Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1
|
|
- Nina Kamińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 ZEGAR CZASU RZECZYWISTEGO Ćwiczenie 4 Opracował: dr inŝ. Wojciech Wojtkowski w.wojtkowski@we.pb.edu.pl BIAŁYSTOK 2009
2 Spis treści instrukcji: 1. Cel i zakres ćwiczenia laboratoryjnego Zegar RTC Opis układu PCF Komunikacja poprzez I 2 C Wymagania BHP Sprawozdanie Przykładowe zadania Literatura CEL I ZAKRES ĆWICZENIA LABORATORYJNEGO Celem ćwiczenia jest poznanie zasad wykorzystania w projektach cyfrowych układów pełniących rolę zegara czasu rzeczywistego (RTC). W trakcie ćwiczenia wykorzystywany jest popularny układ RTC PCF8583 mogący pracować zarówno w trybie RTC jak i w trybie układu zliczającego impulsy wejściowe. W ramach ćwiczenia studenci projektują wybrane układy mikroprocesorowe wykorzystujące zegar RTC lub układ licznikowy. Dodatkowo wykorzystywana jest w systemie pamięć RAM układu PCF8583 z zasilaniem podtrzymywanym bateryjnie zamiast dodatkowej pamięci EEPROM. Zakres ćwiczenia obejmuje: Poznanie zasad wykorzystania zegara RTC sterowanego poprzez magistralę I 2 C w trybie zegarowym, Poznanie zasad wykorzystania zegara RTC sterowanego poprzez magistralę I 2 C w trybie licznikowym, Wykorzystanie wbudowanej pamięci RAM z zasilaniem podtrzymywanym bateryjnie jako pamięci nieulotnej w systemie, Projektowanie układów mikroprocesorowych współpracujących z cyfrowymi układami RTC. Szczegółowy zakres ćwiczenia ustala prowadzący. 2. ZEGAR RTC Zegar czasu rzeczywistego (ang. Real-Time Clock RTC) jest elementem systemów cyfrowych słuŝącym do odliczania czasu niezaleŝnie od mikroprocesora lub komputera sterującego (jego pracy, zablokowania, wyłączenia), montowany jest we wszystkich 2
3 komputerach osobistych, serwerach i wielu systemach wbudowanych, sterownikach PLC, a ostatnio coraz częściej nawet w najprostszych systemach cyfrowych. Powszechne stosowanie zegarów RTC stało się moŝliwe dzięki dostępności tanich układów zintegrowanych, których funkcjonalność w dodatku przekracza zwykle funkcjonalność klasycznych układów RTC. Konstrukcja zegara czasu rzeczywistego moŝe być oparta o prosty układ scalony zliczający impulsy z generatora kwarcowego. Są one zasilane z baterii umoŝliwiającej im pracę równieŝ gdy system cyfrowy jest wyłączony. Obecnie instalowane baterie mogą mieć trwałość nawet większą niŝ 10 lat. Układ zegara czasu rzeczywistego moŝe równieŝ generować dla procesora i innych elementów systemu cyfrowego okresowy sygnał który moŝe sterować występowaniem określonych zdarzeń lub obsługa określonych urządzeń. Dzięki przerwaniom zegarowym moŝliwe jest takŝe tworzenie systemów z podziałem czasu pomiędzy poszczególne procesy. NiezaleŜność działania zegara czasu rzeczywistego w systemie często jest wykorzystywana do stworzenia funkcji watchdog. Ostatnio funkcja watchdog jest juŝ realizowana sprzętowo (jest wbudowana) w szerokiej gamie mikrokontrolerów jednoukładowych. 3. OPIS UKŁADU PCF8583 Układ PCF8583 produkowany przez PHILIPS moŝe być przykładem niedrogiego układu RTC o rozszerzonej funkcjonalności. Układ jest wyposaŝony w 256 bajtów pamięci RAM z czego część jest zarezerwowana na rejestry układu licznikowo zegarowego, natomiast część (240 bajtów) moŝe być wykorzystana dowolnie przez uŝytkownika. MoŜe ona pełnić funkcję pamięci EEPROM w systemie, gdyŝ układ RTC zazwyczaj ma ciągłe podtrzymanie zasilania z baterii. Do podtrzymania zasilania układu PCF8583 wystarczy bateria o napięciu 1,5V. Wszelkie adresy i dane są transmitowane do i od zegara poprzez magistralę szeregową I 2 C. Wbudowany rejestr adresowy jest inkrementowany automatycznie po kaŝdej operacji odczytu lub zapisu co jest bardzo wygodne szczególnie przy przesyłaniu kilku bajtów jednocześnie pod kolejne adresy od konkretnego adresu początkowego. Układ jest wyposaŝony w wejście A0 pozwalające na sprzętową modyfikacje adresu urządzenia co daje moŝliwość jednoczesnego podłączenia dwóch PCF8583 do wspólnej magistrali. MoŜe to być uŝyteczne np. w przypadku gdy jeden z układów pracuje w trybie zegara natomiast drugi w charakterze licznika impulsów zewnętrznych. Schemat blokowy układu PCF8583 jest przedstawiony na rysunku 1. Rozkład wyprowadzeń układu PCF8583 jest przedstawiony na rysunku 2. 3
4 Rys. 1. Schemat blokowy układu RTC PCF8583 Rys. 2. Rozkład wyprowadzeń układu PCF8583 Układ zawiera wewnętrzny oscylator 32,768kHz co pozwala na dokładne odmierzanie czasu niezaleŝnie od pozostałych elementów systemu cyfrowego. Pierwszych 16 bajtów wewnętrznej pamięci RAM (od adresu 00 rys. 1) tworzy adresowalne rejestry specjalnego przeznaczenia. Pierwszy rejestr pełni funkcję rejestru kontrolnego i statusu. Rejestry od adresu 01 do 07 są wykorzystywane przez funkcje zegara, natomiast rejestry od adresu 08 do 0F pełnią rolę rejestrów alarmu i mogą być dowolnie wykorzystane gdy alarmy w systemie nie są obsługiwane. Szczegółowa mapa pamięci ukłądu PCF 8583 pracującego w trybach licznikowym oraz RTC jest przedstawiona na rysunku 3. 4
5 Rys. 3. Mapa pamięci RAM układu PCF8583 W trybie licznikowym moŝna zliczać impulsy zewnętrzne podawane na wejście OSCO. Maksymalna pojemność licznika w tym trybie wynosi Gdy rozpoczynana jest procedura odczytu zawartości jednego z rejestrów z lokacji 01-07, zawartość pozostałych jest zatrzaskiwana w rejestrach zatrzaskowych aby umoŝliwić bezbłędne odczytanie pełnej informacji (zegar bezustannie zlicza w tym czasie). Trybu pracy układu dokonuje się poprzez ustawienie bądź wyzerowanie odpowiednich bitów w rejestrze control/status. Poprzez ustawienie bitu Alarm Enable w rejestrze control/status, rejestr kontroli funkcji alarmowych 5
6 alartm status register jest aktywowany. Alarm control register umoŝliwia ustawienie alarmu o konkretnej dacie, alarmu dziennego, alarmu w danym dniu tygodnia bądź alarmu z timera. Przy kaŝdorazowym wystąpieniu alarmu, bit alarm flag w rejestrze control/status jest ustawiany. Alarm z timera takŝe ustawi ten bit oraz w przypadku przepełnienia dodatkowo zostanie ustawiony bit timer flag. Flagi te pozostaną ustawione aŝ do operacji zapisu rejestru control/status która moŝe je wyzerować. Gdy funkcje alarmu są zablokowane (bit 2 rejestru control/status=0), rejestry z zakresu 08-0F mogą byc wykorzystane jako pamięć RAM dowolnego przeznaczenia. Rejestr control/status znajduje się pod adresem 00 a funkcje poszczególnych bitów są zilustrowane na rysunku 4. W trybie zegarowym, format 12/24 godzinny moŝe zostać wybrany poprzez ustawienie/wyzerowanie najbardziej znaczącego bitu (MSB) w rejestrze hours counter. Format rejestru hours counter jest przedstawiony na rysunku 4. Rok i data są przechowywane w rejestrze 05 (rysunek 6). Dni miesiąca i tygodnie są zliczane w rejestrze 06. Format rejestru 06 jest przedstawiony na rysunku 7. Podczas odczytu poprzez magistralę I 2 C lokacji 05 oraz 06, wartości rok oraz dni tygodnia są maskowane gdy jest ustawiona flaga mask flag w rejestrze control/status. To pozwala na bezpośredni odczyt bieŝącej daty oraz miesiąca. W przypadku trybu zliczania impulsów, liczba impulsów jest przechowywana w formacie BCD. D5 przechowuje najbardziej znaczącą cyfrę, natomiast D0 najmniej znaczącą. Zakresy zliczania poszczególnych liczników są zestawione w tabeli 1. 6
7 Rys. 4. Rejestr control/status. 7
8 Rys. 5. Format licznika godzin (hours counter) Rys. 6. Format licznika lat/daty Rys. 7. Format licznika dni/miesięcy 8
9 Tabela 1. Zakresy zliczania poszczególnych liczników Aby uaktywnić alarmy naleŝy ustawić bit alarm enable w rejestrze control/status (bit 2, adres 00). Gdy bit alarm enable zostanie ustawiony, aktywowany jest rejestr sterujący alarmem: alarm control register (adres 08). Format informacji w rejestrze 08 jest przedstawiony na rysunku 8. Selekcja dni tygodnia w których ma wystąpić alarm jest przedstawiona na rysunku 9. Tryb licznikowy moŝna uaktywnić poprzez ustawienie w control/status następujących bitów: XX0X X1XX. Format rejestru Alarm control w trybie licznikowym jest przedstawiony na rysunku 10. Pojedynczy licznik moŝe zliczać od 0 lub od zaprogramowanej wartości do 99. W momencie przepełnienia, ustawiana jest automatycznie flaga timer flag która musi zostać wyzerowana programowo. Przepełnienie moŝe teŝ spowodować wygenerowanie przerwania (poziom niski na wyjściu INT) jeśli zostanie ustawiony bit 3 rejestru sterującego alarmem. Zarówno w trybie licznikowym jak i czasowym układ PCF8583 moŝe generować przerwanie (poziom niski) sterujące innymi układami w systemie. Schemat logiczny, przedstawiający powiązanie poszczególnych elementów warunkujących wystąpienie przerwania jest przedstawiony na rysunku 12. 9
10 Rys. 8. Rejestr Alarm Control Register 10
11 Rys. 9. Selekcja dni tygodnia z alarmem 11
12 Rys. 10. Rejestr Alarm control register tryb licznikowy 12
13 Rys. 11. Schemat logiczny układu generacji przerwania 4. KOMUNIKACJA POPRZEZ I 2 C Zasady komunikacji na magistrali I 2 C zostały opisane w instrukcji do ćwiczenia 3. Adres układu RTC jest przedstawiony na rysunku
14 Rys. 12. Adres układu PCF8583 na magistrali I 2 C Wszelkie zasady transmisji opisane w instrukcji do ćwiczenia 3 są aktualne przy pracy z układem PCF8583. Do przeprowadzenia komunikacji i prawidłowego zaprogramowania układu RTC naleŝy wykorzystać mapę pamięci oraz opisy szczegółowe poszczególnych lokacji. Schemat typowego podłączenia ukłądu RTC do magistrali jest przedstawiony na rysunku 13. Rys. 13. Podłączenie 2 układów RTCdo magistrali I 2 C (jeden w trybie RTC, drugi w trybie licznikowym) 14
15 6. ZAGADNIENIA DO PRZYGOTOWANIA Przed przystąpieniem do wykonania ćwiczenia, student powinien: - zapoznać się z instrukcją, - zapoznać się z dokumentacją układów serii PCF8583 (dostępna na stronie - opracować rozwiązanie co najmniej dwóch z zadań podanych na końcu instrukcji. 7. WYMAGANIA BHP Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z obowiązującą w laboratorium instrukcją BHP oraz przestrzeganie zasad w niej zawartych. Konieczne jest takŝe zapoznanie z ogólnymi zasadami pracy przy stanowisku komputerowym. Instrukcje BHP powinny być podane studentom podczas pierwszych zajęć laboratoryjnych i dostępne do wglądu w Laboratorium. 8. SPRAWOZDANIE Sprawozdanie z ćwiczenia powinno zawierać: stronę tytułowa zgodnie z obowiązującym wzorem, cel i zakres ćwiczenia, opis stanowiska badawczego, opis przebiegu ćwiczenia z wyszczególnieniem wykonywanych czynności, algorytm rozwiązania danego problemu, schematy układów, programy w asemblerze (lub w języku wyŝszego poziomu) z komentarzami, komentarze i wnioski Na ocenę sprawozdania będą miały wpływ następujące elementy: zgodność zawartości z instrukcją, algorytm rozwiązania problemu, wnioski i uwagi, terminowość i ogólna estetyka 15
16 Sprawozdanie powinno być wykonane i oddane na zakończenie ćwiczenia, najpóźniej na zajęciach następnych. Sprawozdania oddane później będą oceniane niŝej. 9. PRZYKŁADOWE ZADANIA Z1. Uruchomić układ RTC w trybie zegara i wyświetlić godzinę i minuty na wyświetlaczu alfanumerycznym LCD Z2. Uruchomić układ RTC w trybie zegara i wyświetlić bieŝącą datę. Wyświetlić słownie dzień tygodnia. Z3. Uruchomić układ RTC w trybie licznika zdarzeń oraz wyświetlić ilość impulsów przy kaŝdorazowym wciśnięciu przycisku microswitch (drgania styków). Zaproponować moŝliwość eliminacji drgań styków przycisku. Z4. Zaprogramować alarm godzinny i sprawdzić działanie. Wykorzystać przerwanie sprzętowe. Z5. Wykorzystać dostępną pamięć RAM układu RTC do przechowywania słownych odpowiedników numerów miesięcy i dni tygodnia. Wyświetlić datę wykorzystując komunikaty przechowywane w RAM. Z6. Połączyć jednocześnie 2 układy RTC do wspólnej magistrali. Jeden z układów uruchomić w trybie zegara, drugi w trybie licznika. Na wejście zliczania połączyć sygnał 1Hz z wyjścia INT pierwszego układu. Wyświetlić wskazanie licznika na wyświetlaczu alfanumerycznym. 8. LITERATURA: L1. Paweł Hadam: Projektowanie systemów mikroprocesorowych, BTC, 2004r. L2. B. Zieliński: Układy mikroprocesorowe, przykłady rozwiązań, Gliwice, Helion, 2002r. L3. Internet - specyfikacja I 2 C Philips Seimconductors. 16
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja. do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 PAMIĘCI SZEREGOWE EEPROM Ćwiczenie 3 Opracował: dr inŝ.
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo
Politechnika Białostocka Wydział Elektryczny
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 SZEREGOWE PRZETWORNIKI A/C - C/A Ćwiczenie 5 Opracował:
Układy czasowo-licznikowe w systemach 80x86
Układy czasowo-licznikowe w systemach 80x86 Semestr zimowy 2014/2015, WIEiK-PK 1 Układy czasowo-licznikowe w systemach 80x86 W komputerach osobistych oprogramowanie w szczególności, jądro systemu musi
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
WPROWADZENIE Mikrosterownik mikrokontrolery
WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:
Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury
Technika Mikroprocesorowa Laboratorium 5 Obsługa klawiatury Cel ćwiczenia: Głównym celem ćwiczenia jest nauczenie się obsługi klawiatury. Klawiatura jest jednym z urządzeń wejściowych i prawie zawsze występuje
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
Zegar Czasu Rzeczywistego I²C
Zegar Czasu zeczywistego I²C Model M-13 do Dydaktycznego Systemu Mikroprocesorowego DSM-51 Instrukcja uŝytkowania Copyright 2007 by MicroMade ll rights reserved Wszelkie prawa zastrzeŝone MicroMade Gałka
ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna
Technika Mikroprocesorowa Laboratorium 4 Obsługa liczników i przerwań Cel ćwiczenia: Celem ćwiczenia jest nabycie umiejętności obsługi układów czasowo-licznikowych oraz obsługi przerwań. Nabyte umiejętności
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33
Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry
INSTRUKCJA OBSŁUGI. Przekaźnik czasowy ETM ELEKTROTECH Dzierżoniów. 1. Zastosowanie
INSTRUKCJA OBSŁUGI 1. Zastosowanie Przekaźnik czasowy ETM jest zadajnikiem czasowym przystosowanym jest do współpracy z prostownikami galwanizerskimi. Pozwala on załączyć prostownik w stan pracy na zadany
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
POLITECHNIKA SZCZECIŃSKA WYDZIAŁ ELEKTRYCZNY
POLITECHNIKA SZCZECIŃSKA WYDZIAŁ ELEKTRYCZNY Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Zegar czasu rzeczywistego - integracja systemu LCN z modułem logicznym LOGO! Numer ćwiczenia: 8 Opracowali:
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 MAGISTRALA 1-WIRE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 MAGISTRALA 1-WIRE Opracował: dr inŝ. Wojciech Wojtkowski
Metody obsługi zdarzeń
SWB - Przerwania, polling, timery - wykład 10 asz 1 Metody obsługi zdarzeń Przerwanie (ang. Interrupt) - zmiana sterowania, niezależnie od aktualnie wykonywanego programu, spowodowana pojawieniem się sygnału
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Technika Mikroprocesorowa
Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa
Elektronika samochodowa (Kod: ES1C )
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu Elektronika samochodowa (Kod: ES1C 621 356) Temat: Magistrala CAN Opracował:
MIKROKONTROLERY I MIKROPROCESORY
PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 Klawiatury i wyświetlacze Opracował: dr inŝ. Wojciech
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 UKŁADY CZASOWE Białystok 2015 1. Cele ćwiczenia
Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515
Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych
Wyłącznik czasowy GAO EMT757
INSTRUKCJA OBSŁUGI Wyłącznik czasowy GAO EMT757 Produkt nr 552451 Instrukcja obsługi Strona 1 z 10 Cyfrowy programator czasowy Artykuł nr: EMT757 A. Funkcje 1. Cyfrowy programator czasowy (zwany dalej
SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.
SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem
ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO!
ćwiczenie nr 7 str.1/1 ĆWICZENIE 7 Wprowadzenie do funkcji specjalnych sterownika LOGO! 1. CEL ĆWICZENIA: zapoznanie się z zaawansowanymi możliwościami mikroprocesorowych sterowników programowalnych na
1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych
Dodatek A Wyświetlacz LCD. Przeznaczenie i ogólna charakterystyka Wyświetlacz ciekłokrystaliczny HY-62F4 zastosowany w ćwiczeniu jest wyświetlaczem matrycowym zawierającym moduł kontrolera i układ wykonawczy
Zewnętrzne układy peryferyjne cz. 1 Wykład 12
Zewnętrzne układy peryferyjne cz. 1 Wykład 12 Wyświetlacz LCD zgodny z HD44780 Wyświetlacz LCD zgodny z HD44780 2 HD44780 Standardowy sterownik alfanumerycznych wyświetlaczy LCD opracowany przez firmę
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat: Programowanie
Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780
Dane techniczne : Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 a) wielkość bufora znaków (DD RAM): 80 znaków (80 bajtów) b) możliwość sterowania (czyli podawania kodów znaków) za pomocą
Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych
Architektura Systemów Komputerowych Bezpośredni dostęp do pamięci Realizacja zależności czasowych 1 Bezpośredni dostęp do pamięci Bezpośredni dostęp do pamięci (ang: direct memory access - DMA) to transfer
Hardware mikrokontrolera X51
Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)
Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby
Wyjście do drukarki Centronix
Wyjście do drukarki Centronix Model M-0 do Dydaktycznego Systemu Mikroprocesorowego DSM-1 Instrukcja uŝytkowania Copyright 2007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade Gałka
Kod produktu: MP01611-ZK
ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem
Politechnika Białostocka. Wydział Elektryczny. Katedra Automatyki i Elektroniki. Kod przedmiotu: TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA SAMOCHODOWA Temat: M a gistra
Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań
adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać
Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.
Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich
Mikroprocesorowe Liczniki Rejestrujące MLR-2.1 RS-232 Modbus, MLR-2.1 RS-485 Modbus
Mikroprocesorowe Liczniki Rejestrujące MLR-2.1 RS-232 Modbus, MLR-2.1 RS-485 Modbus 1. Wstęp Mikroprocesorowy Licznik Rejestrujący MLR-2.1 zbudowany został w oparciu o mikrokontroler jednoukładowy firmy
dokument DOK 02-05-12 wersja 1.0 www.arskam.com
ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania
LICZNIKI Liczniki scalone serii 749x
LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających
Technika Cyfrowa. Badanie pamięci
LABORATORIUM Technika Cyfrowa Badanie pamięci Opracował: mgr inż. Andrzej Biedka CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się studentów z budową i zasadą działania scalonych liczników asynchronicznych
1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro
1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie sterowania układem pozycjonowania z wykorzystaniem sterownika VersaMax Micro oraz silnika krokowego. Do algorytmu pozycjonowania wykorzystać licznik
PRZETWORNIK ADC w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA PRZETWORNIK ADC w mikrokontrolerach Atmega16-32
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
Opis funkcjonalny i architektura. Modu³ sterownika mikroprocesorowego KM535
Opis funkcjonalny i architektura Modu³ sterownika mikroprocesorowego KM535 Modu³ KM535 jest uniwersalnym systemem mikroprocesorowym do pracy we wszelkiego rodzaju systemach steruj¹cych. Zastosowanie modu³u
Wstęp działanie i budowa nadajnika
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów Temat ćwiczenia Górnik L.p. Imię i nazwisko Grupa ćwiczeniowa: Poniedziałek 8.000 Ocena Podpis 1. 2. 3. 4. Krzysztof
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Współpraca z układami peryferyjnymi i urządzeniami zewnętrznymi Testowanie programowe (odpytywanie, przeglądanie) System przerwań Testowanie programowe
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 10 (3h) Implementacja interfejsu SPI w strukturze programowalnej Instrukcja pomocnicza do laboratorium z przedmiotu
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
Sygnały DRQ i DACK jednego kanału zostały użyte do połączenia kaskadowego obydwu sterowników.
Płyty główne Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Układ DMA Układ DMA zawiera dwa sterowniki przerwań 8237A połączone kaskadowo. Każdy sterownik 8237A
Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości
Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz
4. Karta modułu Slave
sygnały na magistralę. Można wyróżnić trzy typy układów scalonych takie jak bramki o otwartym kolektorze wyjściowym, bramki trójstanowe i bramki o przeciwsobnym wzmacniaczu wyjściowym. Obciążalność prądową
Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 4 Temat: Sterowanie sekwencyjne wyświetlaczem
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C-"
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 AD7 U ss c 3 L 5 c.* Cl* S 9 10 11 12 13 U 15 H 17 Cu C-" ln LTJ CO 2.12. Wielofunkcyjne układy współpracujące z mikroprocesorem
WYKORZYSTANIE WEWNĘTRZNYCH GENERATORÓW RC DO TAKTOWANIA MIKROKONTROLERÓW AVR
kpt. mgr inŝ. Paweł HŁOSTA kpt. mgr inŝ. Dariusz SZABRA Wojskowy Instytut Techniczny Uzbrojenia WYKORZYSTANIE WEWNĘTRZNYCH GENERATORÓW RC DO TAKTOWANIA MIKROKONTROLERÓW AVR W niektórych aplikacjach mikroprocesorowych,
Mikroprocesory i Mikrosterowniki Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface
Mikroprocesory i Mikrosterowniki Magistrala szeregowa I2C / TWI Inter-Integrated Circuit Two Wire Interface Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Zegar czasu rzeczywistego Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 5 maja 2015 Zegar czasu rzeczywistego Niezależny układ RTC (ang.
Moduł licznika położenia LP 2.
Pracownia Elektroniki i Automatyki W.J. Dubiński ul. Krzyszkowicka 16 32-020 WIELICZKA tel./fax (12) 278 29 11 NIP 676-010-37-14 Moduł licznika położenia LP 2. 1. Przeznaczenie. Licznik rewersyjny LP 2
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020 Ćwiczenie Nr 12 PROJEKTOWANIE WYBRANYCH
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3.
2. Zawartość dokumentacji 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3. Spis rysunków Rys nr 1 schemat instalacji KD Piwnica Rys nr 2 schemat
Programowanie Mikrokontrolerów
Programowanie Mikrokontrolerów Wyświetlacz alfanumeryczny oparty na sterowniku Hitachi HD44780. mgr inż. Paweł Poryzała Zakład Elektroniki Medycznej Alfanumeryczny wyświetlacz LCD Wyświetlacz LCD zagadnienia:
Laboratorium mikroinformatyki. Szeregowe magistrale synchroniczne.
Laboratorium mikroinformatyki. Szeregowe magistrale synchroniczne. Transmisja szeregowa charakteryzująca się niewielką ilością linii transmisyjnych może okazać się użyteczna nawet w wypadku zastosowania
AVREVB1. Zestaw uruchomieniowy dla mikrokontrolerów AVR. Zestawy uruchomieniowe www.evboards.eu
AVREVB1 Zestaw uruchomieniowy dla mikrokontrolerów AVR. 1 Zestaw AVREVB1 umożliwia szybkie zapoznanie się z bardzo popularną rodziną mikrokontrolerów AVR w obudowach 40-to wyprowadzeniowych DIP (układy
MM05-IIIe. Dokumentacja techniczna
MM0-IIIe Dokumentacja techniczna Tarnów 00 . Charakterystyka ogólna urządzenia Monitor MM-0IIIe słuŝy do monitorowania wartości pomiarów mierzonych przez przeliczniki MacMat. Dodatkowo w przypadku transmisji
Komunikacja w mikrokontrolerach Laboratorium
Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: STEROWNIKI W UKŁADACH NAPĘDOWYCH I STEROWANIA CONTROLLERS IN CONTROL AND DRIVE SYSTEMS Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: PROJEKTOWANIE SYSTEMÓW MECHANICZNYCH
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
Przerwania, polling, timery - wykład 9
SWB - Przerwania, polling, timery - wykład 9 asz 1 Przerwania, polling, timery - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Przerwania, polling, timery - wykład 9 asz 2 Metody obsługi zdarzeń
PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM
LOW ENERGY TIMER, BURTC
PROJEKTOWANIE ENERGOOSZCZĘDNYCH SYSTEMÓW WBUDOWANYCH ĆWICZENIE 4 LOW ENERGY TIMER, BURTC Katedra Elektroniki AGH 1. Low Energy Timer tryb PWM Modulacja szerokości impulsu (PWM) jest często stosowana przy
Interface sieci RS485
Interface sieci RS85 Model M-07 do Dydaktycznego Systemu Mikroprocesorowego DSM-5 Instrukcja uŝytkowania Copyright 007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade Gałka i Drożdż
Podział układów cyfrowych. rkijanka
Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 UKŁADY UZALEŻNIEŃ CZASOWYCH Białystok 2014
Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów
Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście
Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem
Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) UKŁADY CZASOWE Białystok 2014 1. Cele
Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne
Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...
Dokumentacja Licznika PLI-2
Produkcja - Usługi - Handel PROGRES PUH Progres Bogdan Markiewicz ------------------------------------------------------------------- 85-420 Bydgoszcz ul. Szczecińska 30 tel.: (052) 327-81-90, 327-70-27,
Mikroprocesory i mikrosterowniki Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej Ćwiczenie nr 4
1 Ćwiczenie nr 4 Program ćwiczenia: Interfejs szeregowy SPI obsługa sterownika ośmiopozycyjnego, 7-segmentowego wyświetlacza LED Interfejs szeregowy USART, komunikacja mikrokontrolera z komputerem PC.
Mikroprocesor Operacje wejścia / wyjścia
Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych
Systemy Wbudowane. Założenia i cele przedmiotu: Określenie przedmiotów wprowadzających wraz z wymaganiami wstępnymi: Opis form zajęć
Systemy Wbudowane Kod przedmiotu: SW Rodzaj przedmiotu: kierunkowy ; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil studiów:
STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 4. Przekaźniki czasowe
STEROWANIE MASZYN I URZĄDZEŃ I Laboratorium 4. Przekaźniki czasowe Opracował: dr hab. inż. Cezary Orlikowski Instytut Politechniczny W tym ćwiczeniu będą realizowane programy sterujące zawierające elementy
Mikroprocesorowy miernik czasu
POLITECHNIKA LUBELSKA Wydział Elektrotechniki i Informatyki Katedra Metrologii Elektrycznej i Elektronicznej Mikroprocesorowy miernik czasu INSTRUKCJA OBSŁUGI Dodatek do pracy dyplomowej inŝynierskiej
LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU
LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU Ćwiczenie 9 STEROWANIE ROLETAMI POPRZEZ TEBIS TS. WYKORZYSTANIE FUNKCJI WIELOKROTNEGO ŁĄCZENIA. 2 1. Cel ćwiczenia. Celem ćwiczenia jest nauczenie przyszłego użytkownika
AN ON OFF TEMPERATURE CONTROLLER WITH A MOBILE APPLICATION
Krzysztof Bolek III rok Koło Naukowe Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy AN ON OFF TEMPERATURE CONTROLLER WITH A MOBILE APPLICATION DWUPOŁOŻENIOWY REGULATOR TEMPERATURY Z APLIKACJĄ
StraŜnik mocy RT-MONIT. RAFIKEL Technologie Rafał Maślanka
StraŜnik mocy RT-MONIT RAFIKEL Technologie Rafał Maślanka Biały Kościół 39/9, 57-100 Strzelin tel. (+4871) 392 66 43 fax (+4871) 392 66 43 e-mail: rafikel@rafikel.pl http:\\www.rafikel.pl 1. WSTĘP. Niniejszy
IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO
IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002
Moduł monitoringu energii elektrycznej
Cztery wejścia impulsowe współpracujące ze stykiem beznapięciowym lub licznikiem z wyjściem OC Monitoring czterech liczników energii elektrycznej Wbudowane funkcje liczników impulsów z nieulotną pamięcią
Wstęp: Interfejs portu równoległego 6821 i portu szeregowego 6850 firmy Motorola
Wstęp: Interfejs portu równoległego 6821 i portu szeregowego 6850 firmy Motorola Struktura systemu 68008 z układami peryferyjnymi 6821, 6050 Na rysunku 1.1 pokazano strukturę stanowiska z interfejsami
Dokumentacja Techniczna. Konwerter USB/RS-232 na RS-285/422 COTER-24I COTER-24N
Dokumentacja Techniczna Konwerter USB/RS-232 na RS-28/422 -U4N -U4I -24N -24I Wersja dokumentu: -man-pl-v7 Data modyfikacji: 2008-12-0 http://www.netronix.pl Spis treści 1. Specyfikacja...3 2. WyposaŜenie...4
Komunikacja w mikrokontrolerach Laboratorium
Laboratorium Ćwiczenie 3 Magistrala I 2 C Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem przy użyciu magistrali I 2 C. Zagadnienia do przygotowania: podstawy
Szkolenia specjalistyczne
Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com
Licznik impulso w CN instrukcja obsługi
Licznik impulso w CN instrukcja obsługi 1. Dane techniczne. Zasilanie DC 24V, +/- 10% Zakres 1-999999 Wyświetlacz Wyjścia przekaźnika Przekaźniki Żywotność Maks. prędkość zliczania Napięcia wejściowe PV(stan
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej
Płyta uruchomieniowa EBX51
Dariusz Kozak ZESTAW URUCHOMIENIOWY MIKROKOMPUTERÓW JEDNOUKŁADOWYCH MCS-51 ZUX51 Płyta uruchomieniowa EBX51 INSTRUKCJA OBSŁUGI Wszystkie prawa zastrzeżone Kopiowanie, powielanie i rozpowszechnianie w jakiejkolwiek