dr inż. Zbigniew Szklarski

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Zbigniew Szklarski"

Transkrypt

1 Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski

2 Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający się z prędkością v działa siła F q + zakrzywiająca v tor ładunku jak na rysunku, to w punkcie P istnieje indukcja magnetyczna. v 0 F 0 v B L F L max q( v B) v F L B F L q v B sin( v, B) B F Lmax q v B 0 lub F F B

3 B F Lmax q v T N kg m A s A s s Ruch cząsteczki w polu E i B F q E q( v B) od pola E od pola B Ruch w skrzyżowanych polach B E B jeżeli vb E to F 0 tor cząstki i jej prędkość nie ulegną zmianie 3

4 Doświadczenie Thomsona wyznaczenie e/m elektronu 1897 r. Cambridge, J.J. Thomson, wyznaczył q/m dla elektronu - odkrycie elektronu Przyspieszenie w polu elektrycznym Zakrzywienie toru w polu magnetycznym e 10 m v BR U 17,5610 B R mv eu mv eu C kg evb mv R U v BR 4

5 Zadanie Wiązka elektronów przechodzi bez odchylenia przez lampę oscyloskopową kiedy natężenie pola elektrycznego wynosi 3000 V/m, a indukcja skrzyżowanego z nim pola magnetycznego wynosi 1,4 Gs; 1Gs (gauss) = 10-4 T. Długość płytek odchylających wynosi x 1 = 4 cm, a odległość od końca płytek do ekranu wynosi x = 30 cm. Oblicz pionowe odchylenie wiązki na ekranie przy wyłączonym polu magnetycznym 5

6 Efekt Halla V d V u prędkość unoszenia F L siła Lorentza b V b V u Θ e h V u i F L Θ e E Θ B V a B F ee e( V B) siły się równoważą więc ee ev B u u U ab = V a - V b j ponieważ j nevu więc powstałe pole elektryczne E B ne U ab i B i z pomiaru napięcia Halla U ab : E stąd U R B h hd ne ab H d 1 gdzie R H jest stałą Halla ne Z czego zrobić hallotron? V a 6

7 Cyklotron siła Lorentza jest siłą dośrodkową stąd r mv qb qvb mv r skoro V r qb m f qb m jest to tzw. częstotliwość cyklotronowa. Jeżeli obserwujemy różne promienie torów r 1 > r dwóch cząstek o jednakowych ładunkach i prędkościach gdzie m V r 1 1 q B > m V r q B m 1 > m wykorzystanie spektroskopia masowa. 7

8 Cyklotron (193r.) dostrajamy generator napięcia zmiennego do częstotliwości cyklotronowej f 0 qb m energia cząstek zależy od promienia mv R qb gdzie prędkość cząstki V qbr m stąd energia kinetyczna mv q B R E k m 8

9 Wykorzystanie: - reakcje jądrowe - eksperymenty fizyki wys. energii - promieniowanie synchrotronowe. Środowiskowe Laboratorium Ciężkich Jonów w Warszawie: m Ø, 10 MeV/ jedn. masy Ernest O. Lawrence (USA) 1931 r. 10 cm Ø, 80 kev 1933 r. 70 cm Ø, 1,MeV 9

10 Siła elektrodynamiczna Przewodnik z prądem w polu magnetycznym ruch dużej ilości ładunków, na które działają siły Lorentza ich wypadkowa to siła elektrodynamiczna F i( l B) l Zastosowanie: Silnik elektryczny Mierniki analogowe 10

11 Silnik elektryczny ramka z prądem w polu magnetycznym. Analogowy miernik woltomierz, amperomierz, galwanometr. Na ramkę z prądem w zewnętrznym polu magnetycznym działa moment siły μ moment magnetyczny τ μb Dla porównania: dla dipola elektrycznego M pe 11

12 Moment magnetyczny Pod wpływem momentu siły ramka ustawia się prostopadle do kierunku wektora indukcji pola magnetycznego, tak aby μ B Moment magnetyczny definiowany jest dla każdego zamkniętego obwodu, przez który płynie prąd I: liczba zwojów μ NIAnˆ pole powierzchni wektor jednostkowy prostopadły do powierzchni A 1

13 Dipol magnetyczny Moment magnetyczny charakteryzuje każdy dipol magnetyczny. Dipolem magnetycznym jest nie tylko ramka (pętla, cewka), przez który płynie prąd lecz również: magnes sztabkowy (μ 5 J/T) Ziemia (w przybliżeniu μ 8,0 10 J/T ) większość cząstek elementarnych, np. elektron (μ 9, J/T), proton (μ 1, J/T), neutron 13

14 Moment magnetyczny cząstki mikroskopowej powstaje na skutek jej ruchu w przestrzeni (np. ruch orbitalny elektronu w atomie) lub jest to tzw. wewnętrzny moment magnetyczny, nie związany z żadnym ruchem mają go cząstki obdarzone spinem (przy czym moment magnetyczny jest związany ze spinem poprzez czynnik giromagnetyczny). Neutron ma ujemny moment magnetyczny, co oznacza, że gdy spin neutronu jest skierowany w górę, to linie pola magnetycznego w środku dipola są skierowane w dół. Na moment magnetyczny atomu składają się: wypadkowy moment magnetyczny elektronów oraz moment magnetyczny jądra. strzałka symbolizuje rzut spinu na kierunek zewnętrznego pola magnetycznego 14

15 Energia potencjalna dipola magnetycznego w zewnętrznym polu magnetycznym. E p μ B najwyższa energia E p najniższa energia E p Dla porównania: energia dipola elektrycznego w zewnętrznym polu elektrycznym p E E p 15

16 Dipol - podsumowanie Własności dipola typ dipola wzór moment siły w polu elektryczny p E zewnętrznym magnetyczny m B energia w polu elektryczny E p p E zewnętrznym magnetyczny pole w odległych punktach na osi dipola elektryczny magnetyczny E p m B 1 p E 3 40 x 0 B m 3 x 16

17 Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez przewodnik nie płynie prąd, igła ustawia się wzdłuż kierunku pola magnetycznego ziemskiego Kiedy przez przewodnik płynie prąd, igła odchyla się od kierunku pola magnetycznego Ziemi. Dlaczego? 17

18 Wyznaczanie składowych pola magnetycznego ziemskiego Busola stycznych Instrument został po raz pierwszy opisany przez francuskiego fizyka Claude Pouillet'a w 1837 roku 18

19 Prawo Amper a C B d l o I C krążenie pola magnetycznego prąd wewnątrz konturu całkowania C μ o - przenikalność magnetyczna próżni, stała uniwersalna 7 μ o 4 π10 T m / A 19

20 kontur całkowania I C =i 1 -i Pole magnetyczne wokół przewodnika prostoliniowego B d l B=const na krzywej C (kontur całkowania jest okręgiem ) dl krążenie wektora indukcji magnetycznej po okręgu o promieniu r C B d l B C dl π rb 0

21 korzystając z prawa Ampère a π rb Przewodnik o promieniu R, przez który płynie prąd I: C B d l μo Pole magnetyczne w odległości r od przewodnika Czy istnieje pole magnetyczne wewnątrz przewodnika? i π rb B μo π krążenie wektora indukcji magnetycznej po okręgu o promieniu r wyraża się tym samym wzorem dla r<r i r>r Obliczamy natężenie prądu I C wewnątrz konturu (r<r): I I gęstość prądu j jest stała j C I π r π R r I C R i r 1

22 Z prawa Ampère a B d I l o I C π Br μ o r R C B μ o I π R pole magnetyczne wewnątrz przewodnika r Pole magnetyczne wewnątrz solenoidu pole magnetyczne na zewnątrz przewodnika: B μo i π r Wydział Informatyki, Elektroniki i

23 Solenoid wytwarza jednorodne pole magnetyczne i pełni podobną rolę jak kondensator płaski w elektrostatyce solenoid magnes sztabkowy 3

24 nieskończony solenoid c B dl B dl B dl B dl C b a b d c a d B dl B h B d l dlaczego? B dl B=0 B dl C B d l Bh μ solenoid idealny o I C B μo pole jednorodne gdzie I C ( nh) i liczba zwojów na jednostkę długości ni natężenie prądu w uzwojeniu solenoidu 4

25 Zadanie. Wykorzystać prawo Ampère a do znalezienia wartości wektora indukcji wewnątrz toroidu, przez który płynie prąd o natężeniu I. N - liczba zwojów toroidu a < r < b B μ o NI π r 5

26 Oddziaływanie równoległych przewodników z prądem pole magnetyczne wytworzone przez prąd I 1 siła działająca na przewód z prądem I ma wartość F B F 1 μo i 1 π d ILB1 μo L I1 I π d Definicja ampera: 1A jest to natężenie prądu stałego, który płynąc w dwóch równoległych, prostoliniowych, nieskończenie długich przewodach o znikomo małym przekroju poprzecznym, umieszczonych w próżni w odległości 1m, wywołuje między tymi przewodami siłę o wartości 10-7 N na każdy metr długości przewodu. 6

27 Prawo Biota-Savarta Zasada superpozycji obowiązuje nie tylko w elektrostatyce: μo I d l r db 3 4π r 0I dlsin 0I dl r db B 3 4 r 4 r Przykład przewodnik prostoliniowy dx db 0i dx sin 4 r gdzie r sin sin x x R R R x i R r 7

28 B 0i R dx 4 x R 3/ i 0 x 4 x R 1/ B i 0 R Przykład przewodnik kołowy dl Zauważmy że: db r ze względu na symetrię db 0 B db db = db cos gdzie db i 0 4r dl sin 90 B 0 ir 0 B R 3/ x db 4 ir 0 R r db db R x 3/ dl X db cos R r x R 8 R dl R

29 w środku przewodnika kołowego dla x = 0 B 0 ir 0i 3 R R jeżeli x >> R to B 0iR x B ~ x - jak pole od dipola Jeżeli mamy N zwojów, każdy o powierzchni S = R od cewki: B NiS 0 0 B m 3 3 x x to pole gdzie m jest magnetycznym momentem dipolowym cewki o N-zwojach. 9

30 Pole magnetyczne a elektryczne Linie pola elektrycznego zaczynają się i kończą na ładunku elektrycznym Linie pola magnetycznego tworzą zamknięte pętle. Na niczym się nie zaczynają i nie kończą 30

31 Prawo Gaussa dla magnetyzmu Istnieje pojedynczy ładunek punktowy monopol elektryczny Brak monopoli magnetycznych. Magnes czy pętla z prądem stanowią dipol magnetyczny 31

32 S E ds q 0 S B ds 0 ρ div E divb 0 ε o Treścią prawa Gaussa dla magnetyzmu jest fakt, że pole magnetyczne jest bezźródłowe. Strumień pola magnetycznego przez powierzchnię zamkniętą jest zawsze równy zeru. Nie można wyodrębnić pojedynczego bieguna magnetycznego nie istnieją monopole magnetyczne. B S B d S 0 3

33 Przypomnienie - operatory Pole Funkcja pola Działanie na funkcji pola Oznaczenie działania i określenie Wynik działania grad i j k x y z skalarne skalar gradient skalara wektor dywergencja wektora diva A A x y A x y z z skalar wektorowe wektor rotacja wektora i j k rota x y z Ax Ay Az wektor 33

34 Twierdzenie Stokes a Podobnie jak twierdzenie Gaussa-Ostrogradskiego wiązało strumień pola przechodzący przez powierzchnię z dywergencją w punkcie: S E d A V div div E E E dv ρ ε o to twierdzenie Stokes a wiąże krążenie wektora po krzywej C z rotacją w punkcie: F dl ( rot F) ds C S 34

35 F dl ( rot F) ds C S całka powierzchniowa, po powierzchni S ograniczonej krzywą C strumień! oznacza to, że krążenie pola wektorowego po zamkniętym i zorientowanym konturze C jest równe strumieniowi rotacji pola przez dowolną powierzchnię S ograniczoną tym konturem. Twierdzenie Stokes a dla pola elektrycznego: E dl S rote ds

36 Zastosowanie prawa Stokes a dla pola magnetycznego: B dl rotb ds Z prawa Ampera: A więc: S S B rot B ds dl 0 S 0 i oraz j ds B dl 0 S i S j ds j ds W zapisie różniczkowym rot B 0 j B 0 j 36

37 Prawo Gaussa i Ampera w postaci całkowej i różniczkowej Pole elektrostatyczne Pole magnetyczne Prawo Gaussa E ds q 0 dive B ds 0 0 divb 0 Prawo Ampera B dl 0i rotb 0 j 37

38 Podsumowanie Pole magnetyczne w próżni: div B 0 B rot 0 j pole jest bezźródłowe jest to pole wirowe Pole magnetyczne w ośrodku: div B 0 rot B 0 j Nie istnieją monopole magnetyczne nie ma jednobiegunowości! 38

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1 POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v F L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Ramka z prądem w jednorodnym polu magnetycznym

Ramka z prądem w jednorodnym polu magnetycznym Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Pole magnetyczne Linie pola magnetycznego analogiczne do linii pola elektrycznego Pole magnetyczne jest polem bezźródłowym (nie istnieje monopol magnetyczny!) Prawo Gaussa dla pola

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Podstawy fizyki sezon 2 5. Pole magnetyczne II Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Rozdział 4. Pole magnetyczne przewodników z prądem

Rozdział 4. Pole magnetyczne przewodników z prądem Rozdział 4. Pole magnetyczne przewodników z prądem 2018 Spis treści Prawo Ampere'a Zastosowanie prawa Ampere'a - prostoliniowy przewodnik Zastosowanie prawa Ampere'a - cewka Oddziaływanie równoległych

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

ver magnetyzm

ver magnetyzm ver-2.01.12 magnetyzm prądy proste prądy elektryczne oddziałują ze soą. doświadczenie Ampère a (1820): F ~ 2 Ι 1 Ι 2 siła na jednostkę długości przewodów prądy proste w próżni jednostki w elektryczności

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Magnetyzm. Wykład 13.

Magnetyzm. Wykład 13. Szczęście to łza, która się otarło i uśmiech, który się wywołało. Maxence van der Meersch Wykład 13. Magnetyzm 13.1. Pole magnetyczne Siła Lorentza Efekt Halla Siła magnetyczna 13.2. Prawo Biota-Savarta

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji

4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji Rozdział 4 Magnetostatyka 4.1 Pole magnetyczne. Siła Lorentza. Wektor indukcji magnetycznej Przez magnetostatykę rozumiemy tę część nauki o magnetyzmie, która dotyczy stałych, niezależnych od czasu pól

Bardziej szczegółowo

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne

Podstawy fizyki sezon 2 4. Pole magnetyczne Podstawy fizyki sezon 2 4. Pole magnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski

Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

3. Mechanika punktu materialnego, kinematyka (opis ruchu), dynamika (przyczyny ruchu).

3. Mechanika punktu materialnego, kinematyka (opis ruchu), dynamika (przyczyny ruchu). ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2016/17 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Podstawy fizyki sezon 2 5. Pole magnetyczne II Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha opracowane na podstawie: Halliday & Resnick, J. Walker Fundamentals of Physics extended 10th Edition, John Wiley & Sons, Inc. AGH,

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Magnesy krótka historia

Magnesy krótka historia Siła Lorentza Magnesy krótka historia Magnetyczne właściwości rud żelaza znane były w starożytności Te naturalne magnesy nie był silne i wystarczały do demonstrowania działania siły magnetycznej na lekkie

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego

Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego Wyznaczenie składowej poziomej indukcji ziemskiego pola magnetycznego ĆWICZENIE 10 Obowiązkowa znajomość zagadnień Ziemskie pole magnetyczne, wielkości opisujące pola magnetyczne i elektryczne (tj.: wektor

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Podstawy fizyki sezon 2 6. Indukcja magnetyczna Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo