Mikrokontroler ATmega32. System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mikrokontroler ATmega32. System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe"

Transkrypt

1 Mikrokontroler ATmega32 System przerwań Porty wejścia-wyjścia Układy czasowo-licznikowe 1

2 Przerwanie Przerwanie jest inicjowane przez urządzenie zewnętrzne względem mikroprocesora, zgłaszające potrzebę jego obsługi Przerwanie jest chwilowym zaprzestaniem wykonywania programu przez mikroprocesor w celu wykonania procedury obsługi urządzenia zgłaszającego przerwanie Żądania obsługi są zdarzeniami asynchronicznymi względem programu Mechanizm przerwań zwalnia mikroprocesor z konieczności ciągłego obserwowania sygnałów żądań obsługi 2

3 Załączanie systemu przerwań Rejestr statusu SREG Globalne zezwolenie na przerwania I=0 przerwania zablokowane I=1 przerwania aktywne 3

4 Źródła przerwań Sygnał RESET Sygnały na zewnętrznych wyprowadzeniach mikrokontrolera Układy czasowo-licznikowe Porty komunikacyjne Przetwornik analogowo-cyfrowy Układy zarządzania programowaniem pamięci EEPROM i FLASH Poszczególne źródła przerwań można indywidualnie blokować za pomocą odpowiednich bitów w rejestrach sterujących. 4

5 Znaczniki przerwań Większość źródeł przerwań ma przyporządkowany w przestrzeni I/O rejestr, w którym można wyróżnić bit zwany znacznikiem przerwania (ang: Interrupt flag) Zgłoszenie żądania przerwania polega na ustawieniu tego bitu w stan 1 Przyjęcie przerwania przez jednostkę centralną automatycznie kasuje stosowny znacznik przerwania Znaczniki przerwań można ustawiać i kasować również programowo 5

6 Znaczniki przerwań Przykład znaczników przerwań zewnętrznych: INTF0, INTF1 i INTF2 umieszczonych w rejestrze GIFR 6

7 Przyjęcie przerwania Na przyjęcie przerwania składają się następujące operacje wykonywane automatycznie przez mikroprocesor: Wyłączenie globalnego zezwolenia na przerwania Zachowanie na stosie licznika programu Załadowanie wektora przerwania do licznika programu Dla większości przerwań skasowanie znacznika przerwania 7

8 Powrót z przerwania Powrót z przerwania jest zazwyczaj inicjowany instrukcją reti wykonującą następujące operacje: Pobranie ze stosu licznika programu Załączenie globalnego zezwolenia na przerwania 8

9 Priorytet przerwań O tym które ze zgłaszanych jednocześnie przerwań zostanie przyjęte jako pierwsze decyduje jego priorytet Priorytet poszczególnych źródeł przerwań w mikrokontrolerach AVR jest ustalony Adresy podprogramów obsługi przerwań są uporządkowane w kolejności malejącego priorytetu Najwyższy priorytet ma restart systemu 9

10 Wektory przerwań Wektorem przerwania nazywa się adres w pamięci programu, od którego rozpoczyna się podprogram obsługi przerwania Wektory przerwań zostały w mikrokontrolerach AVR zdefiniowane architekturą systemu i są umiejscowione na początku przestrzeni adresowej Objętość obszaru w pojedynczym wektorze przerwania nie pozwala na zapisanie w nim całej procedury obsługi W wektorze umieszcza się skok do właściwego podprogramu obsługi przerwania Wektory nieaktywnych przerwań można wykorzystać w inny sposób 10

11 Wektory przerwań 11

12 Wektory przerwań 12

13 Obsługa przerwań Procedura obsługi przerwania ma na celu obsłużenie urządzenia zgłaszającego przerwanie (odczytanie odebranego znaku lub przetworzonej próbki napięcia, wykonanie czynności po zadanym opóźnieniu w układzie czasowym) W procedurze obsługi należy zachować na stosie zawartość wszystkich rejestrów w niej wykorzystywanych, w szczególności SREG Zawartość rejestrów musi zostać przywrócona przed zakończeniem procedury 13

14 Obsługa przerwań System przerwań jest wyłączany po przyjęciu każdego przerwania by nie spowodować nadmiernego powiększenia stosu wskutek wielokrotnego przyjęcia zbyt szybko przychodzącego przerwania Zgłoszenie 1 Zgłoszenie 2 Wykonanie programu Obsługa 1 Obsługa 2 czas 14

15 Obsługa przerwań Istnieje niebezpieczeństwo nieobsłużenia często zgłaszanego przerwania wskutek wykonywania innej, długotrwałej procedury obsługi Cykliczne zgłoszenia przerwań od układu czasowego Wykonanie programu Przerwanie nieobsłużone! 15

16 Obsługa przerwań Zapobiegnie temu załączenie systemu przerwań w samej procedurze, wówczas obsługa może być przerwana przez inne zgłoszenie Cykliczne zgłoszenia przerwań od układu czasowego Wykonanie programu 16

17 Przerwanie inicjalizacyjne Program wykonywany po restarcie systemu jest traktowany jako obsługa przerwania Wewnętrzny sygnał RESET jest automatycznie zaliczany do sygnałów zgłaszających przerwanie RESET ma najwyższy priorytet i przydzielony wektor na początku przestrzeni adresowej Przerwanie od sygnału RESET jest niemaskowalne nie można go wyłączyć 17

18 Przerwanie inicjalizacyjne 18

19 Porty I/O Port B Port A Port D Port C 19

20 Porty I/O Porty I/O pozwalają podłączyć do mikrokontrolera zewnętrzne czujniki z wyjściami cyfrowymi lub układy wykonawcze sterowane cyfrowo Poszczególne linie portów są niezależnie konfigurowane jako wejścia lub wyjścia Linie zaprogramowane jako wejścia mogą realizować funkcje alternatywne, np. wejścia przetwornika A/C, interfejs szeregowy 20

21 Ogólna struktura linii portu cyfrowego Rezystor podciągający Wybór wejście/wyjście Końcówka zewnętrzna Bit wyjściowy Stan końcówki 21

22 Rejestry funkcyjne związane z portem Do komunikowania się jednostki centralnej z portami służą specjalne rejestry funkcyjne Rejestry związane z portami są mapowane na przestrzeń adresową I/O od adresu 0x00 (i jednocześnie przestrzeń pamięci danych od 0x20) Z każdym portem są skojarzone trzy rejestry: - PORTx (x zastępuje symbol portu, np. PORTA) - PINx - DDRx 22

23 Rejestry funkcyjne związane z portem Do rejestru PORTx wpisywany jest wzór stanów wymuszanych na końcówkach portów w przypadku zdefiniowania ich jako wyjścia Nazewnictwo bitów rejestru dla portu A: 23

24 Rejestry funkcyjne związane z portem Bity rejestru DDRx definiują końcówki portu jako wyjścia lub wejścia Wpisanie 1 powoduje, że odpowiednia końcówka staje się wyjściem o charakterystyce typowej dla układów CMOS Nazewnictwo bitów rejestru dla portu A: 24

25 Rejestry funkcyjne związane z portem W rejestrze PINx przechowywany jest wzór rzeczywistych stanów logicznych końcówek portu, niezależnie od wybranego kierunku danych Jest to rejestr tylko do odczytu Nazewnictwo bitów rejestru dla portu A 25

26 Rejestry funkcyjne związane z portem Konfiguracja końcówki portu Bit PUD w rejestrze SFIOR wyłącza rezystory podciągające końcówek wszystkich portów 26

27 Układy czasowo-licznikowe Układy czasowo-licznikowe są licznikami cyfrowymi wyposażonymi w zaawansowane tryby wyzwalania i programowanie źródła sygnału zegarowego Układy licznikowe w mikrokontrolerach służą do: - odmierzania czasu - zliczania zdarzeń - generacji przebiegów o programowanej częstotliwości i wypełnieniu 27

28 Układy czasowo-licznikowe W architekturze AVR ATmega dostępne są co najmniej dwa układy czasowo-licznikowe W ATmega implementowane są liczniki 8- i 16-bitowe Mikrokontroler ATmega32 posiada 2 liczniki 8-bitowe timer/counter0 i timer/counter2 oraz 1 licznik 16-bitowy timer/counter1 28

29 Układy licznikowe rejestry funkcyjne Rejestr TCNTn (n jest numerem licznika) zawiera aktualną wartość zliczoną przez licznik i jest rejestrem 8-bitowym lub parą rejestrów TCNTnH i TCNTnL dla licznika 16-bitowego. W przypadku licznika 16-bitowego TCNTnH jest rejestrem buforowym i wymagana jest ustalona sekwencja zapisu w celu prawidłowej inicjalizacji licznika Przepełnienie licznika wywołuje zgłoszenie przerwania 29

30 Układy licznikowe rejestry funkcyjne 8-bitowy rejestr TCNT0: Para rejestrów TCNT1H i TCNT1L: 30

31 Układy licznikowe rejestry funkcyjne Aktualna wartość w liczniku jest porównywana z zawartością rejestru OCRn lub OCRnH i OCRnL Z licznikiem 1. w ATmega32 są skojarzone 2 pary rejestrów: OCR1AH(L) i OCR1BH(L) W wyniku zrównania się wartości w liczniku i rejestrze OCR jest zgłaszane przerwanie Wynik operacji porównania może służyć do generacji sygnału o programowanym wypełnieniu 31

32 Układy licznikowe rejestry funkcyjne Zgłoszenie przerwania Generacja przebiegu PWM 32

33 Układy licznikowe rejestry funkcyjne Do sterowania trybem pracy licznika służy rejestr TCCRn. Bity CSn określają źródło sygnału taktującego licznik Bity WGMn określają tryb pracy licznika Znaczniki COMn wybierają sposób generacji sygnałów wyjściowych 33

34 Układy licznikowe rejestry funkcyjne Przykład - rejestr sterujący pracą licznika 0 (TCCR0): Znaczenie bitu FOC0 i bitów COM0x zależy od trybu pracy. 34

35 Układy licznikowe rejestry funkcyjne Znaczenie bitów WMG0x - tryb pracy: 35

36 Układy licznikowe rejestry funkcyjne Znaczenie bitów CS0x źródło sygnału taktującego: 36

37 Układy licznikowe preskaler i wybór źródła zegara Zadaniem preskalera jest dostarczenie sygnału taktującego o programowanej w szerokim zakresie częstotliwości (podział 1:1024) 37

38 Układy licznikowe tryby pracy Tryb pracy normalnej zliczanie do wartości maksymalnej Porównywanie porównanie zawartości licznika i rejestru OCRn wywołuje różne, zaprogramowane akcje Tryb CTC zerowanie licznika po wykryciu zgodności porównania Tryby PWM generacja sygnału prostokątnego o programowanej częstotliwości i wypełnieniu 38

39 Układy licznikowe załączanie przerwań w rejestrze TIMSK Bity TOIEn zezwalają na przerwania od przepełnienia timera n Bity OCIEnX zezwalają na przerwania od odpowiedniego układu porównania timera n 39

40 Układy licznikowe znaczniki przerwań w rejestrze TIFR Bity TOVn zgłaszają przerwania od przepełnienia timera n Bity OCFnX zgłaszają przerwania od odpowiedniego układu porównania timera n 40

Metody obsługi zdarzeń

Metody obsługi zdarzeń SWB - Przerwania, polling, timery - wykład 10 asz 1 Metody obsługi zdarzeń Przerwanie (ang. Interrupt) - zmiana sterowania, niezależnie od aktualnie wykonywanego programu, spowodowana pojawieniem się sygnału

Bardziej szczegółowo

Wbudowane układy peryferyjne cz. 2 Wykład 8

Wbudowane układy peryferyjne cz. 2 Wykład 8 Wbudowane układy peryferyjne cz. 2 Wykład 8 Timery Timery (liczniki) 2 Timery informacje ogólne Mikrokontroler ATmega32 posiada 3 liczniki: Timer0 8-bitowy Timer1 16-bitowy Timer2 8-bitowy, mogący pracować

Bardziej szczegółowo

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32

LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:

Bardziej szczegółowo

Przerwania, polling, timery - wykład 9

Przerwania, polling, timery - wykład 9 SWB - Przerwania, polling, timery - wykład 9 asz 1 Przerwania, polling, timery - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Przerwania, polling, timery - wykład 9 asz 2 Metody obsługi zdarzeń

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

SYSTEM PRZERWAŃ ATmega 32

SYSTEM PRZERWAŃ ATmega 32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA SYSTEM PRZERWAŃ ATmega 32 Opracował: mgr inż.

Bardziej szczegółowo

Wstęp...9. 1. Architektura... 13

Wstęp...9. 1. Architektura... 13 Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości

Bardziej szczegółowo

Układy czasowe / liczniki (timers/counters)

Układy czasowe / liczniki (timers/counters) Układy czasowe / liczniki (timers/counters) Współpraca MK z otoczeniem w czasie rzeczywistym wymaga odliczania czasu, zliczania zdarzeń lub generowania złożonych sekwencji binarnych. Funkcje te realizowane

Bardziej szczegółowo

Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1

Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1 Dodatek C 1. Timer 8-bitowy (Timer0) 1.1. Opis układu Uproszczony schemat blokowy zespołu 8-bitowego timera przedstawiono na rys.1 Rys. 1. Schemat blokowy timera Źródłem sygnału taktującego może być zegar

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Współpraca z układami peryferyjnymi i urządzeniami zewnętrznymi Testowanie programowe (odpytywanie, przeglądanie) System przerwań Testowanie programowe

Bardziej szczegółowo

Wbudowane układy peryferyjne cz. 1 Wykład 7

Wbudowane układy peryferyjne cz. 1 Wykład 7 Wbudowane układy peryferyjne cz. 1 Wykład 7 Wbudowane układy peryferyjne UWAGA Nazwy rejestrów i bitów, ich lokalizacja itd. odnoszą się do mikrokontrolera ATmega32 i mogą być inne w innych modelach! Ponadto

Bardziej szczegółowo

Hardware mikrokontrolera X51

Hardware mikrokontrolera X51 Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)

Bardziej szczegółowo

PRZETWORNIK ADC w mikrokontrolerach Atmega16-32

PRZETWORNIK ADC w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA PRZETWORNIK ADC w mikrokontrolerach Atmega16-32

Bardziej szczegółowo

Programowanie mikrokontrolerów. 8 listopada 2007

Programowanie mikrokontrolerów. 8 listopada 2007 Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 8 listopada 2007 Alfanumeryczny wyświetlacz LCD umożliwia wyświetlanie znaków ze zbioru będącego rozszerzeniem ASCII posiada zintegrowany sterownik

Bardziej szczegółowo

Przerwanie. Źródła przerwań

Przerwanie. Źródła przerwań Podstawy systemów mikroprocesorowych Wykład nr 3 Przerwania i liczniki dr Piotr Fronczak http://www.if.pw.edu.pl/~agatka/psm.html fronczak@if.pw.edu.pl Przerwanie Warunek lub zdarzenie, które przerywa

Bardziej szczegółowo

Podstawy Techniki Mikroprocesorowej Laboratorium

Podstawy Techniki Mikroprocesorowej Laboratorium Laboratorium Ćwiczenie 3 Liczniki 0, 1, 2 (Timer Counters T/C0, T/C1, T/C2) Program ćwiczenia: obsługa trybu pracy normalny wybranego licznika, obsługa trybu pracy CTC wybranego licznika, obsługa trybu

Bardziej szczegółowo

Systemy wbudowane Mikrokontrolery

Systemy wbudowane Mikrokontrolery Systemy wbudowane Mikrokontrolery Budowa i cechy mikrokontrolerów Architektura mikrokontrolerów rodziny AVR 1 Czym jest mikrokontroler? Mikrokontroler jest systemem komputerowym implementowanym w pojedynczym

Bardziej szczegółowo

2. PORTY WEJŚCIA/WYJŚCIA (I/O)

2. PORTY WEJŚCIA/WYJŚCIA (I/O) 2. PORTY WEJŚCIA/WYJŚCIA (I/O) 2.1 WPROWADZENIE Porty I/O mogą pracować w kilku trybach: - przesyłanie cyfrowych danych wejściowych i wyjściowych a także dla wybrane wyprowadzenia: - generacja przerwania

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów...2 2. ISP...2 3. I/O Ports...3 4. External Interrupts...4 5. Analog Comparator...5 6. Analog-to-Digital Converter...6

Bardziej szczegółowo

równoległe (w wersji 4-, 8- i 16-bitowej). Same wyświetlacze ze względu na budowę i możliwości możemy podzielić na dwie grupy:

równoległe (w wersji 4-, 8- i 16-bitowej). Same wyświetlacze ze względu na budowę i możliwości możemy podzielić na dwie grupy: Gdańsk, 2017 1 Wyświetlacz LCD Zawierają zazwyczaj scalone kontrolery, stąd też procesor nie steruje bezpośrednio matrycą LCD, ale komunikuje się z wyspecjalizowanym sterownikiem, który realizuje jego

Bardziej szczegółowo

Wbudowane układy peryferyjne cz. 3 Wykład 9

Wbudowane układy peryferyjne cz. 3 Wykład 9 Wbudowane układy peryferyjne cz. 3 Wykład 9 Komparator analogowy Komparator analogowy 2 Komparator analogowy Pozwala porównać napięcia na wejściu dodatnim i ujemnym Przerwanie może być wywołane obniżeniem

Bardziej szczegółowo

Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów

Adresowanie obiektów. Adresowanie bitów. Adresowanie bajtów i słów. Adresowanie bajtów i słów. Adresowanie timerów i liczników. Adresowanie timerów Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.

Bardziej szczegółowo

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

2.1 Porównanie procesorów

2.1 Porównanie procesorów 1 Wstęp...1 2 Charakterystyka procesorów...1 2.1 Porównanie procesorów...1 2.2 Wejścia analogowe...1 2.3 Termometry cyfrowe...1 2.4 Wyjścia PWM...1 2.5 Odbiornik RC5...1 2.6 Licznik / Miernik...1 2.7 Generator...2

Bardziej szczegółowo

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot,

Charakterystyka mikrokontrolerów. Przygotowali: Łukasz Glapiński, Mateusz Kocur, Adam Kokot, Charakterystyka mikrokontrolerów Przygotowali: Łukasz Glapiński, 171021 Mateusz Kocur, 171044 Adam Kokot, 171075 Plan prezentacji Co to jest mikrokontroler? Historia Budowa mikrokontrolera Wykorzystywane

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Dostęp do portów mikrokontrolera ATmega32 język C laboratorium: 10 autorzy: dr

Bardziej szczegółowo

AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET

AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET AGH Akademia Górniczo- Hutnicza w Krakowie Katedra Elektroniki WIET Technika Microprocesorowa Laboratorium 6 Timery i liczniki Auhor: Paweł Russek Tłumaczenie: Ernest Jamro http://www.fpga.agh.edu.pl/tm

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Systematyczny przegląd. (CISC) SFR umieszczane są w wewnętrznej pamięci danych (80H 0FFH). Adresowanie wyłącznie bezpośrednie. Rejestry o adresach podzielnych przez 8 są też dostępne bitowo. Adres n-tego

Bardziej szczegółowo

Uproszczony schemat blokowy konwertera analogowo-cyfrowego przedstawiony został na rys.1.

Uproszczony schemat blokowy konwertera analogowo-cyfrowego przedstawiony został na rys.1. Dodatek D 1. Przetwornik analogowo-cyfrowy 1.1. Schemat blokowy Uproszczony schemat blokowy konwertera analogowo-cyfrowego przedstawiony został na rys.1. Rys. 1. Schemat blokowy przetwornika A/C Przetwornik

Bardziej szczegółowo

Mikroprocesor Operacje wejścia / wyjścia

Mikroprocesor Operacje wejścia / wyjścia Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych

Bardziej szczegółowo

Część I - Sterownik przerwań 8259A i zegar/licznik 8253

Część I - Sterownik przerwań 8259A i zegar/licznik 8253 Programowanie na poziome sprzętu opracowanie pytań Część I - Sterownik przerwań 8259A i zegar/licznik 8253 Autor opracowania: Marcin Skiba cines91@gmail.com 1. Jakie są dwie podstawowe metody obsługi urządzeń

Bardziej szczegółowo

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO

IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Sterowniki Urządzeń Mechatronicznych laboratorium. Ćw. 3: Timer v1.0

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Sterowniki Urządzeń Mechatronicznych laboratorium. Ćw. 3: Timer v1.0 1 CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z możliwościami odmierzania czasu za pomocą wewnętrznego TIMER a mikrokontrolerów serii AVR 2 ZAKRES NIEZBĘDNYCH WIADOMOŚCI - wiadomości z poprzednich

Bardziej szczegółowo

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26

Kurs Elektroniki. Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Kurs Elektroniki Część 5 - Mikrokontrolery. www.knr.meil.pw.edu.pl 1/26 Mikrokontroler - autonomiczny i użyteczny system mikroprocesorowy, który do swego działania wymaga minimalnej liczby elementów dodatkowych.

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery System przerwań laboratorium: 11 autorzy: dr hab. Zbisław Tabor, prof. PK mgr inż.

Bardziej szczegółowo

Omówimy przykłady 8-mio bitowego licznika z wyposażenia ADuC812 (CISC 51) oraz mikrokontrolera ATMega128 należącego do rodziny AVR.

Omówimy przykłady 8-mio bitowego licznika z wyposażenia ADuC812 (CISC 51) oraz mikrokontrolera ATMega128 należącego do rodziny AVR. Liczniki/czasomierze (T/C) należą do standardowego składu wewnętrznych układów peryferyjnych (WEP) mikrokontrolerów. Często różnią się znacznie pod względem funkcji, które rozszerzają proste zliczanie

Bardziej szczegółowo

Instytut Teleinformatyki

Instytut Teleinformatyki Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i mikrokontrolery Przerwania laboratorium: 04 autor: mgr inż. Michał Lankosz dr hab. Zbisław Tabor,

Bardziej szczegółowo

XMEGA. Warsztaty CHIP Rok akademicki 2014/2015

XMEGA. Warsztaty CHIP Rok akademicki 2014/2015 XMEGA Warsztaty CHIP Rok akademicki 2014/2015 Plan warsztatów: Wprowadzenie do Atmel Studio (20/11/2014) Porty I/O (20/11/2014) Przerwania (27/11/2014) Wykorzystana literatura: [1] Dokumentacja ATMEL(www.atmel.com):

Bardziej szczegółowo

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści

Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów...2 2. ISP...2 3. I/O Ports...3 4. External Interrupts...4 5. Analog Comparator...6 6. Analog-to-Digital Converter...6

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe (A/C)

Przetworniki analogowo-cyfrowe (A/C) Przetworniki analogowo-cyfrowe (A/C) Przetworniki analogowo-cyfrowe to urządzenia, przetwarzające ciągły analogowy sygnał wejściowy jedno wejście na odpowiadający mu dyskretny cyfrowy sygnał wyjściowy

Bardziej szczegółowo

Komunikacja w mikrokontrolerach. Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski

Komunikacja w mikrokontrolerach. Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski Komunikacja w mikrokontrolerach Wydział Elektroniki Mikrosystemów i Fotoniki Piotr Markowski Treść kursu Programowanie mikrokontrolerów AVR (ATMEL) Orientacja na komunikację międzyukładową w C Literatura

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu

Bardziej szczegółowo

Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych

Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych B.1. Dostęp do urządzeń komunikacyjnych Sterowniki urządzeń zewnętrznych widziane są przez procesor jako zestawy rejestrów

Bardziej szczegółowo

Szkolenia specjalistyczne

Szkolenia specjalistyczne Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com

Bardziej szczegółowo

Technika mikroprocesorowa I Wykład 2

Technika mikroprocesorowa I Wykład 2 Technika mikroprocesorowa I Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci, -odczyt-zapis urządzenia we-wy,

Bardziej szczegółowo

Mikroprocesory i mikrosterowniki

Mikroprocesory i mikrosterowniki Mikroprocesory i mikrosterowniki Wykład 1 wstęp, budowa mikrokontrolera Wydział Elektroniki Mikrosystemów i Fotoniki Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Piotr Markowski

Bardziej szczegółowo

Wprowadzenie do podstaw programowania AVR (na przykładzie mikrokontrolera ATmega 16 / 32)

Wprowadzenie do podstaw programowania AVR (na przykładzie mikrokontrolera ATmega 16 / 32) Wprowadzenie do podstaw programowania AVR (na przykładzie mikrokontrolera ATmega 16 / 32) wersja 0.4 (20 kwietnia 2015) Filip A. Sala W niniejszym, bardzo krótkim opracowaniu, postaram się przedstawić

Bardziej szczegółowo

Sterownik nagrzewnic elektrycznych HE module

Sterownik nagrzewnic elektrycznych HE module Sterownik nagrzewnic elektrycznych HE module Dokumentacja Techniczna 1 1. Dane techniczne Napięcie zasilania: 24 V~ (+/- 10%) Wejście napięciowe A/C: 0 10 V Wejścia cyfrowe DI 1 DI 3: 0 24 V~ Wyjście przekaźnikowe

Bardziej szczegółowo

Dokumentacja mikrokontrolera Atmega16 firmy Atmel

Dokumentacja mikrokontrolera Atmega16 firmy Atmel Katedra Metrologii i Systemów Elektronicznych Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej LABORATORIUM MIKROSTEROWNIKI I MIKROSYSTEMY ROZPROSZONE Dokumentacja mikrokontrolera

Bardziej szczegółowo

Język FBD w systemie Concept

Język FBD w systemie Concept Adresowanie obiektów Bit - stan pojedynczego sygnału - wejście lub wyjście dyskretne, bit pamięci Bajt - 8 bitów - wartość od -128 do +127 Słowo - 16 bitów - wartość od -32768 do 32767 -wejście lub wyjście

Bardziej szczegółowo

Mikrokontroler ATmega32. Tryby adresowania Rejestry funkcyjne

Mikrokontroler ATmega32. Tryby adresowania Rejestry funkcyjne Mikrokontroler ATmega32 Tryby adresowania Rejestry funkcyjne 1 Rozrónia si dwa główne tryby: adresowanie bezporednie i porednie (jeli jeden z argumentów jest stał, ma miejsce take adresowanie natychmiastowe)

Bardziej szczegółowo

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna

ad a) Konfiguracja licznika T1 Niech nasz program składa się z dwóch fragmentów kodu: inicjacja licznika T1 pętla główna Technika Mikroprocesorowa Laboratorium 4 Obsługa liczników i przerwań Cel ćwiczenia: Celem ćwiczenia jest nabycie umiejętności obsługi układów czasowo-licznikowych oraz obsługi przerwań. Nabyte umiejętności

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

Technika Mikroprocesorowa

Technika Mikroprocesorowa Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa

Bardziej szczegółowo

Mikrokontrolery AVR techniczne aspekty programowania

Mikrokontrolery AVR techniczne aspekty programowania Andrzej Pawluczuk Mikrokontrolery AVR techniczne aspekty programowania Białystok, 2004 Mikrokontrolery rodziny AVR integrują w swojej strukturze między innymi nieulotną pamięć przeznaczoną na program (pamięć

Bardziej szczegółowo

Sterowanie multipleksowe 4-cyfrowego wyświetlacza siedmiosegmentowego w oparciu o system przerwao mikrokontrolera ATmega16 w języku Asembler

Sterowanie multipleksowe 4-cyfrowego wyświetlacza siedmiosegmentowego w oparciu o system przerwao mikrokontrolera ATmega16 w języku Asembler Sterowanie multipleksowe 4-cyfrowego wyświetlacza siedmiosegmentowego w oparciu o system przerwao mikrokontrolera ATmega16 w języku Asembler Robert Budzioski Wrocław, 11. maja 2009 Spis treści 1. Sterowanie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 11 Wejście - wyjście Urządzenia zewnętrzne Wyjściowe monitor drukarka Wejściowe klawiatura, mysz dyski, skanery Komunikacyjne karta sieciowa, modem Urządzenie zewnętrzne

Bardziej szczegółowo

Mikroprocesory i Mikrosterowniki

Mikroprocesory i Mikrosterowniki Mikroprocesory i Mikrosterowniki Wykład 1 Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji ATmega8535, www.atmel.com. Konsultacje Pn,

Bardziej szczegółowo

Wykład Mikroprocesory i kontrolery

Wykład Mikroprocesory i kontrolery Wykład Mikroprocesory i kontrolery Cele wykładu: Poznanie podstaw budowy, zasad działania mikroprocesorów i układów z nimi współpracujących. Podstawowa wiedza potrzebna do dalszego kształcenia się w technice

Bardziej szczegółowo

Programowanie mikrokontrolerów - laboratorium

Programowanie mikrokontrolerów - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Programowanie mikrokontrolerów- laboratorium Nazwisko i imię 1. 2. Data wykonania ćwiczenia: Grupa: Ocena sprawozdania Zaliczenie: Symbol:

Bardziej szczegółowo

Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780

Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 Dane techniczne : Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 a) wielkość bufora znaków (DD RAM): 80 znaków (80 bajtów) b) możliwość sterowania (czyli podawania kodów znaków) za pomocą

Bardziej szczegółowo

Programowanie w językach asemblera i C

Programowanie w językach asemblera i C Programowanie w językach asemblera i C Mariusz NOWAK Programowanie w językach asemblera i C (1) 1 Dodawanie dwóch liczb - program Napisać program, który zsumuje dwie liczby. Wynik dodawania należy wysłać

Bardziej szczegółowo

Poradnik programowania procesorów AVR na przykładzie ATMEGA8

Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR

Bardziej szczegółowo

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

2.1 Przesył danych między procesorem a tabelą zmiennych

2.1 Przesył danych między procesorem a tabelą zmiennych 1 Wstęp...1 2 Jak aplikacja obsługuje procesory?...2 2.1 Przesył danych między procesorem a tabelą zmiennych...2 2.2 Polecenia wysyłane do procesorów...2 3 Podstawowe peryferia procesora HallChip...3 3.1

Bardziej szczegółowo

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych Architektura Systemów Komputerowych Bezpośredni dostęp do pamięci Realizacja zależności czasowych 1 Bezpośredni dostęp do pamięci Bezpośredni dostęp do pamięci (ang: direct memory access - DMA) to transfer

Bardziej szczegółowo

Mikrokontroler AVR ATmega32 - wykład 9

Mikrokontroler AVR ATmega32 - wykład 9 SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 1 Mikrokontroler AVR ATmega32 - wykład 9 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Mikrokontroler AVR ATmega32 - wykład 9 asz 2 CechyµC ATmega32 1.

Bardziej szczegółowo

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2

LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 LABORATORIUM - ELEKTRONIKA Układy mikroprocesorowe cz.2 1. Cel ćwiczenia Celem ćwiczenia jest pokazanie budowy systemów opartych na układach Arduino. W tej części nauczymy się podłączać różne czujników,

Bardziej szczegółowo

Architektura mikrokontrolera MCS51

Architektura mikrokontrolera MCS51 Architektura mikrokontrolera MCS51 Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Architektura mikrokontrolera

Bardziej szczegółowo

ARCHITEKTURA PROCESORA,

ARCHITEKTURA PROCESORA, ARCHITEKTURA PROCESORA, poza blokami funkcjonalnymi, to przede wszystkim: a. formaty rozkazów, b. lista rozkazów, c. rejestry dostępne programowo, d. sposoby adresowania pamięci, e. sposoby współpracy

Bardziej szczegółowo

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersye Technologiczny WYDZIAŁ ELEKTRYCZNY Kaedra Inżynierii Sysemów, Sygnałów i Elekroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA Obsługa wyjść PWM w mikrokonrolerach Amega16-32 Opracował:

Bardziej szczegółowo

Mikroprocesory i mikrosterowniki Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej Ćwiczenie nr 4

Mikroprocesory i mikrosterowniki Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej Ćwiczenie nr 4 1 Ćwiczenie nr 4 Program ćwiczenia: Interfejs szeregowy SPI obsługa sterownika ośmiopozycyjnego, 7-segmentowego wyświetlacza LED Interfejs szeregowy USART, komunikacja mikrokontrolera z komputerem PC.

Bardziej szczegółowo

1. Podstawowe wiadomości...9. 2. Możliwości sprzętowe... 17. 3. Połączenia elektryczne... 25. 4. Elementy funkcjonalne programów...

1. Podstawowe wiadomości...9. 2. Możliwości sprzętowe... 17. 3. Połączenia elektryczne... 25. 4. Elementy funkcjonalne programów... Spis treści 3 1. Podstawowe wiadomości...9 1.1. Sterowniki podstawowe wiadomości...10 1.2. Do czego służy LOGO!?...12 1.3. Czym wyróżnia się LOGO!?...12 1.4. Pierwszy program w 5 minut...13 Oświetlenie

Bardziej szczegółowo

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe System mikroprocesorowy 1. Przedstaw schemat blokowy systemu mikroprocesorowego.

Bardziej szczegółowo

System mikroprocesorowy i peryferia. Dariusz Chaberski

System mikroprocesorowy i peryferia. Dariusz Chaberski System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób

Bardziej szczegółowo

Programowanie mikrokontrolerów 2.0

Programowanie mikrokontrolerów 2.0 Programowanie mikrokontrolerów 2.0 Tryby uśpienia Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 19 grudnia 2016 Zarządzanie energią Często musimy zadbać o zminimalizowanie

Bardziej szczegółowo

Programowanie mikrokontrolerów AVR z rodziny ATmega.

Programowanie mikrokontrolerów AVR z rodziny ATmega. Programowanie mikrokontrolerów AVR z rodziny ATmega. Materiały pomocnicze Jakub Malewicz jakub.malewicz@pwr.wroc.pl Wszelkie prawa zastrzeżone. Kopiowanie w całości lub w częściach bez zgody i wiedzy autora

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 9-236 Łódź, Pomorska 49/53 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Programowany układ czasowy APSC

Programowany układ czasowy APSC Programowany układ czasowy APSC Ośmiobitowy układ czasowy pracujący w trzech trybach. Wybór trybu realizowany jest przez wartość ładowaną do wewnętrznego rejestru zwanego słowem sterującym. Rejestr ten

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C-"

PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C- PC 3 PC^ TIMER IN RESET PC5 TIMER OUT 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 AD7 U ss c 3 L 5 c.* Cl* S 9 10 11 12 13 U 15 H 17 Cu C-" ln LTJ CO 2.12. Wielofunkcyjne układy współpracujące z mikroprocesorem

Bardziej szczegółowo

1. Porty wejścia wyjścia (I/O)

1. Porty wejścia wyjścia (I/O) 1. Porty wejścia wyjścia (I/O) Z uwagi na budowę wewnętrzną CPU, a w szczególności długość rejestrów i szerokość szyny danych porty mają najczęściej budowę 8-bitową. Niektóre z nich mogą pracować jako

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Mechanizm przerwań i menadżer zdarzeń procesora sygnałowego F/C240

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Mechanizm przerwań i menadżer zdarzeń procesora sygnałowego F/C240 LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ Mechanizm przerwań i menadżer zdarzeń procesora sygnałowego F/C240 Strona 1 z 12 Opracował mgr inż. Jacek Lis (c) ZNE 2004 1. Mechanizm przerwań

Bardziej szczegółowo

Moduł nagrzewnicy elektrycznej EL-HE

Moduł nagrzewnicy elektrycznej EL-HE 1. Dane techniczne: Moduł nagrzewnicy elektrycznej EL-HE Napięcie zasilania: 24 V~ (+/- 10%) Wymiary[mm] : 70 x 90 x 58 Możliwość sterowania binarnego Regulowane parametry pracy : 12 Wyświetlacz LED Port

Bardziej szczegółowo

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD.

4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. 13 4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy,

Bardziej szczegółowo

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania Architektura Systemów Komputerowych Jednostka ALU Przestrzeń adresowa Tryby adresowania 1 Jednostka arytmetyczno- logiczna ALU ALU ang: Arythmetic Logic Unit Argument A Argument B A B Ci Bit przeniesienia

Bardziej szczegółowo

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro 1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie sterowania układem pozycjonowania z wykorzystaniem sterownika VersaMax Micro oraz silnika krokowego. Do algorytmu pozycjonowania wykorzystać licznik

Bardziej szczegółowo

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje

Bardziej szczegółowo

Stanowisko laboratoryjne dla mikrokontrolera Atmega16 firmy Atmel

Stanowisko laboratoryjne dla mikrokontrolera Atmega16 firmy Atmel Katedra Metrologii i Optoelektroniki Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska LABORATORIUM MIKROKONTROLERY I MIKROSYSTEMY Stanowisko laboratoryjne dla mikrokontrolera Atmega16

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Wprowadzenie. Mikrokontroler 8051 Budowa

Systemy wbudowane. Wprowadzenie. Wprowadzenie. Mikrokontroler 8051 Budowa Systemy wbudowane Mikrokontroler 8051 Budowa dr inż. Maciej Piechowiak Wprowadzenie rdzeń CPU z jednostką artymetyczno-logiczną (ALU) do obliczeń na liczbach 8-bitowych, uniwersalne dwukierunkowe porty

Bardziej szczegółowo

MCAR Robot mobilny z procesorem AVR Atmega32

MCAR Robot mobilny z procesorem AVR Atmega32 MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..

Bardziej szczegółowo

Wykład 12. Przetwornik ADC

Wykład 12. Przetwornik ADC Wykład 12 Przetwornik Przetwornik analogowo-cyfrowy () Moduł w mikrokontrolerach Stellaris posiada rozdzielczość 10-bitów i cztery kanały wejściowe oraz dodatkowo wewnętrzny czujnik temperatury. Moduł

Bardziej szczegółowo

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS tel. (0-22) 823-30-17, 668-69-75 02-304 Warszawa, Aleje Jerozolimskie 141/90 fax (0-22) 659-26-11

Bardziej szczegółowo

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0)

AVR DRAGON. INSTRUKCJA OBSŁUGI (wersja 1.0) AVR DRAGON INSTRUKCJA OBSŁUGI (wersja 1.0) ROZDZIAŁ 1. WSTĘP... 3 ROZDZIAŁ 2. ROZPOCZĘCIE PRACY Z AVR DRAGON... 5 ROZDZIAŁ 3. PROGRAMOWANIE... 8 ROZDZIAŁ 4. DEBUGOWANIE... 10 ROZDZIAŁ 5. SCHEMATY PODŁĄCZEŃ

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo