I. Biosygnały. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 1/75

Wielkość: px
Rozpocząć pokaz od strony:

Download "I. Biosygnały. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 1/75"

Transkrypt

1 I. Biosygnały Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 1/75

2 1. Wprowadzenie w problematykę biosygnałów Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 2/75

3 Problematyka biosygnałów Obiekt biologiczny wymaga specyficznych pomiarów oraz podejścia eksploracyjnego. Sygnały biomedyczne to sygnały, których źródłem jest człowiek obiekt o cechach zmiennych w czasie, podlegających wpływowi osobniczemu. Obiekt jest istotą żywą, do której stosujemy metody inżynierskie w celu obiektywnej oceny jego stanu. Cel tej obiektywnej oceny jest zasadniczo dwojaki: diagnostyka medyczna (podjęcie decyzji o zaistnieniu schorzenia, następnie o stopniu jego zaawansowania i ewentualnie ocena wpływu oddziaływania leków), rehabilitacja po urazach i działania pokrewne (np. wsparcie treningu sportowego). Biosygnały są poddawane gruntownej analizie również w celach czysto naukowych. Biosygnały mogą być jedno i wielowymiarowe. W szerszym ujęciu do biosygnałów należą również sygnały biometryczne. Metody akwizycji sygnałów biomedycznych dzielimy zasadniczo na inwazyjne i bezinwazyjne, ale definicje są różnorodne (język techniczny vs. medyczny). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 3/75

4 Diagnostyka medyczna Diagnostyka medyczna zajmuje się rozpoznaniem stanu zdrowia na podstawie objawów stwierdzonych w badaniu lekarskim formalnie dzielącym się na badanie podmiotowe (wywiad chorobowy) i badanie przedmiotowe (oglądanie, obmacywanie, opukiwanie i osłuchiwanie) oraz w oparciu o wyniki badań dodatkowych: laboratoryjnych, czynnościowych i obrazowych. Badania laboratoryjne polegają na pobraniu i ocenie w warunkach laboratoryjnych fragmentu tkanki (krwi, moczu, wycinka skóry itp.). Badania czynnościowe służą do oceny działania (czynności) wybranych organów ustroju. Do badań czynnościowych można zaliczyć m.in.: badania elektrofizjologiczne (EEG i PW, EKG, oraz EMG i ENG), szeroko stosowaną termografię podczerwoną i mikrofalową oraz ECHO (Echokardiografia metoda ultrasonograficzna umożliwiająca przedstawienie struktur serca w dowolnym przekroju, a dzięki wykorzystaniu efektu Dopplera umożliwia ponadto badanie przepływu krwi przez serce). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 4/75

5 Diagnostyka medyczna Badania obrazowe mają na celu pokazanie szczegółów budowy badanych fragmentów organizmu. Kolokwialnie można stwierdzić, że pokazują one, jak dany narząd wygląda, a nie jak funkcjonuje. Do najczęściej stosowanych badań obrazowych struktury należą: RTG 1, USG 2, CT 3 i MRI 4 oraz cały szereg technik endoskopowych. 1. Zdjęcie organu prześwietlonego promieniami rentgenowskimi. Stosuje się też odmiany z użyciem kontrastu, np. podanie środka cieniującego do tętnic wieńcowych i uwidocznienie ich w prześwietleniu (koronarografia). 2. Ultrasonografia dzięki analizie echa powstającego wskutek odbicia fal ultradźwiękowych od badanych narządów pozwala ocenić ich budowę anatomiczną i wykryć ewentualne nieprawidłowości. 3. Tomografia komputerowa (ang. Computed Tomography) przedstawia obrazy przekrojów poprzecznych ciała uzyskane dzięki komputerowej analizie tłumienia wielowiązkowego promieniowania przez nie przenikającego. 4. Rezonans magnetyczny (ang. Magnetic Resonance Imaging) badanie wykorzystujące zjawisko magnetycznego rezonansu jądrowego czyli zjawisko rezonansowej absorpcji (i reemisji na nieco zmienionej częstotliwości) promieniowania elektromagnetycznego przez jądra atomowe ciał umieszczonych w stałym polu magnetycznym. Zjawisku temu podlegają jądra o niezerowym spinie, m.in. jądra wodoru. Do obrazowania wykorzystuje się fakt różnej zawartości atomów wodoru w poszczególnych tkankach. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 5/75

6 Diagnostyka medyczna Współczesna diagnostyka medyczna dysponuje także metodami pełniącymi jednocześnie funkcję badań obrazowych (struktury) i czynnościowych, należą do nich: SPECT 1, PET 2, PET- CT 3 i fmri (funkcjonalny rezonans magnetyczny). Obrazy uzyskiwane w SPECT i PET określają kształt, wielkość, położenie oraz makrostrukturę badanego narządu poprzez jego funkcję, mają więc charakter czynnościowy, co jest konsekwencją zjawisk, na których opierają się te metody. Gromadzenie znacznika izotopowego w narządzie jest procesem fizjologicznym. W przypadku prawidłowym na obrazie obserwuje się zarys narządu, co pozwala ocenić jego kształt, wielkość i położenie, natomiast w przypadku patologicznym gromadzenie znacznika jest zaburzone i w rezultacie zaburzony jest również obraz struktury narządu. Obrazową informację diagnostyczną uzyskuje się więc dzięki czynności pełnionej przez narząd. 1. Tomografia emisyjna pojedynczych fotonów (ang. Single Photon Emission Computed Tomography) badanie, w którym radioaktywny izotop przyłączany jest do nośnika mającego zdolność gromadzenia się w badanym narządzie proporcjonalnie do lokalnego metabolizmu. Rejestracja promieniowania tego izotopu umożliwia ocenę budowy i czynności narządu. 2. Pozytonowa tomografia emisyjna (ang. Positron Emission Tomography) technika obrazowania zbliżona do SPECT, wykorzystująca promieniowanie powstające podczas anihilacji pozytonów. Źródłem pozytonów jest ulegająca rozpadowi substancja promieniotwórcza podawana pacjentowi. Substancja ta zawiera izotopy promieniotwórcze o krótkim okresie półtrwania (m.in.: węgiel C-11, Azot N-13, tlen O-15), co minimalizuje uszkodzenia tkanek wywoływane promieniowaniem. 3. Jest to połączenie pozytonowej tomografii emisyjnej z tomografią komputerową będące jednym z najnowszych osiągnięć w dziedzinie obrazowania diagnostycznego. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 6/75

7 Schemat systemu diagnostycznego Obiekt Pomiar biosygnałów Kondycjonowanie Ekstrakcja cech Klasyfikacja (diagnoza) Parametr diagnostyczny Redukcja wymiaru Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 7/75

8 Rozkłady parametru diagnostycznego TP - ang. true positive FP - ang. false positive FN - ang. false negative TN - ang. true negative Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 8/75

9 Czułość diagnostyczna Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Czułość (ang. Sensitivity): Se TP TP FN Czułość określa zdolność testu do poprawnego rozpoznania choroby. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 9/75

10 Specyficzność (swoistość) diagnostyczna Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Specyficzność (ang. Specificity): Sp TN TN FP Specyficzność określa zdolność testu do poprawnego wykluczenia choroby. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 10/75

11 Fałszywy alarm Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Fałszywy alarm (ang. False Alarm): FA 1 Sp FP TN FP Fałszywy alarm określa liczbę fałszywie zdiagnozowanych pacjentów zdrowych w stosunku do liczby pacjentów zdrowych. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 11/75

12 Dodatnia wartość prognostyczna Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Dodatnia wartość prognostyczna (ang. Positive Predictive Value): PPV TP TP FP PPV jest to prawdopodobieństwo, że pacjent jest chory mając pozytywny wynik testu. Jeśli więc pacjent otrzymał pozytywny wynik testu, to PPV daje informację na ile może być pewien, że faktycznie jest chory. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 12/75

13 Ujemna wartość prognostyczna Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Ujemna wartość prognostyczna (ang. Negative Predictive Value): NPV TN TN FN NPV jest to prawdopodobieństwo, że pacjent jest zdrowy mając negatywny wynik testu. Jeśli więc pacjent otrzymał wynik negatywny, to NPV daje informację na ile może być pewien, że faktycznie jest zdrowy. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 13/75

14 Dokładność Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Dokładność (ang. Accuracy): ACC TP TN TP TN FP FN Dokładność określa liczbę prawidłowo zdiagnozowanych pacjentów w stosunku do liczby wszystkich pacjentów. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 14/75

15 Błąd całkowity Prawdziwy stan zdrowia Pacjenci chorzy Pacjenci zdrowi Wynik diagnozy (klasyfikacji) Pacjenci chorzy (dodatni) Pacjenci zdrowi (ujemny) TP - ang. true positive FN - ang. false negative FP - ang. false positive TN - ang. true negative Błąd całkowity (ang. Total Error): TE 1 ACC FP FN TP TN FP FN Błąd całkowity określa liczbę błędnie zdiagnozowanych pacjentów w stosunku do liczby wszystkich pacjentów. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 15/75

16 Krzywa ROC (ang. Receiver Operating Curve) próg Krzywa ROC obrazuje zależność pomiędzy czułością i fałszywym alarmem w pełnym zakresie pracy klasyfikatora i umożliwia porównanie różnych klasyfikatorów. Przesunięcie progu w prawo powoduje spadek czułości diagnostycznej, ponieważ większa część chorych zostanie zakwalifikowana jako zdrowi. Jednocześnie wzrasta swoistość ponieważ więcej zdrowych zakwalifikujemy prawidłowo. Przeciwna sytuacja zaistnieje, gdy punkt odcięcia zostanie przesunięty w lewo. Celem jest ustalenie wartości decyzyjnej (progu). Istotna jest strata społeczna ile będzie kosztowało zakwalifikowanie osoby do kategorii zdrowy lub chory. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 16/75

17 AUC pole powierzchni pod krzywą ROC AUC (ang. Area Under Curve) przyjmuje wartości z zakresu od 0 do 1, przy czym im jest większe tym większa jest moc diagnostyczna testu. Większość testów w diagnostyce reprezentuje moc diagnostyczną wyrażająca się wartościami AUC pomiędzy 0,80 a 0,95. Opisowo przyjmuje się: AUC = 0,9 1,0 test bardzo dobry, AUC = 0,8 0,9 test dobry, AUC = 0,7 0,8 test satysfakcjonujący, AUC = 0,6 0,7 test średni, AUC = 0,5 0,6 test niedostateczny. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 17/75

18 Uwagi związane ze statystyką Podczas analizy wyników należy mieć świadomość, że w przedziale ± wokół wartości średniej mieści się zaledwie 68% przypadków, dla ±1,5 jest to już 87%, a przedział ±2,5 pokrywa 98,8%, czyli praktycznie całą populację. Główny problem diagnostyczny pojawiający się niejednokrotnie podczas stosowania analizy czasowej polega na często występującym, częściowym pokrywaniu się przedziałów ±2 (95,4%) w przypadkach fizjologicznych i patologicznych. Dodatkowym problemem w przypadku norm EMG jest: - niewłaściwa populacja wzorcowa oraz - brak informacji nt. rozkładu wyników (np. przy rozkładach skośnych posługiwanie się odchyleniem standardowym nie ma sensu). Stąd m.in. wynika potrzeba opracowywania własnych norm przez każdą pracownię. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 18/75

19 Number of healthy patients per 0.46 dbuv intervals Uwagi związane ze statystyką 14 Expected (Gaussian distribution) [db V] Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 19/75

20 Uwagi związane ze statystyką p p [db V] Parametr widmowy tw [ms] Czas trwania Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 20/75

21 Normy medyczne ± 2 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 21/75

22 2. Techniki pomiaru biosygnałów Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 22/75

23 Techniki elektromiograficzne Sygnały biomedyczne i metody ich rejestracji na przykładzie mięśniowych sygnałów elektrofizjologicznych Potencjał czynnościowy jednostki ruchowej. Zapis prosty, pośredni i interferencyjny. Elektromiografia ilościowa. Potencjał czynnościowy jednostki miogennej i neurogennej. Techniki rejestracji: Surface EMG, Needle EMG, Single Fiber EMG, Macro EMG, Scanning EMG. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 23/75

24 Potencjał czynnościowy jednostki ruchowej Potencjał czynnościowy JR jest wynikiem sumowania potencjałów włókien mięśniowych należących do danej jednostki ruchowej i będących w zasięgu elektrody odbiorczej; w istocie nie jest to więc potencjał całej jednostki ruchowej. Potencjał pojedynczego włókna trwa średnio 2-3 ms. Strefa płytek ruchowych włókien należących do danej jednostki ruchowej rozciąga się wzdłuż włókien na długości mm, czas przewodzenia impulsu od płytki do miejsca wkłucia elektrody jest więc dla różnych włókien różny. Również odległość poszczególnych włókien od elektrody odbiorczej nie jest jednakowa. Rezultatem tego jest tzw. dyspersja czasowa ( rozmycie ) potencjałów z poszczególnych włókien wynosząca około 7 ms. Dodatkowe 3 ms wynikają z dyspersji potencjału podczas przewodzenia wzdłuż włókna mięśniowego poza strefą płytki (prędkość propagacji potencjału w poszczególnych włóknach nie jest jednakowa). Ostatecznie czas trwania potencjału czynnościowego prawidłowej jednostki ruchowej wynosi około 9-15 ms i w największym stopniu jest zależny od typu mięśnia mięśnie o długich włóknach charakteryzują się długimi czasami trwania (duże różnice w czasie propagacji), natomiast najkrótsze czasy trwania rejestruje się w mięśniach najmniejszych, np. w mięśniach poruszających gałką oczną. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 24/75

25 Potencjał czynnościowy jednostki ruchowej Motoneuron Płytka nerwowo-mięśniowa Włókno mięśniowe Suma Elektroda igłowa Potencjały włókien mięśniowych Potencjał czynnościowy jednostki ruchowej Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 25/75

26 Potencjał czynnościowy jednostki ruchowej Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 26/75

27 Regulacja siły skurczu mięśnia Liczba aktywnych jednostek ruchowych (ok. 80%). 1 JR 2 JR 3 JR Częstotliwość wyzwalania jednostek ruchowych (ok. 20%). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 27/75

28 Diagnostyka Rozróżnienia pomiędzy prawidłową i patologiczną czynnością mięśnia można dokonać analizując parametry wyizolowanego potencjału czynnościowego jednostki ruchowej (PJR lub MUP/MUAP ang. Motor Unit Action Potential). Jest to tzw. elektromiografia ilościowa QEMG (ang. Quantitative EMG). Można również analizować zapisy EMG w warunkach spoczynkowych oraz w warunkach wysiłkowych (od średniego do maksymalnego skurczu mięśnia wykonywanego przez badanego). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 28/75

29 Zapis prosty, pośredni i interferencyjny prosty U pp 900 V Elektromiografia ilościowa (Quantitative EMG QEMG) pośredni U pp 1150 V interferencyjny U pp 1650 V Czas obserwacji = 800 ms Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 29/75

30 Uśrednianie synchroniczne Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 30/75

31 Uśrednianie synchroniczne Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 31/75

32 Przypadek miogenny W procesie miogennym zmieniają się w sposób specyficzny parametry pojedynczego potencjału, który skrótowo można nazwać: krótkim, niskim i wielofazowym. Skrócenie potencjału oraz zmniejszenie jego amplitudy następuje m.in. w związku z wypadnięciem części włókien mięśniowych, zmniejszeniem średnicy pozostałych włókien i obniżeniem ich potencjału błonowego. Wysoka amplituda spotykana w niektórych procesach miogennych (np. dystrofii Emery-Dreifussa) może być związana ze zjawiskiem selektywnego ubytku włókien o małej średnicy, obecnością włókien przerosłych i zjawiskiem rozszczepiania. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 32/75

33 Przypadek miogenny Uszkodzone włókna mięśniowe Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 33/75

34 Przypadek neurogenny WW procesie neurogennym potencjały czynnościowe jednostek ruchowych najogólniej można nazwać: długimi, wysokimi i wielofazowymi. Przyczyną takich zmian jest wypadanie w efekcie zmian chorobowych aksonów i całych motoneuronów. Organizm, dążąc w sposób naturalny do zachowania siły mięśnia, powoduje rozrost ciągle unerwionych włókien mięśniowych. Jednocześnie ocalałe motoneurony tworzą nowe aksonalne rozgałęzienia końcowe i unerwiają wtórnie włókna mięśniowe odnerwione przez ginące aksony. Pojedynczy motoneuron, który początkowo zaopatrywał np włókien mięśniowych, może ostatecznie unerwiać nawet włókien, tworząc olbrzymią jednostkę ruchową. Zaopatrywanie większej ilości przerośniętych włókien przez jeden motoneuron powoduje, że potencjał czynnościowy jednostki osiąga znacznie większe rozmiary w stosunku do przebiegu normalnego. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 34/75

35 Przypadek neurogenny Zreinerwowane włókna mięśniowe pochodzące od innej JR Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 35/75

36 Badanie QEMG W trakcie badania QEMG neurolog rejestruje potencjały czynnościowe przy minimalnym skurczu mięśnia. Dla zapewnienia wiarygodności analizy statystycznej wymagana jest rejestracja co najmniej 20 różnych potencjałów z 3-4 wkłuć, przy czym nie uwzględnia się przebiegów o wartości międzyszczytowej mniejszej od 50 V. Kryterium wyboru potencjałów do rejestracji jest co najmniej 5-krotne wystąpienie w tym samym zapisie potencjałów o zbliżonym kształcie. Prawidłowe wartości amplitud PJR wynoszą od kilkuset V do kilku mv, a czasy trwania mieszczą się w przedziale od kilku do kilkunastu ms. Liczba faz w warunkach fizjologicznych nie przekracza 4. Potencjały o większej liczbie faz nazywa się wielofazowymi (polifazowymi). Dodatkowym parametrem diagnostycznym jest tzw. polifazja definiowana jako procentowy udział potencjałów wielofazowych w całkowitej liczbie potencjałów zarejestrowanych w badanym mięśniu. Jeśli wśród wszystkich zarejestrowanych potencjałów wielofazowych jest więcej niż 15% (niektórzy neurolodzy przyjmują 20%), to mówi się o wystąpieniu zwiększonej polifazji. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 36/75

37 Badanie EMG Podsumowując, można stwierdzić, że w przypadkach uszkodzeń neurogennych występuje zapis charakteryzujący się: wydłużonym czasem trwania i wysokimi amplitudami PJR, podwyższoną wielofazowością, ubogim zapisem wysiłkowym, czynnością spontaniczną w spoczynku. W przypadkach uszkodzeń pierwotnie mięśniowych mamy do czynienia z zapisem miogennym charakteryzującym się: krótkim czasem trwania i niską amplitudą PJR, podwyższoną wielofazowością, bogatym zapisem wysiłkowym tzw. interferencja patologiczna. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 37/75

38 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 38/75

39 Elektromiografia powierzchniowa Surface EMG (semg) Elektromiografia wykorzystująca elektrody powierzchniowe praktycznie stosowana przez trenerów i rehabilitantów w celu kontroli wysiłku (np. sportowców) i trenowania właściwych grup mięśni. Elektromiografia powierzchniowa bywa często nazywana elektromiografią globalną (Global EMG), w odróżnieniu od elektromiografii elementarnej/igłowej (Needle EMG). Znane są próby wykorzystania elektromiografii powierzchniowej do sterowania protezami. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 39/75

40 Elektromiografia igłowa Needle EMG Elektromiografia igłowa wykorzystuje kilka różnych metod, z których najważniejsze to: Klasyczna elektromiografia ilościowa (QEMG), w której wykorzystuje się pojedyncze elektrody igłowe rejestrujące sumaryczny potencjał z obszaru końca igły, tzn. z obszaru znajdującego się w zasięgu anteny odbiorczej, którą w istocie jest końcówka elektrody. Faktycznie nie jest więc rejestrowany potencjał czynnościowy jednostki ruchowej tylko jego fragment, a stosowana powszechnie nazwa jest uproszczeniem. Elektromiografia pojedynczego włókna Single Fiber EMG. Macro EMG. Scanning EMG. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 40/75

41 Elektromiografia igłowa Needle EMG Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 41/75

42 Single Fiber EMG (SF EMG) Liniowe rozmiary powierzchni czynnej elektrody nie powinny być większe niż połowa średnicy włókna, która zawiera się w przedziale m. W praktyce elektrodę o średnicy około 25 m umieszcza się na bocznej ścianie igły. Rejestracja za pomocą takiej elektrody umożliwia określenie amplitudy potencjału włókna, czasu jego trwania, gęstości włókien w pojedynczej jednostce, a także pozwala stwierdzić prawidłowość czynności płytek ruchowych (transmisji nerwowo-mięśniowej) i określić wzór wyładowań motoneuronowych. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 42/75

43 Single Fiber EMG Ocena transmisji nerwowo-mięśniowej metodą Single Fiber EMG polega na rejestracji potencjałów generowanych przez dwa sąsiednie włókna mięśniowe należące do tej samej jednostki ruchowej (elektroda musi być umieszczona między włóknami, w miarę możliwości dokładnie pośrodku). Znajdujące się na włóknach płytki motoryczne umieszczone są od siebie w pewnej odległości i dlatego potencjały przez nie emitowane elektroda odbiera w różnym czasie. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 43/75

44 Jitter Przy każdym wyładowaniu ta różnica jest nieco inna, a średnia zmienność w czasie pojawienia się jednego z potencjałów względem drugiego, mierzona w μs, nazywana jest jitterem i uważana za najczulszy wskaźnik elektrofizjologiczny stanu synapsy. Im mniej pewne przekazanie pobudzenia (obniżony współczynnik bezpieczeństwa synapsy), tym wyższa wartość jittera, a w miarę pogłębiania się zaburzeń w pojedynczym złączu nerwowo-mięśniowym jeden z potencjałów mięśniowych może nawet ulegać blokowaniu. W przypadkach prawidłowych jitter nie przekracza 50 μs. Właśnie m.in. jitter przyczynia się do występowania odrębności przebiegu potencjałów czynnościowych jednostki przy kolejnych wyładowaniach. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 44/75

45 Single Fiber EMG Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 45/75

46 Macro i Scanning EMG Dwie kolejne metody oparte są na pomiarach realizowanych za pomocą dwóch elektrod, przy czym jedna z nich selektywna (o minimalnej powierzchni czynnej) jest źródłem sygnału synchronizującego. Pierwsza z tych metod, tzw. Macro EMG, dostarcza informacji o czynności elektrycznej całej jednostki ruchowej. Druga, Scanning EMG, pozwala na ocenę stanu włókien w poszczególnych obszarach mięśnia. Obie metody (a w istocie wszystkie metody ilościowe) wykorzystują zjawisko synchronicznego uśredniania. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 46/75

47 Macro EMG W przypadku metody Macro EMG dwie elektrody umieszczone są w pojedynczej igle. Elektroda do rejestracji potencjału włókna (synchronizująca) umieszczona jest na powierzchni bocznej, zaś sama igła stanowi drugą, znacznie mniej selektywną (większą), elektrodę. Istota metody oparta jest na rejestracji potencjałów z prawie wszystkich włókien jednostki ruchowej, przy jednoczesnym zapisie z pojedynczego włókna. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 47/75

48 Macro EMG Duża elektroda rejestruje potencjał czynnościowy jednostki, a dzięki małej elektrodzie, która rejestruje wyzwalający potencjał pojedynczego włókna, potencjał czynnościowy jednostki może być uśredniany, co istotnie zwiększą odstęp od poziomu szumów i zakłóceń bioelektrycznych (np. asynchronicznych potencjałów innych jednostek). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 48/75

49 Scanning EMG Jeśli zamiast igły dwuelektrodowej użyje się elektrody koncentrycznej, niezależnej od elektrody zapisującej potencjał włókna, można zrealizować badanie metodą Scanning EMG. Elektroda koncentryczna, przesuwając się, rejestruje potencjały kolejnych włókien jednostki ruchowej wzdłuż kierunku jej wkłuwania. Dzięki wyzwalającemu potencjałowi pojedynczego włókna uzyskuje się obraz przekroju bioelektrycznego wybranej jednostki ruchowej. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 49/75

50 3. Zastosowanie metod analizy sygnałów zdeterminowanych Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 50/75

51 Metody analizy sygnałów Opis sygnałów w dziedzinie czasu aspekty inżynierskie i medyczne Sygnały analogowe i cyfrowe. Analiza częstotliwościowa. Analiza czasowo-częstotliwościowa. Analiza falkowa. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 51/75

52 Pojęcie sygnału Sygnał, w sensie ogólnym, jest funkcją przenoszącą informacje o stanie lub zachowaniu się pewnego układu fizycznego lub biologicznego. Z reguły informacje zawarte są w postaci jakichś zmian w czasie (np. potencjał czynnościowy włókna) lub przestrzeni (np. zdjęcie RTG). Sygnał s wyraża się matematycznie jako funkcję jednej lub wielu zmiennych (dla powyższych przypadków będzie to czas t (time) lub współrzędne przestrzenne x, y, a dla obrazów trójwymiarowych dodatkowo z). W ramach bieżącego wykładu, ze względu na charakter sygnałów EMG/ENG rozważane będą sygnały jednowymiarowe, dla których zmienną niezależną jest czas s(t) Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 52/75

53 Graficzna reprezentacja sygnału czasowego s [ V] t [ms] Reprezentacja graficzna przebiegu czasowego jest kompletna ale niestety zdecydowanie zbyt nadmiarowa. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 53/75

54 Wartość średnia składowa stała s [ V] s S S 0 t 2 1 t 1 t 2 t 1 s t dt 300 S t t 2 25 t [ms] t2 t 1 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 54/75

55 Wartość średnia składowa stała s S S 0 t 2 1 t 1 t 2 t 1 s t dt t2 t 1 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 55/75

56 Składowa zmienna s [ V] s ~ s s t [ms] -100 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 56/75

57 Wartość skuteczna RMS (Root Mean Square) s [ V] S RMS t t 1 t t 1 s t dt S RMS t t 2 t [ms] Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 57/75

58 Parametry czasowe stosowane w EMG A. I. 2log 10 S 3 V V ms S A V Duże różnice języków lekarskiego i technicznego mogą być przyczyną poważnych nieporozumień (np. amplituda wartość międzyszczytowa, zwrot ekstremum, faza zupełnie inne znaczenie). Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 58/75

59 Niejednoznaczność parametrów czasowych PJR A = const, t w = const, S = const, S.I. = const, l F = const, l Z = const Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 59/75

60 Potrzeba reprezentacji alternatywnej Pomimo mnogości parametrów definiowanych w dziedzinie czasu nie można za ich pomocą w pełni opisać całego przebiegu. Należy więc poszukiwać reprezentacji alternatywnej. Najbardziej popularny jest rozkład na składowe harmoniczne, tj. reprezentacja analizowanego sygnału za pomocą sumy składowych sinusoidalnych i kosinusoidalnych. Z czego wynika popularność sygnałów harmonicznych? Fizyka nie lubi kantów (biologia też). Unikalna własność przy różniczkowaniu i całkowaniu. Ortogonalność odpowiednio dobrane funkcje harmoniczne tworzą bazę ortonormalną. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 60/75

61 Analiza czasowo-częstotliwościowa Przebiegi czasowe potencjałów czynnościowych jednostek ruchowych: miogenny neurogenny prawidłowy Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 61/75

62 M N P A P log Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 62/75

63 Porównanie algorytmów STFT Transformacja Wignera-Ville a Transformacja Gabora Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 63/75

64 Dyskretna transformacja falkowa 1/2, -8 1,5 1 1, 0 0,5 2, t -0,5-1 Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 64/75

65 Dyskretna transformacja falkowa Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 65/75

66 Szerokie możliwości wyboru typu falki Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 66/75

67 Rekonstrukcja podejście klasyczne Przykłady rekonstrukcji w oparciu o sześć klasycznych parametrów czasowych Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 67/75

68 Rekonstrukcja podejście falkowe Rekonstrukcja w oparciu o pięć cech falkowych Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 68/75

69 Metody parametryzacji i klasyfikacji sygnałów Generacja cech dystynktywnych (różnicujących). Selekcja cech diagnostycznych. Definicja parametru diagnostycznego. Wybór i konstrukcja klasyfikatora. Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 69/75

70 Metoda k najbliższych sąsiadów y d 1 =11,95; d 2 =3,77; d 3 =3,41. Suma odległości do k = 4 najbliższych sąsiadów z poszczególnych klas. Wygrywa klasa zielona. x Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 70/75

71 Metoda najbliższej średniej d2 d3 d1 Dr hab. inż. Andrzej P. Dobrowolski Odległości do centrów poszczególnych klas: d1=3,3197; d2=1,2020; d3=1,2229. Wygrywa klasa niebieska. Biosygnały 1 71/75

72 SVM Sieć wektorów nośnych Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 72/75

73 Aplikacja diagnostyczna Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 73/75

74 Aplikacja diagnostyczna Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 74/75

75 Wyniki dla czterech mięśni 7 błędnych klasyfikacji na 1015 badanych przypadków. MUSCLE & NERVE, July Dr hab. inż. Andrzej P. Dobrowolski Biosygnały 1 75/75

Ocena dokładności diagnozy

Ocena dokładności diagnozy Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy

Bardziej szczegółowo

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta

Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018.

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018. Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Analiza sygnałów biologicznych

Analiza sygnałów biologicznych Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),

Bardziej szczegółowo

Co to jest termografia?

Co to jest termografia? Co to jest termografia? Słowo Termografia Pochodzi od dwóch słów "termo" czyli ciepło i "grafia" rysować, opisywać więc termografia to opisywanie przy pomocy temperatury zmian zachodzących w naszym organiźmie

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Biofizyczne podstawy diagnostyki medycznej

Biofizyczne podstawy diagnostyki medycznej Biofizyczne podstawy diagnostyki medycznej 1. Metryczka Nazwa Wydziału: Program kształcenia Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Analityka Medyczna, jednolite studia magisterskie,

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy

Bardziej szczegółowo

( F ) I. Zagadnienia. II. Zadania

( F ) I. Zagadnienia. II. Zadania ( F ) I. Zagadnienia 1. Rozchodzenie się fal akustycznych w układach biologicznych. 2. Wytwarzanie i detekcja fal akustycznych w ultrasonografii. 3. Budowa aparatu ultrasonograficznego metody obrazowania.

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Wg W. Duch Jak działa mózg. UMK Toruń notatki z wprowadzenia do kognitywistyki. Dostępne na str. www.fizyka.umk.pl/~duch/wyklady/

Wg W. Duch Jak działa mózg. UMK Toruń notatki z wprowadzenia do kognitywistyki. Dostępne na str. www.fizyka.umk.pl/~duch/wyklady/ Analiza urazów powypadkowych. JuŜ Egipski papirus sprzed 3500 lat wymienia 28 uszkodzeń, dokonywano wtedy trepanacji czaszki by wyciąć guzy. Arystoteles uznał serce za siedlisko uczuć i rozumu. W -3 w.

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017.

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017. Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.

Bardziej szczegółowo

P O M I A R Y I A N A L I Z A BIOS Y G N A Ł Ó W

P O M I A R Y I A N A L I Z A BIOS Y G N A Ł Ó W W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P O M I A R Y I A N A L I Z A BIOS Y G N A Ł Ó W Grupa... Data wykonania ćwiczenia: Ćwiczenie

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO-

MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- 1 MATERIAŁY POMOCNICZE DO WYKŁADU Z BIO- i HYDROAKUSTYKI 11. Metody zobrazowań w diagnostyce medycznej S. Typy ultrasonograficznych prezentacji obrazu W zależności od sposobu rejestracji ech rozróżniamy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU

BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU 442 Część II. Neurologia kliniczna BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU Badania neuroobrazowe Badanie tomografii komputerowej głowy Zasadniczym rozróżnieniem wydaje

Bardziej szczegółowo

ZAGADNIENIA DO PRZYGOTOWANIA DO ĆWICZEŃ Z BIOFIZYKI DLA STUDENTÓW I ROKU WYDZIAŁU LEKARKIEGO W SEMESTRZE LETNIM 2011/2012 ROKU.

ZAGADNIENIA DO PRZYGOTOWANIA DO ĆWICZEŃ Z BIOFIZYKI DLA STUDENTÓW I ROKU WYDZIAŁU LEKARKIEGO W SEMESTRZE LETNIM 2011/2012 ROKU. ZAGADNIENIA DO PRZYGOTOWANIA DO ĆWICZEŃ Z BIOFIZYKI DLA STUDENTÓW I ROKU WYDZIAŁU LEKARKIEGO W SEMESTRZE LETNIM 2011/2012 ROKU. B1 CIŚNIENIE JAKO WIELKOŚĆ BIOFIZYCZNA, CIŚNIENIE A FUNKCJE PODSTAWOWYCH

Bardziej szczegółowo

10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-)

10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-) A=symptom B= choroba Czułość Swoistość A ~ A ~ Reguła Bayesa ~ B ~ A) PV(+) PV(-) 1 / 2016_10_13 PV ( ) A PV ( ) A A ~ ~ sensitivity * PV ( ) sensitivity * (1 specificity)(1- ) specificity *(1- ) specificity

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Fetuina i osteopontyna u pacjentów z zespołem metabolicznym

Fetuina i osteopontyna u pacjentów z zespołem metabolicznym Fetuina i osteopontyna u pacjentów z zespołem metabolicznym Dr n med. Katarzyna Musialik Katedra Chorób Wewnętrznych, Zaburzeń Metabolicznych i Nadciśnienia Tętniczego Uniwersytet Medyczny w Poznaniu *W

Bardziej szczegółowo

Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego. Piotr Walerjan

Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego. Piotr Walerjan Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego Piotr Walerjan Elektrofizjologia w padaczce Dlaczego stosujemy metody elektrofizjologiczne w diagnostyce padaczki? Ognisko padaczkowe Lokalizacja

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

Baza dla predykcji medycznej

Baza dla predykcji medycznej 1 rof. Danuta Makowiec Instytut Fizyki Teoretycznej i Astrofizyki UG Kontakt: pok. 353 tel.: 58 523 2466 e-mail danuta.makowiec at gmail.com http://www.fizdm.strony.ug.edu.pl/me/biostatystyka.html Reguła

Bardziej szczegółowo

AKCELERATORY I DETEKTORY WOKÓŁ NAS

AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Analizy Ilościowe EEG QEEG

Analizy Ilościowe EEG QEEG Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego. Piotr Walerjan PWSIM MEDISOFT

Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego. Piotr Walerjan PWSIM MEDISOFT Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego Piotr Walerjan PWSIM MEDISOFT Elektrofizjologia w padaczce Dlaczego stosujemy metody elektrofizjologiczne w diagnostyce padaczki? Ognisko

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

lek. wet. Joanna Głodek Katedra Chirurgii i Rentgenologii z Kliniką Wydział Medycyny Weterynaryjnej Uniwersytet Warmińsko Mazurski w Olsztynie

lek. wet. Joanna Głodek Katedra Chirurgii i Rentgenologii z Kliniką Wydział Medycyny Weterynaryjnej Uniwersytet Warmińsko Mazurski w Olsztynie lek. wet. Joanna Głodek Katedra Chirurgii i Rentgenologii z Kliniką Wydział Medycyny Weterynaryjnej Uniwersytet Warmińsko Mazurski w Olsztynie W medycynie ludzkiej rezonans magnetyczny (RM) jest jedną

Bardziej szczegółowo

RADIOMETR MIKROFALOWY. RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski

RADIOMETR MIKROFALOWY. RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski RADIOMETR MIKROFALOWY RADIOMETR MIKROFALOWY (wybrane zagadnienia) Opracowanie : dr inż. Waldemar Susek dr inż. Adam Konrad Rutkowski 1 RADIOMETR MIKROFALOWY Wprowadzenie Wszystkie ciała o temperaturze

Bardziej szczegółowo

Zastosowanie ultradźwięków w technikach multimedialnych

Zastosowanie ultradźwięków w technikach multimedialnych Zastosowanie ultradźwięków w technikach multimedialnych Janusz Cichowski, p. 68 jay@sound.eti.pg.gda.pl Katedra Systemów Multimedialnych, Wydział Elektroniki Telekomunikacji i Informatyki, Politechnika

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu

Bardziej szczegółowo

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii

Wykład 4. metody badania mózgu II. dr Marek Binder Zakład Psychofizjologii Wykład 4 metody badania mózgu II dr Marek Binder Zakład Psychofizjologii Terminologia SAGITTAL SLICE Number of Slices e.g., 10 Slice Thickness e.g., 6 mm In-plane resolution e.g., 192 mm / 64 = 3 mm IN-PLANE

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia 1. Ćwiczenie wprowadzające: Wielkości fizyczne i błędy pomiarowe. Pomiar wielkości fizjologicznych 2. Prąd elektryczny: Pomiar oporu

Bardziej szczegółowo

dr inż. Piotr Kowalski, CIOP-PIB Wprowadzenie

dr inż. Piotr Kowalski, CIOP-PIB Wprowadzenie PRACOW NIA DRGAŃ M ECH ANICZ NY CH Wyniki badań pilotażowych wybranych funkcji fizjologicznych i psychomotorycznych pracownika poddanego ekspozycji na niskoczęstotliwościowe drgania o działaniu ogólnym

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Mateusz Raczyński Jakub Cebulski Katolickie Liceum Ogólnokształcące w Szczecinie im. św. Maksymiliana Marii Kolbego Opiekun naukowy: mgr Magdalena Biskup Cel pracy Przedstawienie

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Elektropotancjały mięśni i nerwów Elektroniczna aparatura medyczna 1 Wykład - 5

Elektropotancjały mięśni i nerwów Elektroniczna aparatura medyczna 1 Wykład - 5 Elektropotancjały mięśni i nerwów Elektroniczna aparatura medyczna 1 Wykład - 5 EMG Elektro Mio Grafia ENG Elektro Neuro Grafia ELEKTROMIOGRAFIA rejestracja potencjałów czynnościowych mięśni (wyłącznie

Bardziej szczegółowo

9. Praktyczna ocena jakości klasyfikacji

9. Praktyczna ocena jakości klasyfikacji Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2014 Kierunek studiów: Inżynieria Biomedyczna Forma

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med.

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med. Rodzaje badań obrazowych i ich podstawy teoretyczne dr n. med. Jolanta Meller Podstawy fizyczne diagnostyki obrazowej Rentgenodiagnostyka Ultrasonografia Rezonans magnetyczny Scyntygrafia Rentgenodiagnostyka

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

Barbara Polaczek-Krupa. Zastosowanie analizy grubości siatkówki w okolicy plamki jako nowej metody w diagnostyce jaskry pierwotnej otwartego kąta

Barbara Polaczek-Krupa. Zastosowanie analizy grubości siatkówki w okolicy plamki jako nowej metody w diagnostyce jaskry pierwotnej otwartego kąta Barbara Polaczek-Krupa Zastosowanie analizy grubości siatkówki w okolicy plamki jako nowej metody w diagnostyce jaskry pierwotnej otwartego kąta Praca doktorska Praca finansowana w ramach projektu CMKP

Bardziej szczegółowo

Obrazowanie MRI Skopia rtg Scyntygrafia PET

Obrazowanie MRI Skopia rtg Scyntygrafia PET Wyzwania wynikające z rozwoju metod obrazowania Technika i technologia Konferencja w ramach projektu Wykorzystywanie nowych metod i narzędzi w kształceniu studentów UMB w zakresie ochrony radiologicznej

Bardziej szczegółowo

Metody obrazowania wmedycynie

Metody obrazowania wmedycynie Multimedialne Systemy Medyczne Metody obrazowania wmedycynie Karol Lisowski Daniel Damps Trochę historii Pierwsze prześwietlenie RTG - 1896 Pneumoencefalografia - 1919 USG (pierwsze doświadczenia diagnostyczne)

Bardziej szczegółowo

Badania obrazowe w diagnostyce chorób serca. II Katedra i klinika Kardiologii CM UMK

Badania obrazowe w diagnostyce chorób serca. II Katedra i klinika Kardiologii CM UMK Badania obrazowe w diagnostyce chorób serca II Katedra i klinika Kardiologii CM UMK RTG klatki piersiowej Ocenia zarys i wielkość serca, aorty, naczyń krążenia płucnego, wykrywa w ich rzucie zwapnienia

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Pomiary i analiza biosygnałów

Pomiary i analiza biosygnałów Pomiary i analiza biosygnałów dr hab. inż. Andrzej Dobrowolski dr hab. inż. Jacek Jakubowski dr hab. inż. Marek Kuchta Wojskowa Akademia Techniczna w Warszawie Instytut Systemów Elektronicznych Wydziału

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia.

(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia. (L, S) I. Zagadnienia 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia. II. Zadania 1. Badanie spoczynkowego EKG. 2. Komputerowa rejestracja krzywej EKG

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium TECHNIKI OBRAZOWANIA MEDYCZNEGO Medical Imaging Techniques Forma

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Data Mining Wykład 4. Plan wykładu

Data Mining Wykład 4. Plan wykładu Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje

Bardziej szczegółowo

GRUPA VOXEL. FDG SteriPET. Systemy RIS/PACS/HIS. Diagnostyka obrazowa 14 pracowni TK 15 pracowni MR TELE PACS WEB RIS HIS. Systemy zewnętrzne

GRUPA VOXEL. FDG SteriPET. Systemy RIS/PACS/HIS. Diagnostyka obrazowa 14 pracowni TK 15 pracowni MR TELE PACS WEB RIS HIS. Systemy zewnętrzne Czerwiec 2013 GRUPA VOXEL Usługi medyczne e mózgowia - traktografia DTI Produkcja Usługi komplementarne RTG TK (CT) od 1 do 60 obrazów/badanie do1500 obrazów/badanie TELE PACS Stacje diagnostyczne WEB

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Październik 2013 Grupa Voxel

Październik 2013 Grupa Voxel Październik 2013 Grupa Voxel GRUPA VOXEL Usługi medyczne Produkcja Usługi komplementarne ie mózgowia - traktografia DTI RTG TK (CT) od 1 do 60 obrazów/badanie do1500 obrazów/badanie TELE PACS Stacje diagnostyczne

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

Czym jest badanie czynnościowe rezonansu magnetycznego? Oraz jaki ma związek z neuronawigacją?

Czym jest badanie czynnościowe rezonansu magnetycznego? Oraz jaki ma związek z neuronawigacją? Czym jest badanie czynnościowe rezonansu magnetycznego? Oraz jaki ma związek z neuronawigacją? Dolnośląski Szpital Specjalistyczny im. T. Marciniaka Centrum Medycyny Ratunkowej stale podnosi jakość prowadzonego

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Warszawski Uniwersytet Medyczny II Wydział Lekarski Oddział Fizjoterapii

Warszawski Uniwersytet Medyczny II Wydział Lekarski Oddział Fizjoterapii Warszawski Uniwersytet Medyczny II Wydział Lekarski Oddział Fizjoterapii Zastosowanie neuromobilizacji rdzenia kręgowego i korzeni rdzeniowych w leczeniu niedowładów spastycznych u pacjentów po udarach

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

techniki techniki pomiarowej

techniki techniki pomiarowej Współczesne Współczesne problemy problemy techniki techniki pomiarowej pomiarowej Stefan F. Filipowicz Stefan F. Filipowicz 25.10.2008 Zaoczne Studia Doktoranckie Instytut Elektrotechniki Spis treści Plan

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Zaawansowane metody analizy EEG: lokalizacja wzorów zapisu w przestrzeni 2D i 3D. Piotr Walerjan

Zaawansowane metody analizy EEG: lokalizacja wzorów zapisu w przestrzeni 2D i 3D. Piotr Walerjan Zaawansowane metody analizy EEG: lokalizacja wzorów zapisu w przestrzeni 2D i 3D Piotr Walerjan Mapowanie EEG proces, w wyniku którego na podstawie danych o napięciu EEG na poszczególnych odprowadzeniach

Bardziej szczegółowo

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek Sieci komputerowe II Notatki Uniwersytet Warszawski Podanie notatek 03-01-2005 Wykład nr 1: 03-01-2005 Temat: Transmisja danych łączami 1 Podstawowe pojęcia Dla uporządkowania przypomnijmy podstawowe używane

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Podstawy diagnostyki środków transportu

Podstawy diagnostyki środków transportu Podstawy diagnostyki środków transportu Diagnostyka techniczna Termin "diagnostyka" pochodzi z języka greckiego, gdzie diagnosis rozróżnianie, osądzanie. Ukształtowana już w obrębie nauk eksploatacyjnych

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa im. Edwarda F. Szczepanika w Suwałkach

Państwowa Wyższa Szkoła Zawodowa im. Edwarda F. Szczepanika w Suwałkach Państwowa Wyższa Szkoła Zawodowa im. Edwarda F. Szczepanika w Suwałkach Instytut Ochrony Zdrowia Nazwa programu (kierunku) Pielęgniarstwo Poziom i forma studiów studia I stopnia stacjonarne Specjalność:

Bardziej szczegółowo

Zagadnienia: 1. Partnerzy projektu 2. Badania obrazowe serca 3. Cele 4. Techniki obrazowe serca stosowane w Projekcie 5. Rezultaty

Zagadnienia: 1. Partnerzy projektu 2. Badania obrazowe serca 3. Cele 4. Techniki obrazowe serca stosowane w Projekcie 5. Rezultaty Zagadnienia: 1. Partnerzy projektu 2. Badania obrazowe serca 3. Cele 4. Techniki obrazowe serca stosowane w Projekcie 5. Rezultaty 1. Partnerzy projektu Krakowski Szpital Specjalistyczny im. Jana Pawła

Bardziej szczegółowo

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II 52 FOTON 99, Zima 27 Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II Bogdan Bogacz Pracownia Technicznych Środków Nauczania Zakład Metodyki Nauczania i Metodologii Fizyki Instytut

Bardziej szczegółowo