Model programowy procesora ColdFire
|
|
- Michał Czyż
- 7 lat temu
- Przeglądów:
Transkrypt
1 Model programowy procesora ColdFire 1
2 Model programowy procesora ColdFire 2
3 Kolejność bajtów w pamięci (1) Bajt najmniejsza adresowalna jednostka pamięci komputerowej Endianess Big-endian middle-endian od lewej do prawej podobnie jak w języku polskim, angielskim Motorola, SPARC, ARM Little-endian od prawej do lewej liczby zmiennoprzecinkowe podwójnej precyzji VAX and ARM podobnie jak w językach arabskich, hebrajski Intel x86, 6502 VAX Bi-Endian ARM, PowerPC (za wyjątkiem PPC970/G5), DEC Alpha, MIPS, PA-RISC oraz IA64 3
4 Kolejność bajtów w pamięci (2) Architektura 8-bitowa 7 0 0x Byte 1 0x Byte 2 0x Byte 3 0x Byte 4 0x Byte x x12 0x x34 0x x56 0x x78 0x x90 4
5 Kolejność bajtów w pamięci (3) Byte 4... Byte 1 MSB LSB Big-endian 0x Byte 4 Byte 3 Byte 2 Byte 1 0x Byte 8 0x Byte 12 Byte 7... Byte 6... Byte x C 0x Little-endian 0x Byte 1 Byte 2 Byte 3 Byte 4 0x Byte 5 0x Byte 9 Byte 6... Byte 7... Byte x C 0x
6 Kolejność bajtów w pamięci (4) Podwójne słowo (DW): 0x Big-endian 0x x12 0x34 0x56 0x78 0x Byte 5 0x Byte 9 32 Byte 6... Byte Byte x C 0x Little-endian x x78 0x56 0x34 0x12 0x Byte 8 0x Byte 12 Byte 7... Byte 6... Byte x C 0x
7 Kolejność bajtów w pamięci (5) Jak rozpoznać architekturę procesora oraz rozkład bajtów w pamięci? #define LITTLE_ENDIAN 0 #define BIG_ENDIAN 1 int machineendianness() { long int i = 1; const char *p = (const char *) &i; if (p[0] == 1) // Lowest address contains the least significant byte return LITTLE_ENDIAN; else return BIG_ENDIAN; } 7
8 Model programowy procesora ColdFire 8
9 Przykład użycia rejestrów danych y = wsp. temp. * ADC + wsp. skalujacy ACC = wsp. temp. ACC = ACC * ADC ACC = ACC + wsp. skalujacy y = ACC D0 = wsp. temp. D1 = wsp. skalujacy D2 = ADC D2 = D0 * D2 y = D2 + D1 9
10 Przykład użycia rejestrów adresowych (1) Zapisanie tablicy adresów przerwań 4B VBR Adres 1 Adres komórek VBR = 0x A1 = VBR (A1) = adres procedury przerwania A1 = A1 + 1 Adres
11 Przykład użycia rejestrów adresowych (2) y = A0 + A1 4B A0 = adres 1 A1 = adres 2 A3 = adres 3 D0 = 0 y Dana 1 Dana 1 Dana 2 Dana 2 n komórek A0, A1 n komórek A = adres 2 ACC = (A) A = adres 1 ACC = ACC + (A) A = adres 3 (A) = ACC 4B Dana n Dana n (A3, D0) = (A1, D0) + (A2, D0) 11
12 Model programowy procesora ColdFire Rejestry dostępne w trybie superużytkownika BA31 BA30 VAL IPSBAR INTERNAL PERIPHERAL SYSTEM BASE ADDRESS REGISTER 12
13 Rejestry mikrokontrolera MCF5282 Liczba ujemna w kodzie U2 U2 przeniesienie/pożyczka NKB przeniesienie/pożyczka 13
14 Instrukcja dodawania 14
15 Instrukcja porównująca argumenty 15
16 Instrukcja skoku warunkowego 16
17 Moduł arytmetyczny EMAC (1) Enhanced Multiply-ACcumulate Unit 17
18 Moduł arytmetyczny EMAC (2) 18
19 Moduł portów wejścia-wyjścia (General Purpose I/O module) 19
20 Moduł portów I/O (1) 20
21 Moduł portów I/O (2) Zewnętrzne magistrale danych i adresowe 21
22 Moduł portów I/O (3) Wyprowadzenie skonfigurowane jako DebugDATA oraz Status bits po restarcie procesora 22
23 Rejestry sterujące PnPAR - rejestr kontrolujący przeznaczenie portu DDRn - Rejestr kontrolujący kierunek sygnałów portu I/O PORTn - rejestr kontrolujący stan wyprowadzeń wyjściowych PORTnP - rejestr odwzorowujący stan wyprowadzenia I/O SETn/CLRn - Rejestr służący do ustawiania/zerowania przerzutnika wyjściowego 23
24 Schemat blokowy portu I/O Port I/O PORTn odczyt PORTn zapis D SETn Q D Q DDRn CLRn Clk Clk Clk PORTnP odczyt stanu logicznego wyprowadzenia I/O 24
25 Przykładowe rejestry sterujące modułu I/O 25
26 Podłączenie wyświetlacza LCD 26
27 Port przerwań zewnętrznych (EPORT) 27
28 Tablica wektorów przerwań 28
29 Zakresy napięć wejściowych 29
30 Moduł generatora sygnału zegarowego (Clock Module) 30
31 Modułu generatora sygnału zegarowego x
32 Kamerton 32
33 Generator z zamkniętą pętlą fazową PLL Phase-Locked Loop (PLL) U D 33
34 Rejestry sterujące modułem PLL Blokada pętli f < * fclk Utrata synchronizacji f > * fclk 34
35 Częstotliwość sygnału zegarowego fsys * 2 ***(MFD 2)+ /2)2RFD 88 Mhz 28 *(MFD / 2RFD fsys == fref Mhz = 64+MHz 35
36 Moduł transceivera szeregowego UART (Universal Asynchronous Receiver/Transmitter module) 36
37 Transceiver UART Rejestr przesuwny D0-D7 Nadajnik TxD Clk D0-D7 Odbiornik RxD Clk 37
38 Ramka danych transmitera UART Mark Space 38
39 Kabel null modem EIA
40 Dodatkowe linie sterujące Hardware Flow Control 40
41 Pełny kabel null modem 41
42 Sygnały złącza zgodne ze standardem EIA232 42
43 Poziomy napięć określone przez standard EIA 232 Wyjście procesora Standard EIA
44 Konwerter poziomów napięć MAX 232 (5 V) MAX 3232 (3,3 V) CD Carried Detect RI Ring Indicator 44
45 Moduł transmitera procesora ColdFire UART 0 UART 2 45
46 Interfejs modułu transmitera 46
47 Źródło sygnału zegarowego Nadajnik odpowiedzialny jest za generowanie ramek zgodnych ze standardem EIA232 (bit startu, 5-8 bitów danych, opcjonalny bit parzystości, bity stopu). Odbierane dane są próbkowane na narastającym zboczu zegara. Jeżeli długość ramki się nie zgadza ustawiona jest flaga FE. Jeżeli nie zgadza się parzystość ustawiana flaga jest PE. flaga OE ustawiana jest, gdy przepełni się bufor odbiorczy lub FIFO. flaga RB ustawiana jest, gdy odebrany jest sygnał Receiver Break. 47
48 Przykład obliczenia dzielnika sygnału zegarowego Baudrate = fclk = 66 Mhz Divider = 107, d 0x6B UBG1n = 0x00, UBG2n = 0x6B 48
49 Rejestry modułu UART UCR[MISC] = 001b 49
50 Rejestry modułu UART 50
51 Rejestr sterujący UMR1n 51
52 Rejestr statusowy USRn 52
53 Przebiegi sterujące nadajnikiem wyjście TxD '01' tr. wł. UCRn '1' tr. ready wew. syg. sterujące wejście wyjście 53
54 Przebiegi sterujące odbiornikiem wejście RxD '01' rec. wł. UCRn Flaga RxRDY Flaga FFULL wew. syg. sterujące Flaga OE Flagi RB, FE, PE tracą ważność Reset Error Status (UCRn) 54
55 Tryby diagnostyczne modułu UART CF PC 55
56 Rejestr sterujący UMR2n 56
57 Przerwania generowane przez moduł UART, transmisja DMA (1) wybór przerwania: RxRDY/FFULL narastające zbocze na linii /CTS wykryto sygnał przerwy RxRDY lub FFULL (UMR1x) bufor nadajnika wolny 0 dana w buforze FIFO 1 bufor FIFO zapełniony 57
58 Tablica wektorów przerwań 58
59 Wyprowadzenia modułu UART 59
60 Konfiguracja wyprowadzeń modułu UART 60
61 Przerwania generowane przez moduł UART, transmisja DMA (2) MISC=0x010 MISC=0x011 IACKLPRn=UART_IRQ, adres IRQ w tab. IRQ COS / DB / FFUL/RxRDY / TxRDY IRQ dla UISRn[cos]? RCS=1101, TCS=1101 IRQ od RxRDY, czy FFULL? Sterowanie flagą ERR PM=10 brak kontroli parzystości B/C=11 ramka 8 bitowa CM=00, tryb normalnej pracy SB=0111, pojedyncza długość TC=01, RC=01 włącz TxD oraz RxD Konfiguracja wprowadzeń TxD/RxD oraz UBG1n/BG2n 61
62 Timery procesora MCF528x (1) Moduł timera PIT (Programmable Interrupt Time Module) (2) Moduł timera GPT (General Purpose Timer Module) (3) Moduł timera DMA (DMA Timer Module) (4) Moduł licznika WatchDog 62
63 Moduł timera PIT (Programmable Interrupt Timer Module) 63
64 Schemat blokowy modułu timera PIT
65 Rejestry sterujące PIT0 - PIT3 65
66 Rejestr sterujący oraz statusowy 66
67 Tryby pracy timera PIT 67
68 Automatyczne przeładowanie timera 0xFFFF PMR 0x8FFF 0x0000 PIF=1 jeżeli PITcounter = 0x0000 PCSRn [RLD] = 0 PCSRn [RLD] = 1 PIF=1 jeżeli PITcounter = 0x0000 PIT timer = PMR 68
69 Czas odmierzany przez timer PIT fclk = 66 MHz => 120 ns 130 s 69
70 Tablica wektorów przerwań 70
71 Moduł timera GPT (General Purpose Timer Module) 71
72 Możliwości timera GPT Input capture pomiar długości sygnałów doprowadzonych do wejścia IOSn. Minimalna długość mierzonego impulsu musi być większa od dwóch taktów zegara. Output compare generacja przebiegów o określonej polaryzacji, częstotliwości lub długości (ustawienie,negacja lub wyzerowanie wyprowadzenia sterującego). Event counter zliczanie zdarzeń (zboczy) o określonej polaryzacji. Gated time accumulation akumulacyjne zliczanie czasu trwania doprowadzonych impulsów 72
73 Schemat blokowy timera GPT A/B Input Capture Output Compare zew. zegar incrementujący licznikgpt 73
74 Sygnały wejścia/wyjścia timera GPT A/B 74
75 Rejestr danych portu timera GPT 75
76 Rejestr kierunku danych portu timera GPT 76
77 Rejestry sterujące timerami GPTA/GPTB 77
78 Rejestr stanu timera GPT 78
79 Rejestr stanu PA 79
80 Rejestr sterujący GPTSCR1 80
81 Rejestr sterujący GPTCLT1 81
82 Rejestr sterujący GPTCLT2 82
83 Rejestr sterujący GPTSCR2 83
84 Inne rejestry timera GPT GPTCNT 16-bit GPT Counter Register GPTC0 GPTC3 16-bit GPT Channel Registers GPTPACNT 16-bit Pulse Accumulator Counter GPTPACTL 8-bit Pulse Accumulator Control Register GPTPAFLG 8-bit Pulse Accumulator Flag Register GPTIOS 8-bit GPT IC/OC Select Register GPTCFORC 8-bit Compare Force Register GPTOC3M 8-bit Output Compare 3 Mask Register GPTOC3D 8-bit Output Compare 3 Data Register 84
85 Tablica wektorów przerwań 85
86 Generacja przebiegu prostokątnego TOF =1 0xFFFF 0xBFFF 0x7FFF 0x4FFF 0x0000 CnF = 1 OCn 86
87 Modulacja szerokości impulsów PWM (1) Pulse Width Modulation Wypełnienie D = szerokość impulsu / okres impulsu 87
88 Modulacja szerokości impulsów PWM (2) Pulse Width Modulation 88
89 Implementacja PWM z użyciem GPT Kanał 0 modułu GPT A okres D = 100 % OC0 = '1' OC0 = '0' D = 25 % 0x3FFF D = 50 % 0x7FFF 0 D = 75 % 0xBFFF 0xFFFF 89
90 Moduł timera DMA (DMA Timers) 90
91 Schemat blokowy timera DMA (DTIM0 - DTIM3) 91
92 Charakterystyka timera DMA Maksymalny okres timera s (~74 h) dla fclk=66 Mhz (dzielnik 16-bit, dzielnik 8-bit, licznik 32-bit), Minimalny okres timera 15 ns, Możliwość reakcji na zewnętrzne zdarzenia oraz generacji sygnału o kreślonym okresie, Możliwość zgłaszania przerwań oraz incjowania transferów DMA. 92
93 Zerowanie licznika DTCNn DTMRn [FRR] Free Run/Restart = 0 0xF...F DTRRn 0x0...0 DTMRn [FRR] Free Run/Restart = 1 93
94 Rejestry konfiguracyjne 94
95 Rejestr sterujący timerem DMA 95
96 Pomocniczy rejestr sterujący 0 => IRQ 1 => DMA 96
97 Rejestr statusowy 97
98 Tablica wektorów przerwań 98
99 Przykład DTMRn[PS] = 0x00-0xFF <= prescaler fclk = 66 MHz prescaler wstępny = 16 DTMRn[PS] = 0x7F <= prescaler równy 127 Rejestr porównawczy = 0xFBC5 DMA timer time-out = 1/66 Mhz * 16 * (127+1) * =
100 Moduł sterujący sygnałem resetujący (Reset Controller Module) 100
101 Schemat blokowy modułu sterującego sygnałem reset min. 4 cykli zegara ok. 512 cykli zegara flagi źródła uaktywniającego dostępne są RSR Jeżeli Vcc < VLVD (2.7 V) 101
102 Rejestr sterujący 102
103 Moduł timera Watchdog (Watchdog Timer Module) 103
104 Timer Watchdog (1) Watchdog (z ang. "Czuwający pies") to urządzenie, najczęściej układ elektroniczny, chroniący system mikroprocesorowy przed zbyt długim przebywaniem w stanie zablokowania (zawieszeniem się). Jego działanie polega na zresetowaniu procesora w przypadku nieotrzymania od niego sygnału w określonym czasie. 16-bitowy licznik dekrementowany sygnałem zegarowym podzielonym przez 8192 (2^13) Hz / 8192 = 8056 Hz (124 µs 8.13 s) 104
105 Timer Watchdog (2) 1. wpis 0x wpis 0xAAAA 105
106 Rejestry modułu Watchdog 106
Urządzenia peryferyjne procesora ColdFire
Urządzenia peryferyjne procesora ColdFire 1 Moduł generatora sygnału zegarowego (Clock Module) 2 Generator z pętlą PLL (1) Pętla synchronizacji fazy, pętla sprzężenia fazowego, PLL (ang. Phase Locked Loop)
Zaliczenie Termin zaliczenia: Sala IE 415 Termin poprawkowy: > (informacja na stronie:
Zaliczenie Termin zaliczenia: 14.06.2007 Sala IE 415 Termin poprawkowy: >18.06.2007 (informacja na stronie: http://neo.dmcs.p.lodz.pl/tm/index.html) 1 Współpraca procesora z urządzeniami peryferyjnymi
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
Technika Mikroprocesorowa
Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
Architektura mikroprocesorów z rdzeniem ColdFire
Architektura mikroprocesorów z rdzeniem ColdFire 1 Rodzina procesorów z rdzeniem ColdFire Rdzeń ColdFire V1: uproszczona wersja rdzenia ColdFire V2. Tryby adresowania, rozkazy procesora oraz operacje MAC/EMAC/DIV
Mikroprocesory i Mikrosterowniki Liczniki Timer Counter T/C0, T/C1, T/C2
Mikroprocesory i Mikrosterowniki Liczniki Timer Counter T/C0, T/C1, T/C2 Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com.
Uniwersalny asynchroniczny. UART Universal Asynchronous Receier- Transmiter
UART Universal Asynchronous Receier- Transmiter Cel projektu: Zbudowanie układu transmisji znaków z komputera na wyświetlacz zamontowany na płycie Spartan-3AN, poprzez łacze RS i program TeraTerm. Laboratorium
SML3 październik
SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
MIKROPROCESORY architektura i programowanie
Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu
Metody obsługi zdarzeń
SWB - Przerwania, polling, timery - wykład 10 asz 1 Metody obsługi zdarzeń Przerwanie (ang. Interrupt) - zmiana sterowania, niezależnie od aktualnie wykonywanego programu, spowodowana pojawieniem się sygnału
4 Transmisja szeregowa, obsługa wyświetlacza LCD.
1 4 Transmisja szeregowa, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy, - ramka transmisyjna, - przeznaczenie buforów obsługi
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
Programowanie mikrokontrolerów. 15 stycznia 2008
Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 15 stycznia 2008 RS232 Jeden z najstarszych interfejsów szeregowych Pierwotne przeznaczenie to łączenie terminali znakowych z komputerem, często
4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD.
13 4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy,
TECHNIKA MIKROPROCESOROWA
LABORATORIUM TECHNIKA MIKROPROCESOROWA Port transmisji szeregowej USART ATmega Opracował: Tomasz Miłosławski 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami komunikacji mikrokontrolera
Współpraca procesora z urządzeniami peryferyjnymi
Współpraca procesora z urządzeniami peryferyjnymi 1 Współpraca procesora z urządzeniami peryferyjnymi Interfejsy dostępne w procesorach rodziny ColdFire: Interfejs równoległy, Interfejsy szeregowe: Interfejs
Pamięci i urządzenia peryferyjne Wprowadzenie do przedmiotu
Pamięci i urządzenia peryferyjne Wprowadzenie do przedmiotu Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez
Wstęp: Interfejs portu równoległego 6821 i portu szeregowego 6850 firmy Motorola
Wstęp: Interfejs portu równoległego 6821 i portu szeregowego 6850 firmy Motorola Struktura systemu 68008 z układami peryferyjnymi 6821, 6050 Na rysunku 1.1 pokazano strukturę stanowiska z interfejsami
MIKROKONTROLERY I MIKROPROCESORY
PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy
Współpraca procesora z urządzeniami peryferyjnymi
Współpraca procesora z urządzeniami peryferyjnymi 1 Moduł transceivera szeregowego UART (Universal Asynchronous Receiver/Transmitter module) 2 Interfejs szeregowy EIA RS232 3 Transceiver UART Rejestr przesuwny
System mikroprocesorowy i peryferia. Dariusz Chaberski
System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
Timery w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Timery w mikrokontrolerach
Hardware mikrokontrolera X51
Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)
Komunikacja w mikrokontrolerach Laboratorium
Laboratorium Ćwiczenie 2 Magistrala UART Program ćwiczenia: konfiguracja transmisji danych między komputerem PC a mikrokontrolerem przy użyciu magistrali UART. Zagadnienia do przygotowania: podstawy programowania
Szkolenia specjalistyczne
Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com
Mikroprocesory i mikrosterowniki Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej Ćwiczenie nr 4
1 Ćwiczenie nr 4 Program ćwiczenia: Interfejs szeregowy SPI obsługa sterownika ośmiopozycyjnego, 7-segmentowego wyświetlacza LED Interfejs szeregowy USART, komunikacja mikrokontrolera z komputerem PC.
TECHNIKA MIKROPROCESOROWA
LABORATORIUM TECHNIKA MIKROPROCESOROWA Port transmisji szeregowej USART MCS'51 Opracował: Tomasz Miłosławski 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami komunikacji mikrokontrolera
Ćwiczenie 7 Matryca RGB
IMiO PW, LPTM, Ćwiczenie 7, Matryca RGB -1- Ćwiczenie 7 Matryca RGB IMiO PW, LPTM, Ćwiczenie 7, Matryca RGB -2-1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z inną oprócz RS - 232 formą szeregowej
Przerwania, polling, timery - wykład 9
SWB - Przerwania, polling, timery - wykład 9 asz 1 Przerwania, polling, timery - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Przerwania, polling, timery - wykład 9 asz 2 Metody obsługi zdarzeń
Współpraca procesora z urządzeniami peryferyjnymi
Współpraca procesora z urządzeniami peryferyjnymi 1 Współpraca procesora z urządzeniami peryferyjnymi Interfejsy dostępne w procesorach rodziny ColdFire: Interfejs równoległy, Interfejsy szeregowe: Interfejs
Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1
Dodatek C 1. Timer 8-bitowy (Timer0) 1.1. Opis układu Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1 Rys. 1. Schemat blokowy timera Źródłem sygnału taktującego może być zegar
Mikrokontroler ATmega32. System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe
Mikrokontroler ATmega32 System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe 1 Przerwanie Przerwanie jest inicjowane przez urządzenie zewnętrzne względem mikroprocesora, zgłaszające potrzebę
Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów
Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście
Technika mikroprocesorowa I Wykład 3
Technika mikroprocesorowa I Wykład 3 Instrukcje wejścia-wyjścia Z80 Odczyt na akumulator danej z urządzenia we-wy o adresie 8-mio bitowym n Odczyt do rejestru r danej z urządzenia we-wy o adresie zawartym
Liczniki z zastosowaniem
Liczniki z zastosowaniem FPGA i µc Fizyka Medyczna, studia II stopnia, Dozymetria i elektronika w medycynie 1 Zliczanie impulsów Źródło impulsów Kondycjonowanie Licznik Wyświetlacz Układ czasowy 2 Liczniki
Wykład 2. Przegląd mikrokontrolerów 8-bit: -AVR -PIC
Wykład 2 Przegląd mikrokontrolerów 8-bit: -AVR -PIC Mikrokontrolery AVR Mikrokontrolery AVR ATTiny Główne cechy Procesory RISC mało instrukcji, duża częstotliwość zegara Procesory 8-bitowe o uproszczonej
Układy czasowe / liczniki (timers/counters)
Układy czasowe / liczniki (timers/counters) Współpraca MK z otoczeniem w czasie rzeczywistym wymaga odliczania czasu, zliczania zdarzeń lub generowania złożonych sekwencji binarnych. Funkcje te realizowane
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C-"
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 AD7 U ss c 3 L 5 c.* Cl* S 9 10 11 12 13 U 15 H 17 Cu C-" ln LTJ CO 2.12. Wielofunkcyjne układy współpracujące z mikroprocesorem
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
Współpraca procesora ColdFire z urządzeniami peryferyjnymi
Współpraca procesora ColdFire z urządzeniami peryferyjnymi 1 Współpraca procesora z urządzeniami peryferyjnymi Interfejsy dostępne w procesorach rodziny ColdFire: Interfejs równoległy, Interfejsy szeregowe:
Wykład 4. Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430
Wykład 4 Przegląd mikrokontrolerów 16-bit: - PIC24 - dspic - MSP430 Mikrokontrolery PIC Mikrokontrolery PIC24 Mikrokontrolery PIC24 Rodzina 16-bitowych kontrolerów RISC Podział na dwie podrodziny: PIC24F
Mikroprocesory i Mikrosterowniki
Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,
Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości
Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Interfejsy można podzielić na synchroniczne (oddzielna linia zegara), np. I 2 C, SPI oraz asynchroniczne, np. CAN W rozwiązaniach synchronicznych
Wbudowane układy peryferyjne cz. 2 Wykład 8
Wbudowane układy peryferyjne cz. 2 Wykład 8 Timery Timery (liczniki) 2 Timery informacje ogólne Mikrokontroler ATmega32 posiada 3 liczniki: Timer0 8-bitowy Timer1 16-bitowy Timer2 8-bitowy, mogący pracować
Mikroprocesory i Mikrosterowniki Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface
Mikroprocesory i Mikrosterowniki Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo
Aby w pełni przetestować układ o trzech wejściach IN_0, IN_1 i IN_2 chcemy wygenerować wszystkie możliwe kombinacje sygnałów wejściowych.
Generowanie sygnałów testowych VHDL Wariant współbieżny (bez procesu): sygnał
Układy zegarowe w systemie mikroprocesorowym
Układy zegarowe w systemie mikroprocesorowym 1 Sygnał zegarowy, sygnał taktujący W każdym systemie mikroprocesorowym jest wymagane źródło sygnałów zegarowych. Wszystkie operacje wewnątrz jednostki centralnej
Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy
Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji
Programowany układ czasowy APSC
Programowany układ czasowy APSC Ośmiobitowy układ czasowy pracujący w trzech trybach. Wybór trybu realizowany jest przez wartość ładowaną do wewnętrznego rejestru zwanego słowem sterującym. Rejestr ten
Przemysłowy odtwarzacz plików MP3
Przemysłowy odtwarzacz plików MP3 WWW.DIGINN.EU Spis treści 1. Opis odtwarzacza MP3... 3 2. Wyprowadzenia odtwarzacza... 4 2.1 Wymiary płytki... 6 4. Tryby pracy... 8 5. Podłączanie MP3 Playera... 9 6.
Wbudowane układy komunikacyjne cz. 1 Wykład 10
Wbudowane układy komunikacyjne cz. 1 Wykład 10 Wbudowane układy komunikacyjne UWAGA Nazwy rejestrów i bitów, ich lokalizacja itd. odnoszą się do mikrokontrolera ATmega32 i mogą być inne w innych modelach!
AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET
AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET Technika Microprocesorowa Laboratorium 6 Timery i liczniki Auhor: Paweł Russek Tłumaczenie: Ernest Jamro http://www.fpga.agh.edu.pl/tm
Poradnik programowania procesorów AVR na przykładzie ATMEGA8
Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR
Moduł wspierający diagnostykę i sprzętowe debugowanie
Moduł wspierający diagnostykę i sprzętowe debugowanie 1 Diagnostyka mikroprocesorowego systemu czasu rzeczywistego Programowe emulatory procesorów, Sprzętowe emulatory procesorów, Debugery programowe,
Architektura mikroprocesorów z rdzeniem ColdFire
Architektura mikroprocesorów z rdzeniem ColdFire 1 Obsługa sytuacji wyjątkowych (Exception Processing) 2 Wyjątki Wyjątek (ang. exception) mechanizm kontroli przepływu danych występujący w mikroprocesorach
Kod produktu: MP01611
CZYTNIK RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi tani i prosty w zastosowaniu czytnik RFID dla transponderów UNIQUE 125kHz, umożliwiający szybkie konstruowanie urządzeń do bezstykowej
Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780
Dane techniczne : Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 a) wielkość bufora znaków (DD RAM): 80 znaków (80 bajtów) b) możliwość sterowania (czyli podawania kodów znaków) za pomocą
Komunikacja w mikrokontrolerach Laboratorium
Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali
Część I - Sterownik przerwań 8259A i zegar/licznik 8253
Programowanie na poziome sprzętu opracowanie pytań Część I - Sterownik przerwań 8259A i zegar/licznik 8253 Autor opracowania: Marcin Skiba cines91@gmail.com 1. Jakie są dwie podstawowe metody obsługi urządzeń
Systemy wbudowane. Wprowadzenie. Wprowadzenie. Mikrokontroler 8051 Budowa
Systemy wbudowane Mikrokontroler 8051 Budowa dr inż. Maciej Piechowiak Wprowadzenie rdzeń CPU z jednostką artymetyczno-logiczną (ALU) do obliczeń na liczbach 8-bitowych, uniwersalne dwukierunkowe porty
Mikroprocesory i Mikrosterowniki Laboratorium
Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali
Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski
Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy
1. Wstęp Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE Rdzeń mikrokontrolerów ST7FLITE... 15
3 1. Wstęp... 9 2. Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE... 11 3. Rdzeń mikrokontrolerów ST7FLITE... 15 3.1. Jednostka centralna...16 3.2. Organizacja i mapa pamięci...19 3.2.1. Pamięć RAM...20
Przerwania w systemie mikroprocesorowym. Obsługa urządzeo wejścia/wyjścia
Przerwania w systemie mikroprocesorowym 1 Obsługa urządzeo wejścia/wyjścia W każdym systemie mikroprocesorowym oprócz pamięci programu i pamięci danych znajduje się szereg układów lub urządzeo wejścia/wyjścia,
PRZERWANIA. 1. Obsługa zdarzeń, odpytywanie i przerwania Obsługa zdarzeń jest jedną z kluczowych funkcji w prawie każdym systemie czasu rzeczywistego.
PRZERWANIA 1. Obsługa zdarzeń, odpytywanie i Obsługa zdarzeń jest jedną z kluczowych funkcji w prawie każdym systemie czasu rzeczywistego. Istnieją dwie metody pozyskania informacji o zdarzeniach: 1. Cykliczne
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
Architektura komputerów
Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń
INTERFEJSY SYSTEMÓW ELEKTRONICZNYCH. Interfejsy klasy RS
INTERFEJSY SYSTEMÓW ELEKTRONICZNYCH Interfejsy klasy RS Grzegorz Lentka/Marek Niedostatkiewicz Katedra Optoelektroniki i Systemów Elektronicznych ETI PG 2010 RS232 (1) RS232-1962, RS232C - 1969, Electronic
Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne
Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...
Mikrokontroler AVR ATmega32 - wykład 9
SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 1 Mikrokontroler AVR ATmega32 - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 2 CechyµC ATmega32 1.
Magistrala SPI. Linie MOSI i MISO sąwspólne dla wszystkich urządzeńna magistrali, linia SS jest prowadzona do każdego Slave oddzielnie.
Magistrala SPI Magistrala SPI składa się z linii: MOSI Master output Slave input MISO Master input Slave Output SCK Clock SS Slave select (CS Chip Select lub CE Chip Enable) Sygnał taktujący transmisję
Mikroprocesory i Mikrosterowniki
Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Współpraca z układami peryferyjnymi i urządzeniami zewnętrznymi Testowanie programowe (odpytywanie, przeglądanie) System przerwań Testowanie programowe
Mikroprocesor Operacje wejścia / wyjścia
Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych
Architektura mikrokontrolera MCS51
Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera
Programowanie Układów Logicznych kod kursu: ETD6203. Komunikacja z układami cyfrowymi W dr inż. Daniel Kopiec
Programowanie Układów Logicznych kod kursu: ETD6203 Komunikacja z układami cyfrowymi W5 30.03.2016 dr inż. Daniel Kopiec Plan wykładu 1 2 3 4 5 6 Standard komunikacji RS232 Enkoder obrotowy Wyświetlacz
System interfejsu RS 232C opracowali P. Targowski i M. Rębarz
System interfejsu RS 232C opracowali P. Targowski i M. Rębarz Standard RS 232C (Recommended Standard) został ustanowiony w 1969 r. przez Electronic Industries Association. Definiuje on sposób nawiązania
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 ZEGAR CZASU RZECZYWISTEGO Ćwiczenie 4 Opracował: dr inŝ.
Architektura mikrokontrolera MCS51
Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera
Zewnętrzne układy peryferyjne cz. 1 Wykład 12
Zewnętrzne układy peryferyjne cz. 1 Wykład 12 Wyświetlacz LCD zgodny z HD44780 Wyświetlacz LCD zgodny z HD44780 2 HD44780 Standardowy sterownik alfanumerycznych wyświetlaczy LCD opracowany przez firmę
Układ transmisji szeregowej AVR
Układ transmisji szeregowej AVR Transmisja szeregowa/równoległa porównanie: w transmisji szeregowej dane wysyłane są bit po bicie, mniej przewodów niż w transmisji równoległej (dwa przewody elektryczne
Wykład 3. Przegląd mikrokontrolerów 8-bit: STM8
Wykład 3 Przegląd mikrokontrolerów 8-bit: - 8051 - STM8 Mikrokontrolery 8051 Rodzina 8051 wzięła się od mikrokontrolera Intel 8051 stworzonego w 1980 roku Mikrokontrolery 8051 były przez długi czas najpopularniejszymi
Urządzenia peryferyjne RS-232. Wykład 2
Urządzenia peryferyjne RS-232 Wykład 2 Transmisja szeregowa Poprzez kanały telekomunikacyjne Zaleta: niskie koszty Wymaga konwersji szeregowo/równoległej np. rejestr przesuwny Dwie metody: asynchroniczna
Programowany układ czasowy
Programowany układ czasowy Zbuduj na płycie testowej ze Spartanem-3A prosty ośmiobitowy układ czasowy pracujący w trzech trybach. Zademonstruj jego działanie na ekranie oscyloskopu. Projekt z Języków Opisu
Enkoder magnetyczny AS5040.
Enkoder magnetyczny AS5040. Edgar Ostrowski Jan Kędzierski www.konar.ict.pwr.wroc.pl Wrocław, 28.01.2007 1 Spis treści 1 Wstęp... 3 2 Opis wyjść... 4 3 Tryby pracy... 4 3.1 Tryb wyjść kwadraturowych...
Dodatek D. Układ współpracy z klawiaturą i wyświetlaczem 8279
Dodatek D Układ współpracy z klawiaturą i wyświetlaczem 8279 Programowany układ współpracy z klawiatura i wyświetlaczem może być wykorzystywany do automatycznej obsługi matrycy klawiszy oraz zestawu wskaźników
Programowalne układy logiczne kod kursu: ETD Układy sekwencyjne W
Programowalne układy logiczne kod kursu: ETD008270 Układy sekwencyjne W6 10.05.2019 mgr inż. Maciej Rudek Układy kombinacyjne - przypomnienie Układ kombinacyjny jest to układ dla którego zmiana na wejściu
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Sterowniki Urządzeń Mechatronicznych laboratorium. Ćw. 3: Timer v1.0
1 CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z możliwościami odmierzania czasu za pomocą wewnętrznego TIMER a mikrokontrolerów serii AVR 2 ZAKRES NIEZBĘDNYCH WIADOMOŚCI - wiadomości z poprzednich
Komunikacja w mikrokontrolerach. Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface
Komunikacja w mikrokontrolerach Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie
Programowanie mikrokontrolerów. 8 listopada 2007
Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 8 listopada 2007 Alfanumeryczny wyświetlacz LCD umożliwia wyświetlanie znaków ze zbioru będącego rozszerzeniem ASCII posiada zintegrowany sterownik
Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury
Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Cel ćwiczenia: Głównym celem ćwiczenia jest nauczenie się obsługi klawiatury. Klawiatura jest jednym z urządzeń wejściowych i prawie zawsze występuje
Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania
Architektura Systemów Komputerowych Jednostka ALU Przestrzeń adresowa Tryby adresowania 1 Jednostka arytmetyczno- logiczna ALU ALU ang: Arythmetic Logic Unit Argument A Argument B A B Ci Bit przeniesienia
2. PORTY WEJŚCIA/WYJŚCIA (I/O)
2. PORTY WEJŚCIA/WYJŚCIA (I/O) 2.1 WPROWADZENIE Porty I/O mogą pracować w kilku trybach: - przesyłanie cyfrowych danych wejściowych i wyjściowych a także dla wybrane wyprowadzenia: - generacja przerwania
Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1
Temat: Obsługa portu komunikacji szeregowej RS232 w systemie STRC51. Ćwiczenie 2. (sd) 1.Wprowadzenie do komunikacji szeregowej RS232 Systemy bazujące na procesorach C51 mogą komunikować się za pomocą