10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-)"

Transkrypt

1 A=symptom B= choroba Czułość Swoistość A ~ A ~ Reguła Bayesa ~ B ~ A) PV(+) PV(-) 1 / 2016_10_13 PV ( ) A PV ( ) A A ~ ~ sensitivity * PV ( ) sensitivity * (1 specificity)(1- ) specificity *(1- ) specificity *(1- ) (1 sensitivity) * Maszyna stwierdziła nadciśnienie u 84% osób z nadciśnieniem, a także stwierdziła nadciśnienie u 23% osób z normalnym ciśnieniem. Nadciśnienie w populacji występuje z prawdopodobieństwem 20%. Ω2 Jaka jest wartość diagnozy tej maszyny? Ω1 A: zmierzono nadciśnienie B: chory na nadciśnienie Czułość =nadciśnienie chory na nadciśnienie) = A = 0.84 Swoistość =brak nadciśnienia ciśnienie normalne) = ~A ~ = 0.77 A PV ( ) A A ~ ~ PV(+)= 0.84*0.20/(0.84* * 0.80)= 0.48 PV(-)= 0.77*0.80/(0.16* * 0.80)= 0.95 Mamy 48% pewność, że osoba z pozytywnym wynikiem z tej maszyny ma nadciśnienie 2 / 2016_10_13 Mamy 95% pewność, że osoba z negatywnym wynikiem z tej maszyny ma ciśnienie normalne 2 1

2 Niech B 1, B2,... B K to zestaw stanów choroby wzajemnie się wykluczających oraz wyczerpujących możliwe stany choroby, które mogą występować jednocześnie. Niech A oznacza obecność symptomu ( zbioru symptomów). Wówczas i A Bi ) Bi ) A B ) B ) j1.. K j j Kluczem do sukcesu tego obliczenia jest wiedza ogólna o populacji : jak często występują poszczególne stany choroby 3 / 2016_10_13 60-ciolatek, nigdy niepalący papierosów ma objawy: chroniczny kaszel, czasami duszności Lekarz zleca wykonanie biopsji płuc. Załóżmy, że dodatni wynik biopsji oznacza albo nowotwór płuc albo sakroidozę. Oznaczenia A={chroniczny kaszel, dodatnia biopsja} B= { B1 zdrowy, B2 rak płuc, B3 sakroidoza} Wiedza z eksperymentu i tablic statystycznych A B1) =0.001 A B2) = 0.9 A B3) = 0.9 B1)=0.99, B2)=0.001, B3)= dla 60-ciolatka niepalącego Wyniki: B1 A) = B2 A) = B3 A) = / 2016_10_13 2

3 Jak ustalić co jest normą dla DBP, a co już nadciśnieniem? punkt odcięcia Przesunięcie odcięcia w lewo wzrasta czułość DBP: Przesunięcie odcięcia w prawo wzrasta swoistość Przeprowadza się obliczenia czułości i swoistości symptomu dla choroby przy różnych możliwych wartościach punktu odcięcia. Wykreśla się zależność : ( 1- swoistość, czułość) dla danego punktu odcięcia. 5 / 2016_10_13 Prawdopodobieństwo, błędnej klasyfikacji: zdrowy zostanie sklasyfikowany jako chory Prawdopodobieństwo, dobrej klasyfikacji: chory jest sklasyfikowany jako chory Przypadek idealny czułość Krzywa ROC 1-swoistość Przypadek najgorszy czułość 1-swoistość Biostatystyka 10/15/2016 A 6 / 2016_10_06 3

4 Dane z obrazów tomografii komputerowej są oceniane i klasyfikowane przez radiologa. Oceniany jest stan neurologiczny pacjenta: normalny, albo anormalny. Znamy stan poszczególnych pacjentów, możemy więc wyniki przeprowadzonej klasyfikacji zweryfikować. OK! OK????? NOK? NOK! Załóżmy : CT jest pozytywne jeśli osoba jest rozpoznana jako NOK? lub z NOK! Czułość = test+ chory) = (11+33) /51= 0.86 Swoistość= test- zdrowy) = (33+6+6) /58 =0.78 Ilość ocenianych pacjentów 7 / 2016_10_13 1-Swoistość Definicja Krzywą ROC (receiver operating characteristics : odbioru charakterystyki pracy) nazywamy wykres czułości względem (1-swoistości) danego testu przesiewowego, gdzie różne punktu wykresu odpowiadają rożnym punktom odcięcia przyjętym w celu oznaczenia pozytywnego wyniku testu. 8 / 2016_10_13 4

5 Pole powierzchni pod tą krzywą S(ROC) okazuje się być dobrą miarą dokładności testu = wyśmienity (A) = dobry ( = w porządku (C) = słaby (D) = zły (F) Pole pod krzywą opisuje prawdopodobieństwo, że losowa para osób, o których wiadomo, ze jedna jest chora a druga nie jest chora, zostanie dobrze zdiagnozowana. Biostatystyka 10/15/2016 A 9 / 2016_10_13 Epidemiologia: Współczynnik chorobowości (prevalence) to prawdopodobieństwo występowania danej choroby w określonej grupie społecznej- liczba wszystkich chorujących na daną chorobę do ilości ludności. Współczynnik zapadalności (incidence) to prawdopodobieństwo zachorowania na daną chorobę - liczba nowych przypadków zachorowań w danym okresie do ilości ludności. 10 / 2016_10_13 5

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy. 1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową

Bardziej szczegółowo

Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite

Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite Wstęp do probabilistyki i statystyki Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra lektroniki, WIT AGH Wstęp do probabilistyki i statystyki.

Bardziej szczegółowo

Zapadalność (epidemiologia)

Zapadalność (epidemiologia) Chorobowość Chorobowość (ang. prevalence rate) liczba chorych w danej chwili na konkretną chorobę w określonej grupie mieszkańców (np. na 100 tys. mieszkańców). Współczynnik ten obejmuje zarówno osoby

Bardziej szczegółowo

statystyka badania epidemiologiczne

statystyka badania epidemiologiczne statystyka badania epidemiologiczne Epidemiologia Epi = wśród Demos = lud Logos = nauka Epidemiologia to nauka zajmująca się badaniem rozprzestrzenienia i uwarunkowań chorób u ludzi, wykorzystująca tą

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

MIARY OCENY RYZYKA. zatem

MIARY OCENY RYZYKA. zatem MIARY OCENY RYZYKA Samą wartość statystyki 2 i powiązaną z nią wartość p nie możemy przyjąć, jako miarę siły powiązania i wielkości efektu, zależy ona bowiem od liczebności próby N. Im większe N tym większa

Bardziej szczegółowo

Materiał i metody. Wyniki

Materiał i metody. Wyniki Abstract in Polish Wprowadzenie Selen jest pierwiastkiem śladowym niezbędnym do prawidłowego funkcjonowania organizmu. Selen jest wbudowywany do białek w postaci selenocysteiny tworząc selenobiałka (selenoproteiny).

Bardziej szczegółowo

Fundamentals of Biostatistics. Brooks/Cole CENGAGE Learning,

Fundamentals of Biostatistics. Brooks/Cole CENGAGE Learning, ernard Rosner Fundamentals of iostatistics rooks/cole CENGGE Learning, 2011 http://www.cengage.com/resource_uploads/downloads/0538733497_267933.pdf ntoni Lemańczyk UM oznań, oznan, 2008 Geoffry R. Norman

Bardziej szczegółowo

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS X OGÓLNOPOLSKA KONFERENCJA AKTUARIALNA ZAGADNIENIA AKTUARIALNE TEORIA I PRAKTYKA WARSZAWA,

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynierska dr hab. inż. Jacek Tarasiuk AGH, WFiIS 2014 Wykład 1 ODSTAWY RACHUNKU RAWDOODOBIEŃSTWA ojęcie, Własności, rawdopodobieństwo i, Twierdzenie Definicja Zdarzenie (doświadczenie) nazywamy

Bardziej szczegółowo

Programy przesiewowe w onkologii. Badam się więc mam pewność

Programy przesiewowe w onkologii. Badam się więc mam pewność Programy przesiewowe w onkologii Badam się więc mam pewność Badanie przesiewowe zorganizowane przeprowadzenie testu medycznego lub wywiadu u osób, które nie zgłaszają się po pomoc kwalifikowaną w związku

Bardziej szczegółowo

Życie z Zespołem Miastenicznym Lamberta-Eatona

Życie z Zespołem Miastenicznym Lamberta-Eatona Życie z Zespołem Miastenicznym Lamberta-Eatona Zdiagnozowano u Pani/Pana Zespół Miasteniczny Lamberta- Eatona (LEMS). Ulotka ta zawiera informacje o chorobie, a dedykowana jest dla pacjentów i ich rodzin.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

STATYSTYKI DOTYCZĄCE RAKA PŁUCA

STATYSTYKI DOTYCZĄCE RAKA PŁUCA bioprognos OncoLUNG Nieinwazyjne badanie krwi umożliwiające zasugerowanie diagnozy u pacjentów z podejrzeniem nowotworu złośliwego płuca oraz ograniczenie liczby nieadekwatnych badań diagnostycznych, skrócenie

Bardziej szczegółowo

Tabela Nr 1. Rozliczenie środków finansowych z Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego

Tabela Nr 1. Rozliczenie środków finansowych z Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego Informacja dla Zarządu Województwa Łódzkiego na temat realizacji w 2004 roku Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego Wojewódzki Program Profilaktyki Gruźlicy Płuc

Bardziej szczegółowo

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE SUM - WLK 2011 WYKŁAD PIĄTY: BIOSTATYSTYKA C.D. Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE TREŚĆ WYKŁADU Dokumentowanie efektu (analiza danych

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

NASTĘPNY KROK W WALCE Z RAKIEM PŁUCA

NASTĘPNY KROK W WALCE Z RAKIEM PŁUCA NASTĘPNY Z RAKIEM PŁUCA Czy wiedzą Państwo, że: Rak płuca, z szacunkową liczbą 353 000 zgonów każdego roku, to niekwestionowany lider pod względem liczby zgonów spowodowanych przez choroby nowotworowe

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Źródła i zasady zbierania danych o stanie zdrowia populacji

Źródła i zasady zbierania danych o stanie zdrowia populacji Źródła i zasady zbierania danych o stanie zdrowia populacji Źródła informacji, którymi dysponuje epidemiologia dzielimy na: pierwotne (bezpośrednie) wtórne (pośrednie) Za pierwotne źródła informacji uznaje

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Zachorowania i podejrzenia zachorowań na grypę w województwie wielkopolskim (okres od do )

Zachorowania i podejrzenia zachorowań na grypę w województwie wielkopolskim (okres od do ) Zachorowania i podejrzenia zachorowań na grypę w województwie wielkopolskim (okres od 01.01.2017 do 15.02.2017) Wiek (ukończone lata) Liczba zachorowań oraz podejrzeń zachorowań na grypę 1) Ogółem w tym

Bardziej szczegółowo

Uchwała Nr 136/16 Rady Gminy Celestynów z dnia 9 marca 2016 roku

Uchwała Nr 136/16 Rady Gminy Celestynów z dnia 9 marca 2016 roku Uchwała Nr 136/16 Rady Gminy Celestynów z dnia 9 marca 2016 roku w sprawie przyjęcia Gminnego Programu Profilaktyki Chorób Układu Oddechowego na 2016 rok Na podstawie art. 18 ust.1 w związku z art.7 ust.1

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

lek. Olga Możeńska Ocena wybranych parametrów gospodarki wapniowo-fosforanowej w populacji chorych z istotną niedomykalnością zastawki mitralnej

lek. Olga Możeńska Ocena wybranych parametrów gospodarki wapniowo-fosforanowej w populacji chorych z istotną niedomykalnością zastawki mitralnej lek. Olga Możeńska Ocena wybranych parametrów gospodarki wapniowo-fosforanowej w populacji chorych z istotną niedomykalnością zastawki mitralnej Rozprawa na stopień doktora nauk medycznych Promotor: dr

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

PAMIĘTAJ O ZDROWIU! ZBADAJ SIĘ

PAMIĘTAJ O ZDROWIU! ZBADAJ SIĘ PAMIĘTAJ O ZDROWIU! ZBADAJ SIĘ Przewodnik po programach profilaktycznych finansowanych przez NFZ Lepiej zapobiegać niż leczyć Program profilaktyki chorób układu krążenia Choroby układu krążenia są główną

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Służba Zdrowia nr 24-26 z 23 marca 2000. Znaczenie badań przesiewowych w zwalczaniu raka piersi. Zbigniew Wronkowski, Wiktor Chmielarczyk

Służba Zdrowia nr 24-26 z 23 marca 2000. Znaczenie badań przesiewowych w zwalczaniu raka piersi. Zbigniew Wronkowski, Wiktor Chmielarczyk Służba Zdrowia nr 24-26 z 23 marca 2000 Znaczenie badań przesiewowych w zwalczaniu raka piersi Zbigniew Wronkowski, Wiktor Chmielarczyk Korzystny wpływ skryningu na zmniejszenie umieralności z powodu raka

Bardziej szczegółowo

BIOSTATYSTYKA KARTA PRZEDMIOTU. 1. Nazwa przedmiotu. 2. Numer kodowy COM03c. 3. Język, w którym prowadzone są zajęcia polski. 4. Typ kursu obowiązkowy

BIOSTATYSTYKA KARTA PRZEDMIOTU. 1. Nazwa przedmiotu. 2. Numer kodowy COM03c. 3. Język, w którym prowadzone są zajęcia polski. 4. Typ kursu obowiązkowy Projekt OPERACJA SUKCES unikatowy model kształcenia na Wydziale Lekarskim Uniwersytetu Medycznego w Łodzi odpowiedzią na potrzeby gospodarki opartej na wiedzy współfinansowany ze środków Europejskiego

Bardziej szczegółowo

Wytyczne postępowania dla lekarzy POZ i lekarzy medycyny pracy w zakresie raka nerki, pęcherza moczowego i prostaty 2011

Wytyczne postępowania dla lekarzy POZ i lekarzy medycyny pracy w zakresie raka nerki, pęcherza moczowego i prostaty 2011 Wytyczne postępowania dla lekarzy POZ i lekarzy medycyny pracy w zakresie raka nerki, pęcherza moczowego i prostaty 2011 Wytyczne postępowania dla lekarzy POZ i lekarzy medycyny pracy w zakresie raka nerki,

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Badania. przesiewowe stosowane w celu wczesnego wykrycia raka sutka. zalecenia National Comprehensive Cancer Network (NCCN)

Badania. przesiewowe stosowane w celu wczesnego wykrycia raka sutka. zalecenia National Comprehensive Cancer Network (NCCN) Badania przesiewowe stosowane w celu wczesnego wykrycia raka sutka zalecenia National Comprehensive Cancer Network (NCCN) Cel wykonywania badań przesiewowych Jak powinna postępować każda kobieta? U jakich

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

ZBYT PÓŹNE WYKRYWANIE RAKA NERKI ROLA LEKARZA PIERWSZEGO KONTAKTU

ZBYT PÓŹNE WYKRYWANIE RAKA NERKI ROLA LEKARZA PIERWSZEGO KONTAKTU ZBYT PÓŹNE WYKRYWANIE RAKA NERKI ROLA LEKARZA PIERWSZEGO KONTAKTU 14 czerwca 2012 r dr n. med. Piotr Tomczak Klinika Onkologii U.M. Poznań Epidemiologia raka nerki RCC stanowi 2 3% nowotworów złośliwych

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Podsumowanie realizacji Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego w 2007 roku.

Podsumowanie realizacji Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego w 2007 roku. Podsumowanie realizacji Wojewódzkiego Programu Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego w 2007 roku. Wojewódzki Program Profilaktyki Gruźlicy Płuc i Nowotworów Układu Oddechowego został

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

STATYSTYKI DOTYCZĄCE RAKA GRUCZOŁU KROKOWEGO

STATYSTYKI DOTYCZĄCE RAKA GRUCZOŁU KROKOWEGO bioprognos OncoPROSTATE Nieinwazyjne badanie krwi umożliwiające zasugerowanie diagnozy u pacjentów z podejrzeniem nowotworu złośliwego gruczołu krokowego oraz ograniczenie liczby nieadekwatnych badań diagnostycznych,

Bardziej szczegółowo

Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI. Ekonomia menedżerska

Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI. Ekonomia menedżerska Mariusz Próchniak Katedra Ekonomii II Szkoła Główna Handlowa w Warszawie WARTOŚĆ INFORMACJI Ekonomia menedżerska 1 2 Przykład Problem poszukiwacza ropy Firma poszukująca ropy musi zdecydować, czy rozpocząć

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Uogólniony model liniowy

Uogólniony model liniowy Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie

Bardziej szczegółowo

rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów oraz innych stanów związanych ze zdrowiem, w populacjach ludzkich),

rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów oraz innych stanów związanych ze zdrowiem, w populacjach ludzkich), EPIDEMIOLOGIA Określenie Epidemiologia pochodzi z języka greckiego: epi na demos lud logos słowo, nauka czyli, nauka badająca: rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Nowotwory złośliwe piersi - ryzyko zachorowania, zaawansowanie, przeŝycia pięcioletnie. Dolny Śląsk, Dolnośląskie Centrum Onkologii.

Nowotwory złośliwe piersi - ryzyko zachorowania, zaawansowanie, przeŝycia pięcioletnie. Dolny Śląsk, Dolnośląskie Centrum Onkologii. Nowotwory złośliwe piersi - ryzyko zachorowania, zaawansowanie, przeŝycia pięcioletnie. Dolny Śląsk, Dolnośląskie Centrum Onkologii. Przygotowali: Komitet ds. Epidemiologii Beata Hawro, Maria Wolny-Łątka,

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH

MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH MODELOWANIE I PROGNOZOWANIE ZAGROŻEŃ EPIDEMIOLOGICZNYCH Epidemia - wystąpienie na danym obszarze zakażeń lub zachorowań na chorobę zakaźną w liczbie wyraźnie większej niż we wcześniejszym okresie albo

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

OCENA PRZYCZYN I KONSEKWENCJI WYSTĘPOWANIA TĘTNIAKA TĘTNICY PŁUCNEJ U PACJENTÓW Z NADCIŚNIENIEM PŁUCNYM

OCENA PRZYCZYN I KONSEKWENCJI WYSTĘPOWANIA TĘTNIAKA TĘTNICY PŁUCNEJ U PACJENTÓW Z NADCIŚNIENIEM PŁUCNYM OCENA PRZYCZYN I KONSEKWENCJI WYSTĘPOWANIA TĘTNIAKA TĘTNICY PŁUCNEJ U PACJENTÓW Z NADCIŚNIENIEM PŁUCNYM Marcin Kurzyna, Instytut Gruźlicy i Chorób Płuc w Warszawie Grzegorz Harańczyk, StatSoft Polska Choroby

Bardziej szczegółowo

SYTUACJA ZDROWOTNA DZIECI I MŁODZIEŻY W WOJEWÓDZTWIE ŁÓDZKIM

SYTUACJA ZDROWOTNA DZIECI I MŁODZIEŻY W WOJEWÓDZTWIE ŁÓDZKIM SYTUACJA ZDROWOTNA DZIECI I MŁODZIEŻY W WOJEWÓDZTWIE ŁÓDZKIM 2 LICZBA LUDNOŚCI W 2010 ROKU 2010 województwo łódzkie miasto Łódź liczba ludności ogółem 2552000 737098 0 19 r.ż. 504576 (19,7) 117839 (15,9)

Bardziej szczegółowo

KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA

KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Krzywa ROC (Receiver Operating Characteristic) jest narzędziem do

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Rodzinna gorączka śródziemnomorska

Rodzinna gorączka śródziemnomorska www.printo.it/pediatric-rheumatology/pl/intro Rodzinna gorączka śródziemnomorska Wersja 2016 2. DIAGNOZA I LECZENIE 2.1 Jak diagnozuje się tę chorobę? Zasadniczo stosuje się następujące podejście: Podejrzenie

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.

FUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę. FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Komputerowa diagnoza medyczna tworzenie i interpretowanie. prof. dr hab. inż. Andrzej Walczak

Komputerowa diagnoza medyczna tworzenie i interpretowanie. prof. dr hab. inż. Andrzej Walczak Komputerowa diagnoza medyczna tworzenie i interpretowanie prof. dr hab. inż. Andrzej Walczak Agenda 1. Po co budujemy komputerowe wspomaganie diagnostyki medycznej? 2. Wymagania na IT wdrażane w medycynie

Bardziej szczegółowo

PROGRAM ZDROWOTNY. Badania profilaktyczne dla mieszkańców Gminy Miasta Jaworzna w kierunku rozpoznania boreliozy. Załącznik nr 4

PROGRAM ZDROWOTNY. Badania profilaktyczne dla mieszkańców Gminy Miasta Jaworzna w kierunku rozpoznania boreliozy. Załącznik nr 4 Załącznik nr 4 PROGRAM ZDROWOTNY Badania profilaktyczne dla mieszkańców Gminy Miasta Jaworzna w kierunku rozpoznania boreliozy PROGRAM OPRACOWAŁ WYDZIAŁ ZDROWIA I SPRAW SPOŁECZNYCH URZĘDU MIEJSKIEGO W

Bardziej szczegółowo

Zachorowania na nowotwory złośliwe we Wrocławiu trendy zmian w latach 1984-2009

Zachorowania na nowotwory złośliwe we Wrocławiu trendy zmian w latach 1984-2009 Zachorowania na nowotwory złośliwe we Wrocławiu trendy zmian w latach 1984-29 W 29 roku woj. dolnośląskie liczyło 2 874 88, w tym Wrocław 622 986 mieszkańców, mieszkańcy Wrocławia stanowili więc 21,7%

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x

+ r arcsin. M. Przybycień Rachunek prawdopodobieństwa i statystyka π r x Prawdopodobieństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźnie i wypełnia wnętrze kwadratu [0 x 1; 0 y 1]. Znajdź p-stwo, że dowolny

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do

Bardziej szczegółowo

Zastawka pnia płucnego Zastawka aortalna

Zastawka pnia płucnego Zastawka aortalna 1 Lewa tętnica płucna Żyła główna górna Prawy przedsionek Lewy przedsionek Zastawka tójdzielcza Komora prawa Żyła główna dolna Zastawka pnia płucnego Zastawka mitralna Komora lewa Zastawka aortalna 2 Pauza

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Ripetizione Powtórne badanie del test przesiewowe di screening per w kierunku i tumori raka intestinali jelit 6 www.bowelscreeningwales.org.uk Powtórne badanie przesiewowe w kierunku raka jelit Ta broszura

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Podstawy. kardiolosicznej. kompleksowej rehabilitacji PZWL. Zbigniew Nowak

Podstawy. kardiolosicznej. kompleksowej rehabilitacji PZWL. Zbigniew Nowak PATRONAT M ERYTO RYC ZNY K o m it e t R e h a b il it a c j i, K u l t u r y F iz y c z n e j i In t e g r a c j i S p o ł e c z n e j P A N Podstawy kompleksowej rehabilitacji kardiolosicznej Zbigniew

Bardziej szczegółowo

Proszę wypełnić całą ankietę (około 20 minut).

Proszę wypełnić całą ankietę (około 20 minut). Czerwiec 2016 r. Szanowni pacjenci! 1 Firma FOCUS PATIENT zajmuje się zbieraniem informacji zdrowotnych przy współpracy grup wsparcia, pacjentów, specjalistów z dziedziny medycyny, psychologów, farmaceutów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności

Bardziej szczegółowo

Migotanie przedsionków czynniki ograniczające dostępności do współczesnej terapii

Migotanie przedsionków czynniki ograniczające dostępności do współczesnej terapii Migotanie przedsionków czynniki ograniczające dostępności do współczesnej terapii Piotr Pruszczyk, Klinika Chorób Wewnętrznych i Kardiologii Warszawski Uniwersytet Medyczny Centrum Diagnostyki i Leczenia

Bardziej szczegółowo

2.3. Profilaktyczne programy zdrowotne w województwie

2.3. Profilaktyczne programy zdrowotne w województwie 1 S t r o n a podkarpackim 2.3. Profilaktyczne programy zdrowotne w województwie Podobnie jak w całej Polsce, bezpłatne programy profilaktyczne refundowane przez Narodowy Fundusz Zdrowia realizowane są

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STTYSTYK MTMTYCZN 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. opulacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test 2 8.

Bardziej szczegółowo

PROGRAM PROFILAKTYKI I WCZESNEGO WYKRYWANIA CHORÓB UKŁADU KRĄŻENIA

PROGRAM PROFILAKTYKI I WCZESNEGO WYKRYWANIA CHORÓB UKŁADU KRĄŻENIA PROGRAM PROFILAKTYKI I WCZESNEGO WYKRYWANIA CHORÓB UKŁADU KRĄŻENIA - 2006 1. UZASADNIENIE POTRZEBY PROGRAMU Choroby układu krążenia są główną przyczyną zgonów w Polsce i na świecie. Umieralność z tego

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo