości współrzędnych tego punktu T do równania (18) otrzymujemy: N J0 BPZ = µµ 0 (0) Z wykresu zależności 1/T od J możemy więc wyznaczyć wartość składowej poziomej indukcji magnetycznej Ziemi, przy czym nie musimy znać wartości ani momentu bezwładności magnesu, ani jego momentu magnetycznego p m. SOENOD NĆ MAGNES P A ZASACZ REGUOWANY + OPÓR ZABEZPECZAJĄCY Rys. 6. Uproszczony szkic aparatury pomiarowej
POMIAR SKŁADOWEJ POZIOMEJ INDUKCJI MAGNETYCZNEJ ZIEMI
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 55 POMIAR SKŁADOWEJ POZIOMEJ INDUKCJI MAGNETYCZNEJ ZIEMI I. WSTĘP I. 1. Pole magnetyczne Źródłem pola magnetycznego są ładunki
Ćwiczenie 41. Busola stycznych
Ćwiczenie 41. Busola stycznych Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Zapoznanie się z budową i działaniem busoli, wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Wprowadzenie
Ć W I C Z E N I E N R E-15
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat
Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem
Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli
Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski
Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola
Ramka z prądem w jednorodnym polu magnetycznym
Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.
Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego
Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego ĆWICZENIE 10 Obowiązkowa znajomość zagadnień Ziemskie pole magnetyczne, wielkości opisujące pola magnetyczne i elektryczne (tj.: wektor
Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności
POLE MAGNETYCZNE W PRÓŻNI
POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl
Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.
Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami?
1. Bieguny magnesów utrzymują gwoździe, jak na rysunku. Co się stanie z gwoździami po zetknięciu magnesów bliższymi biegunami? A. wszystkie odpadną B. odpadną tylko środkowe C. odpadną tylko skrajne D.
Piotr Janas, Paweł Turkowski Zakład Fizyki, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30
Piotr Janas, Paweł Turkowski Zakład Fizyki, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 30 POMIAR NATĘŻENIA ZIEMSKIEGO POLA MAGNETYCZNEGO Kraków, 08.02.2016 -2- CZĘŚĆ TEORETYCZNA ZAKRES
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty.
Magnetostatyka Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Magnetyzm Nazwa magnetyzm pochodzi od Magnezji
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego
Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,
Elektromagnetyzm. pole magnetyczne prądu elektrycznego
Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii
Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
Wprowadzenie do fizyki pola magnetycznego
Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Ćwiczenie nr 41: Busola stycznych
Wydział PRACOWNA FZYCZNA WFiS AGH mię i nazwisko 1.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 41: usola stycznych
Magnetyzm. Wykład 13.
Szczęście to łza, która się otarło i uśmiech, który się wywołało. Maxence van der Meersch Wykład 13. Magnetyzm 13.1. Pole magnetyczne Siła Lorentza Efekt Halla Siła magnetyczna 13.2. Prawo Biota-Savarta
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Temat XXIV. Prawo Faradaya
Temat XXIV Prawo Faradaya To co do tej pory Prawo Faradaya Wiemy już, że prąd powoduje pojawienie się pola magnetycznego a ramka z prądem w polu magnetycznym może obracać się. Czy z drugiej strony można
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
III. Literatura: J. L. Kacperski, I Pracownia fizyczna.
Pomiar składowej poziomej indukcji ziemskiego pola magnetycznego metodą oscylacji igły magnetycznej.. Cel ćwiczenia: wyznaczenie wartości składowej poziomej indukcji ziemskiego pola magnetycznego.. Przyrządy:
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Rozdział 4. Pole magnetyczne przewodników z prądem
Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.
MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Krótka historia magnetyzmu
Krótka historia magnetyzmu Określenie magnetyzm pochodzi od nazwy Magnezja jednostki regionalnej w Tesalii, w Grecji, gdzie kamienie magnetyczne (magnetyty, Fe3O4) występują bardzo powszechnie. Zjawisko
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
KOOF Szczecin: www.of.szc.pl
Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;
Ziemskie pole magnetyczne
Ćwiczenie nr 27 Ćwiczenie nr 08 (27). Pomiar natężenia pola magnetycznego ziemskiego. Ziemskie pole magnetyczne Cel ćwiczenia. Wyznaczenie indukcji magnetycznej ziemskiego pola magnetycznego. Zagadnienia
Ferromagnetyki, paramagnetyki, diamagnetyki.
Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO
POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium
Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
Pole magnetyczne - powtórka
ole magnetyczne - powtórka 1. Sztabkowy magnes trwały przełamano w połowie (patrz rysunek 1), a następnie złożono w sposób przedstawiony na rysunku 2. Zaznacz poprawne dokończenie zdania. o złożeniu magnesu
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
Własności magnetyczne materii
Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:
POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a
POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,