Searching for SNPs with cloud computing

Wielkość: px
Rozpocząć pokaz od strony:

Download "Searching for SNPs with cloud computing"

Transkrypt

1 Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven L Salzberg Genome Biology November 20, 2009 April 7, 2010

2 Problem Cel Problem Bardzo dużo krótkich odczytów mapujemy na genom referencyjny i poszukujemy SNPów Uliniowienie (Mapowanie) SNP - [film]

3 Problem Cel Cel Obliczenia powinny być: Szybkie (szybkie algorytmy + rozproszenie obliczeń) Tanie ()

4 Przetwarzanie w chmurze - model przetwarzania oparty na użytkowaniu usług dostarczonych przez zewnętrzne organizacje Klient płaci za usługę (zależnie od stopnia użycia zasobów) Brak konieczności zakupu i utrzymywania sprzętu Ukrycie przed użytkownikiem zbędnych informacji Większa niezawodność Skalowalność

5 Definition Map(k1,v1) -> list(k2,v2) Reduce(k2, list (v2)) -> list(v3) void map(string name, String document): for each word w in document: EmitIntermediate(w, "1"); void reduce(string word, Iterator partialcounts): int result = 0; for each pc in partialcounts: result += ParseInt(pc); Emit(AsString(result));

6 Architektura

7 Ogólnie Mapowanie - SNP - - Model obliczeń -

8 Ogólnie Bardzo szybkie mapowanie krótkich odczytów na genom referencyjny Wymaga utworzenia indexu genomu Działa efektywnie nawet przy niewielkim użyciu pamięci

9 Ogólnie Jest częścia pakietu SOAP (Short Oligonucleotide Analysis Package) Wyszukuje SNPy Model bierze pod uwagę: Różnice między SNPami heterozygot (zróżnicowane allele tego samego genu) i homozygot (identyczne allele danego genu) Różnice między tranzycjami (zmiana w ramach jednej grupy zasad azotowych: A-G, C-T) i transwersjami (zasada purynowa ulega zamianie na pirymidynowa lub odwrotnie: A-C, A-T, G-C, G-T) Potwierdzone doświadczalnie SNPy Quality Score generowany przez sekwencer Duża dokładność (>99%)

10 Ogólnie Framework w Javie umożliwiajacy obliczenia rozproszone z bardzo szybka faza Sort/Shuffle - Klaster posiadajacy 1460 węzłów sortuje 1 TB danych w 62 sekundy (jest to rekord świata według sortbenchmark.org) s Distributed File System Bardzo dobra skalowalność nawet przy petabajtach danych Działa jako warstwa nad systemami plików poszczególnych węzłów

11 Ogólnie Architektura

12 Ogólnie Kto używa?

13 Ogólnie Workflow - Preprocessing Kopiowanie plików z odczytami do HDFS

14 Ogólnie Workflow - Map Każdy węzeł klastra pobiera index (ok. 3GB dla genomu człowieka) Map -> list(primary Key, Secondary Key, Value) Primary Key - chromosom i identyfikator części Secondary Key - przesunięcie w chromosomie Value - sekwencja i Quality Score

15 Ogólnie Workflow - Sort/Shuffle Kubełkowanie po Primary Key (pozwala zrównoleglić Reduce) Sortowanie wenatrz kubełków po Secondary Key (wymagane przez )

16 Ogólnie Workflow - Reduce Reduce - wewnatrz kubełka Informacje o znanych miejscach SNPów i częstościach alleli pochodza z dbsnp i sa dystrybuowane między węzłami podobnie jak index kopiowane sa na lokalny system plików

17 Pomiary Koszty Skalowalność Parametry symulowanych odczytów

18 Pomiary Koszty Skalowalność Symulowane odczyty

19 Pomiary Koszty Skalowalność Prawdziwe dane

20 Pomiary Koszty Skalowalność Koszty

21 Pomiary Koszty Skalowalność Skalowalność

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Map-Reduce system Single-node architektura 3 Przykład Googla 4 10 miliardów stron internetowych Średnia

Bardziej szczegółowo

Architektura rozproszonych magazynów danych

Architektura rozproszonych magazynów danych Big data Big data, large data cloud. Rozwiązania nastawione na zastosowanie w wielkoskalowych serwisach, np. webowych. Stosowane przez Google, Facebook, itd. Architektura rozproszonych magazynów danych

Bardziej szczegółowo

HADOOP Dariusz Ż bik

HADOOP Dariusz Ż bik Dariusz Żbik DLACZEGO? Przetwarzanie dużych zbiorów danych Przykład wyszukiwanie w zbiorze 100TB 1 węzeł @ 40MB/s -> 30 dni MTBF ~ 3 lata 1000 węzłów @ 40MB/s -> 44 minuty MTBF ~ 1 dzień Potrzebny framework

Bardziej szczegółowo

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła

Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Big Data i 5V Nowe wyzwania w świecie danych Krzysztof Goczyła Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska kris@eti.pg.gda.pl Sopot, 10.09.2014 1 O czym będzie? Co to jest Big

Bardziej szczegółowo

Wątek - definicja. Wykorzystanie kilku rdzeni procesora jednocześnie Zrównoleglenie obliczeń Jednoczesna obsługa ekranu i procesu obliczeniowego

Wątek - definicja. Wykorzystanie kilku rdzeni procesora jednocześnie Zrównoleglenie obliczeń Jednoczesna obsługa ekranu i procesu obliczeniowego Wątki Wątek - definicja Ciąg instrukcji (podprogram) który może być wykonywane współbieżnie (równolegle) z innymi programami, Wątki działają w ramach tego samego procesu Współdzielą dane (mogą operować

Bardziej szczegółowo

Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi

Metody badania polimorfizmu/mutacji DNA. Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Metody badania polimorfizmu/mutacji DNA Aleksandra Sałagacka Pracownia Diagnostyki Molekularnej i Farmakogenomiki Uniwersytet Medyczny w Łodzi Mutacja Mutacja (łac. mutatio zmiana) - zmiana materialnego

Bardziej szczegółowo

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ ZMIENNOŚĆ - występowanie dziedzicznych i niedziedzicznych różnic między osobnikami należącymi do tej samej

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi

Bardziej szczegółowo

Klastrowanie bazy IBM DB2. Adam Duszeńko

Klastrowanie bazy IBM DB2. Adam Duszeńko Klastrowanie bazy IBM DB2 Adam Duszeńko Typy klastrów Wydajnościowe Skalowalność Równoległość Obliczeń Składowania Wiele punktów dostępu Niezawodnościowe Bezpieczeństwo Zwielokrotnienie Danych Operacji

Bardziej szczegółowo

Wykład 6 Dziedziczenie cd., pliki

Wykład 6 Dziedziczenie cd., pliki Wykład 6 Dziedziczenie cd., pliki Autor: Zofia Kruczkiewicz 1. Dziedziczenie cd. 2. Pliki - serializacja Zagadnienia 1. Dziedziczenie aplikacja Kalkultory_2 typu Windows Forms prezentująca dziedziczenie

Bardziej szczegółowo

"Zapisane w genach, czyli Python a tajemnice naszego genomu."

Zapisane w genach, czyli Python a tajemnice naszego genomu. "Zapisane w genach, czyli Python a tajemnice naszego genomu." Dr Kaja Milanowska Instytut Biologii Molekularnej i Biotechnologii UAM VitaInSilica sp. z o.o. Warszawa, 9 lutego 2015 Dane biomedyczne 1)

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Wykład 13 Marcin Młotkowski 27 maja 2015 Plan wykładu Trwałość obiektów 1 Trwałość obiektów 2 Marcin Młotkowski Programowanie obiektowe 2 / 29 Trwałość (persistence) Definicja Cecha

Bardziej szczegółowo

Zaawansowane aplikacje WWW - laboratorium

Zaawansowane aplikacje WWW - laboratorium Zaawansowane aplikacje WWW - laboratorium Przetwarzanie XML (część 2) Celem ćwiczenia jest przygotowanie aplikacji, która umożliwi odczyt i przetwarzanie pliku z zawartością XML. Aplikacja, napisana w

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Zakłady Azotowe w Tarnowie-Mościcach S.A. ul. E. Kwiatkowskiego 8 33-101 Tarnów t: +48 14 633 07 81-85 f: +48 14 633 07 18

Zakłady Azotowe w Tarnowie-Mościcach S.A. ul. E. Kwiatkowskiego 8 33-101 Tarnów t: +48 14 633 07 81-85 f: +48 14 633 07 18 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) Zakłady Azotowe 27) 28) 29) 30) 31) 32) Zakłady Azotowe a) b) c) Zakłady Azotowe d) e) f) g) h) i) a)

Bardziej szczegółowo

Genetyka Populacji http://ggoralski.com

Genetyka Populacji http://ggoralski.com Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje

Bardziej szczegółowo

Jarosław Kuchta. Administrowanie Systemami Komputerowymi. System plików

Jarosław Kuchta. Administrowanie Systemami Komputerowymi. System plików Jarosław Kuchta System plików Partycja a wolumin Partycja część dysku podstawowego (fizycznego) Wolumin część dysku dynamicznego (wirtualnego) System plików 2 Rodzaje dysków Dyski podstawowe partycjonowane

Bardziej szczegółowo

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.

Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji. 1 Moduł Modbus TCP Moduł Modbus TCP daje użytkownikowi Systemu Vision możliwość zapisu oraz odczytu rejestrów urządzeń, które obsługują protokół Modbus TCP. Zapewnia on odwzorowanie rejestrów urządzeń

Bardziej szczegółowo

Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java

Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java Cechy C++ Język ogólnego przeznaczenia Można programować obiektowo i strukturalnie Bardzo wysoka wydajność kodu wynikowego

Bardziej szczegółowo

Zaawansowane programowanie w języku C++ Biblioteka standardowa

Zaawansowane programowanie w języku C++ Biblioteka standardowa Zaawansowane programowanie w języku C++ Biblioteka standardowa Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

GRMS System Zarządzania Zadaniami Interfejs użytkownika systemu GRMS wprowadzenie. Bogdan Ludwiczak bogdanl@man.poznan.pl

GRMS System Zarządzania Zadaniami Interfejs użytkownika systemu GRMS wprowadzenie. Bogdan Ludwiczak bogdanl@man.poznan.pl GRMS System Zarządzania Zadaniami Interfejs użytkownika systemu GRMS wprowadzenie Bogdan Ludwiczak bogdanl@man.poznan.pl GRMS co to jest / do czego to służy? GRMS jest systemem szeregowania zadań dla dużych,

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy

Bardziej szczegółowo

ezwroty WebApi Dokumentacja techniczna

ezwroty WebApi Dokumentacja techniczna ezwroty WebApi Dokumentacja techniczna Wersja 1.0 Copyright: Poczta Polska S.A. Data aktualizacji: 2015-08-06 Wstęp WebApi EZwroty Poczty Polskiej jest zrealizowane w technologii SOAP i pozwala na zautomatyzowaniem

Bardziej szczegółowo

Geoportal monitoringu środowiska województwa lubelskiego, jako forma informowania społeczeństwa o stanie środowiska w województwie

Geoportal monitoringu środowiska województwa lubelskiego, jako forma informowania społeczeństwa o stanie środowiska w województwie Geoportal monitoringu środowiska województwa lubelskiego, jako forma informowania społeczeństwa o stanie środowiska w województwie WIOŚ LUBLIN Joanna Śluz Łukasz Prażmo Państwowy Monitoring Środowiska

Bardziej szczegółowo

Zapewnienie wysokiej dostępności baz danych. Marcin Szeliga MVP SQL Server MCT

Zapewnienie wysokiej dostępności baz danych. Marcin Szeliga MVP SQL Server MCT Zapewnienie wysokiej dostępności baz Marcin Szeliga MVP SQL Server MCT Agenda Techniki zapewniania wysokiej dostępności baz Zasada działania mirroringu baz Wdrożenie mirroringu Planowanie Konfiguracja

Bardziej szczegółowo

Bliskie Spotkanie z Biologią. Genetyka populacji

Bliskie Spotkanie z Biologią. Genetyka populacji Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)

Bardziej szczegółowo

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Seminarium 1 część 1 Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Genom człowieka Genomem nazywamy całkowitą ilość DNA jaka

Bardziej szczegółowo

Czas w systemach rozproszonych. Krzysztof Banaś Systemy rozproszone 1

Czas w systemach rozproszonych. Krzysztof Banaś Systemy rozproszone 1 Czas w systemach rozproszonych Krzysztof Banaś Systemy rozproszone 1 Czas w systemach rozproszonych Istnienie algorytmów opartych na czasie zdarzeń np. make, systemy czasu rzeczywistego Brak czasu globalnego

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE

GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE GENOMIKA. MAPOWANIE GENOMÓW MAPY GENOMICZNE Bioinformatyka, wykład 3 (21.X.2008) krzysztof_pawlowski@sggw.waw.pl tydzień temu Gen??? Biologiczne bazy danych historia Biologiczne bazy danych najważniejsze

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Dla każdej operacji łącznie tworzenia danych i zapisu ich do pliku przeprowadzić pomiar czasu wykonania polecenia. Wyniki przedstawić w tabelce.

Dla każdej operacji łącznie tworzenia danych i zapisu ich do pliku przeprowadzić pomiar czasu wykonania polecenia. Wyniki przedstawić w tabelce. Przygotować program tworzący tablicę dwuwymiarową zawierającą zestawy 10 2, 10 4, 10 6 liczb losowych zmiennoprzecinkowych. Korzystając z funkcji bibliotecznych uporządkować zawartość każdego (a) wiersza

Bardziej szczegółowo

ZARZĄDZANIE DOKUMENTACJĄ. Tomasz Jarmuszczak PCC Polska

ZARZĄDZANIE DOKUMENTACJĄ. Tomasz Jarmuszczak PCC Polska ZARZĄDZANIE DOKUMENTACJĄ Tomasz Jarmuszczak PCC Polska Problemy z zarządzaniem dokumentacją Jak znaleźć potrzebny dokument? Gdzie znaleźć wcześniejszą wersję? Która wersja jest właściwa? Czy projekt został

Bardziej szczegółowo

Bioinformatyczne bazy danych - część 2. -przeszukiwanie baz danych -pobieranie danych

Bioinformatyczne bazy danych - część 2. -przeszukiwanie baz danych -pobieranie danych Bioinformatyczne bazy danych - część 2 -przeszukiwanie baz danych -pobieranie danych Numery dostępowe baz danych (accession number) to ciąg liter i cyfr służących jako etykieta identyfikująca sekwencję

Bardziej szczegółowo

Sterowany jakością dostęp do usług składowania danych dla e-nauki

Sterowany jakością dostęp do usług składowania danych dla e-nauki Sterowany jakością dostęp do usług składowania danych dla e-nauki Renata Słota 1,2, Darin Nikolow 1,2, Marek Pogoda 1, Stanisław Polak 2 and Jacek Kitowski 1,2 1 Akademickie Centrum Komputerowe Cyfronet

Bardziej szczegółowo

Robert Piotrak IIG Senior Technology Expert 23 września 2010

Robert Piotrak IIG Senior Technology Expert 23 września 2010 Zwiększenie efektywności biznesowej firmy dzięki zastosowaniu rozwiazań archiwizacyjnych jako elementu kompleksowego systemu zarządzania informacją i procesami - SourceOne firmy EMC Robert Piotrak IIG

Bardziej szczegółowo

Brakujące ogniwo w bezpieczeństwie Internetu

Brakujące ogniwo w bezpieczeństwie Internetu XXII Krajowe Sympozjum Telekomunikacji i Teleinformatyki Bydgoszcz, 13-15 września 2006 DNSSEC Brakujące ogniwo w bezpieczeństwie Internetu Krzysztof Olesik e-mail: krzysztof.olesik@nask.pl DNS Domain

Bardziej szczegółowo

Ćwiczenia laboratoryjne. Oprogramowanie i badanie prostych metod sortowania w tablicach

Ćwiczenia laboratoryjne. Oprogramowanie i badanie prostych metod sortowania w tablicach Ćwiczenia laboratoryjne Oprogramowanie i badanie prostych metod sortowania w tablicach Sprawozdanie Na każdym zajęciu laboratoryjnym sporządza się za pomocą edytora Word sprawozdanie. Bazowa zawartość

Bardziej szczegółowo

Strumienie, pliki. Sortowanie. Wyjątki.

Strumienie, pliki. Sortowanie. Wyjątki. Strumienie, pliki. Sortowanie. Wyjątki. Serializacja Zapisuje całą klasę Plik binarny Delimiter nieokreślony Nie da się podglądać Pliki tekstowe Zapisuje wybrane informacje Plik tekstowy Delimiter ustawiamy

Bardziej szczegółowo

1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia...

1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia... SYBILLA WYMAGANIA TECHNICZNE 1. Instalacja jednostanowiskowa...3 2. Instalacja sieciowa...4 3. Instalacja w środowisku rozproszonym...5 4. Dodatkowe zalecenia...6 1998 2005 TELEPORT.PL WYMAGANIA TECHNICZNE

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

Analiza danych pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego. - część I -

Analiza danych pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego. - część I - pochodzących z sekwencjonowania nowej generacji - przyrównanie do genomu referencyjnego - część I - Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Plan wykładów --------------------------------------------------------

Bardziej szczegółowo

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Operatory logiczne Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Podstawowe

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Bioinformatyka. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl

Bioinformatyka. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Bioinformatyka Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Bazy danych biologicznych Bazy danych sekwencji nukleotydowych Pierwotne bazy danych (ang. primary database) Wykorzystywane do zbierania

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE

Bardziej szczegółowo

TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów

TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów TOPWEB Microsoft Excel 2013 i PowerBI Przygotowanie danych, analiza i efektowna prezentacja wyników raportów Przeznaczenie szkolenia Szkolenie dla osób chcących: Profesjonalnie przygotowywać dane do dalszej

Bardziej szczegółowo

akademia androida Składowanie danych część VI

akademia androida Składowanie danych część VI akademia androida Składowanie danych część VI agenda 1. SharedPreferences. 2. Pamięć wewnętrzna i karta SD. 3. Pliki w katalogach /res/raw i /res/xml. 4. Baza danych SQLite. 5. Zadanie. 1. SharedPreferences.

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH

PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH PODSTAWY BIOINFORMATYKI ORGANIZACJA ZAJĘĆ BIOINFORMATYKA PRZETWARZANIE I ANALIZA DANYCH Magda Mielczarek Podstawy Bioinformatyki 1 Organizacja zajęć mgr Magda Mielczarek Katedra Genetyki, pokój nr 14 magda.mielczarek@up.wroc.pl

Bardziej szczegółowo

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24

Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie

Bardziej szczegółowo

Wprowadzenie. Co to jest klaster? Podział ze względu na przeznaczenie. Architektury klastrów. Cechy dobrego klastra.

Wprowadzenie. Co to jest klaster? Podział ze względu na przeznaczenie. Architektury klastrów. Cechy dobrego klastra. N Wprowadzenie Co to jest klaster? Podział ze względu na przeznaczenie. Architektury klastrów. Cechy dobrego klastra. Wprowadzenie (podział ze względu na przeznaczenie) Wysokiej dostępności 1)backup głównego

Bardziej szczegółowo

Bydgoskie Centrum Archiwizacji Cyfrowej sp. z o.o.

Bydgoskie Centrum Archiwizacji Cyfrowej sp. z o.o. STRONA GŁÓWNA ` Usługa earchiwizacja.pl przeznaczona jest zarówno dla osób indywidualnych, jak i firm. Wykorzystuje zasadę przetwarzania danych w chmurze. Pozwala to na dostęp do własnej bazy dokumentów

Bardziej szczegółowo

Bazy danych i R/Bioconductor

Bazy danych i R/Bioconductor Bazy danych i R/Bioconductor wizualizacja danych genomicznych cz. 2 ggbio Yin T, Cook D and Lawrence M (2012). ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biology,

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 4 Biologia I MGR

GENETYKA POPULACJI. Ćwiczenia 4 Biologia I MGR GEETYKA POPULACJI Ćwiczenia 4 Biologia I MGR Ad. Ćwiczenia Liczba możliwych genotypów w locus wieloallelicznym Geny sprzężone z płcią Prawo Hardy ego-weinberga p +pq+q = p+q= m( m ) p P Q Q P p AA Aa wszystkich_

Bardziej szczegółowo

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. Historia i przykłady przetwarzania współbieżnego, równoległego i rozproszonego 1 Historia i pojęcia wstępne Przetwarzanie współbieżne realizacja wielu programów (procesów) w taki sposób, że ich

Bardziej szczegółowo

Modelowanie procesów współbieżnych

Modelowanie procesów współbieżnych Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.

Bardziej szczegółowo

Programowanie MorphX Ax

Programowanie MorphX Ax Administrowanie Czym jest system ERP? do systemu Dynamics Ax Obsługa systemu Dynamics Ax Wyszukiwanie informacji, filtrowanie, sortowanie rekordów IntelliMorph : ukrywanie i pokazywanie ukrytych kolumn

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Kolekcje mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Kolekcje mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Kolekcje mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Kolekcja obiekt, który grupuje inne obiekty, traktując je jako jeden zestaw danych i pozwalający na wykonywanie operacji

Bardziej szczegółowo

Java Collections Framework

Java Collections Framework Java Collections Framework Co to jest Java Collections Framework JCF Zunifikowana architektura do reprezentacji i manipulacji kolekcjami danych. Składa się z: Interfejsów Definuje abstrakcyjne typy możliwych

Bardziej szczegółowo

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM Juliusz Pukacki,PCSS Co to jest HPC (High Preformance Computing)? Agregowanie dużych zasobów obliczeniowych w sposób umożliwiający wykonywanie obliczeń

Bardziej szczegółowo

JAX-RS czyli REST w Javie. Adam Kędziora

JAX-RS czyli REST w Javie. Adam Kędziora JAX-RS czyli REST w Javie Adam Kędziora Webservice Usługa sieciowa (ang. web service) komponent programowy niezależny od platformy i implementacji, dostarczający określonej funkcjonalności. SOAP,UDDI,XML,WSDL

Bardziej szczegółowo

DO CELU PROWADZI TRAFFIC TOMTOM NAJSZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ

DO CELU PROWADZI TRAFFIC TOMTOM NAJSZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ TomTom to wiodący dostawca usług informujących o ruchu drogowym. Firma TomTom monitoruje, przetwarza i dostarcza informacje o ruchu drogowym z wykorzystaniem opracowanych

Bardziej szczegółowo

Skalowalna Platforma dla eksperymentów dużej skali typu Data Farming z wykorzystaniem środowisk organizacyjnie rozproszonych

Skalowalna Platforma dla eksperymentów dużej skali typu Data Farming z wykorzystaniem środowisk organizacyjnie rozproszonych 1 Skalowalna Platforma dla eksperymentów dużej skali typu Data Farming z wykorzystaniem środowisk organizacyjnie rozproszonych D. Król, Ł. Dutka, J. Kitowski ACC Cyfronet AGH Plan prezentacji 2 O nas Wprowadzenie

Bardziej szczegółowo

Wykład 5: Najważniejsze usługi sieciowe: DNS, SSH, HTTP, e-mail. A. Kisiel,Protokoły DNS, SSH, HTTP, e-mail

Wykład 5: Najważniejsze usługi sieciowe: DNS, SSH, HTTP, e-mail. A. Kisiel,Protokoły DNS, SSH, HTTP, e-mail N, Wykład 5: Najważniejsze usługi sieciowe: DNS, SSH, HTTP, e-mail 1 Domain Name Service Usługa Domain Name Service (DNS) Protokół UDP (port 53), klient-serwer Sformalizowana w postaci protokołu DNS Odpowiada

Bardziej szczegółowo

Clusterix Data Management System (CDMS)

Clusterix Data Management System (CDMS) Clusterix Data Management System (CDMS) Łukasz Kuczyński lkucz@icis.pcz.pl Politechnika Czestochowska Instytut Informatyki Teoretycznej i Stosowanej Cechy systemu przeźroczysty dostęp do danych wysoki

Bardziej szczegółowo

Systemy plików i zarządzanie pamięcią pomocniczą. Struktura pliku. Koncepcja pliku. Atrybuty pliku

Systemy plików i zarządzanie pamięcią pomocniczą. Struktura pliku. Koncepcja pliku. Atrybuty pliku Systemy plików i zarządzanie pamięcią pomocniczą Koncepcja pliku Metody dostępu Organizacja systemu plików Metody alokacji Struktura dysku Zarządzanie dyskiem Struktura pliku Prosta sekwencja słów lub

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Sieci komputerowe. Zajęcia 5 Domain Name System (DNS)

Sieci komputerowe. Zajęcia 5 Domain Name System (DNS) Sieci komputerowe Zajęcia 5 Domain Name System (DNS) DNS - wstęp System nazw domenowych to rozproszona baza danych Zapewnia odwzorowanie nazwy na adres IP i odwrotnie DNS jest oparty o model klient-serwer.

Bardziej szczegółowo

Seminarium Bazy Danych I. BigTable. Piotr Świgoń Uniwersytet Warszawski

Seminarium Bazy Danych I. BigTable. Piotr Świgoń Uniwersytet Warszawski Seminarium Bazy Danych I BigTable Piotr Świgoń Uniwersytet Warszawski Rzędy wielkości Miliardy URL'i i linków, wiele wersji stron Setki milionów użytkowników Tysiące zapytań na sekundę 2.7 3.3 GB rozmiar

Bardziej szczegółowo

Relacyjne, a obiektowe bazy danych. Bazy rozproszone

Relacyjne, a obiektowe bazy danych. Bazy rozproszone 2 Relacyjne, a obiektowe bazy danych. Bazy rozproszone Zastosowania baz danych systemy bankowe (bankomat) systemy masowej obsługi (hipermarket) rezerwacja biletów lotniczych telefonia komórkowa (sms) Dziekanat

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Optymalizacja zapytań Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Elementy optymalizacji Analiza zapytania i przekształcenie go do lepszej postaci. Oszacowanie

Bardziej szczegółowo

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje

Bardziej szczegółowo

Plan wykładu CORBA. Cechy aplikacji rozproszonych. Aplikacje rozproszone

Plan wykładu CORBA. Cechy aplikacji rozproszonych. Aplikacje rozproszone Plan wykładu CORBA Wprowadzenie Architektura CORBA IDL język definicji interfejsów ORB Object Request Broker Usługi i POA Aplikacje CORBA tworzenie serwera tworzenie klienta Aplikacje rozproszone Cechy

Bardziej szczegółowo

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016 Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa

Bardziej szczegółowo

Rywalizacja w sieci cd. Protokoły komunikacyjne. Model ISO. Protokoły komunikacyjne (cd.) Struktura komunikatu. Przesyłanie między warstwami

Rywalizacja w sieci cd. Protokoły komunikacyjne. Model ISO. Protokoły komunikacyjne (cd.) Struktura komunikatu. Przesyłanie między warstwami Struktury sieciowe Struktury sieciowe Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne 15.1 15.2 System rozproszony Motywacja

Bardziej szczegółowo

BUDOWA I FUNKCJA GENOMU LUDZKIEGO

BUDOWA I FUNKCJA GENOMU LUDZKIEGO BUDOWA I FUNKCJA GENOMU LUDZKIEGO Magdalena Mayer Katedra i Zakład Genetyki Medycznej UM w Poznaniu 1. Projekt poznania genomu człowieka: Cele programu: - skonstruowanie szczegółowych map fizycznych i

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Indeksowanie full text search w chmurze

Indeksowanie full text search w chmurze Prezentacja przygotowana dla: 5. Konferencja MIC w Poznaniu, 16.06.20111 Lucene.NET Indeksowanie full text search w chmurze K2 i Windows Azure dlaczego dla nas to możliwe? 1. Mamy unikalne połącznie kompetencji

Bardziej szczegółowo

Java - tablice, konstruktory, dziedziczenie i hermetyzacja

Java - tablice, konstruktory, dziedziczenie i hermetyzacja Java - tablice, konstruktory, dziedziczenie i hermetyzacja Programowanie w językach wysokiego poziomu mgr inż. Anna Wawszczak PLAN WYKŁADU zmienne tablicowe konstruktory klas dziedziczenie hermetyzacja

Bardziej szczegółowo

Połączenie Partnera z serwisem JustPay poprzez - METODĘ 2

Połączenie Partnera z serwisem JustPay poprzez - METODĘ 2 Połączenie Partnera z serwisem JustPay poprzez - METODĘ 2 Generowanie kodów: po stronie Partnera Weryfikacja kodów: po stronie Partnera Spis treści 1. Kolejne kroki w stworzeniu własnego serwisu 2. Jak

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 14 Procesory równoległe Klasyfikacja systemów wieloprocesorowych Luźno powiązane systemy wieloprocesorowe Każdy procesor ma własną pamięć główną i kanały wejścia-wyjścia.

Bardziej szczegółowo

Jak Windows zarządza pamięcią?

Jak Windows zarządza pamięcią? Jak Windows zarządza pamięcią? System Windows definiuje dwa typy pamięci, często mylone przez użytkowników. Pamięć fizyczna (pamięc RAM zainstalowana w komputerze) Pamięć widziana przez daną aplikację

Bardziej szczegółowo

INFORMATOR TECHNICZNY WONDERWARE. Narzędzie redundancji systemu alarmowania Alarm Hot Backup dla oprogramowania. Struktura systemu redundantnego

INFORMATOR TECHNICZNY WONDERWARE. Narzędzie redundancji systemu alarmowania Alarm Hot Backup dla oprogramowania. Struktura systemu redundantnego Informator Techniczny nr 76 03-01-2005 INFORMATOR TECHNICZNY WONDERWARE Narzędzie redundancji systemu alarmowania Alarm Hot Backup dla oprogramowania InTouch Alarm Hot Backup jest to narzędzie umoŝliwiające

Bardziej szczegółowo

Problemy niezawodnego przetwarzania w systemach zorientowanych na usługi

Problemy niezawodnego przetwarzania w systemach zorientowanych na usługi Problemy niezawodnego przetwarzania w systemach zorientowanych na usługi Jerzy Brzeziński, Anna Kobusińska, Dariusz Wawrzyniak Instytut Informatyki Politechnika Poznańska Plan prezentacji 1 Architektura

Bardziej szczegółowo

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria IOINFORMTYK 1. Wykład wstępny 2. Struktury danych w adaniach ioinformatycznych 3. azy danych: projektowanie i struktura 4. azy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ. Hardyego-Weinerga,

Bardziej szczegółowo

High Performance Computers in Cyfronet. Andrzej Oziębło Zakopane, marzec 2009

High Performance Computers in Cyfronet. Andrzej Oziębło Zakopane, marzec 2009 High Performance Computers in Cyfronet Andrzej Oziębło Zakopane, marzec 2009 Plan Podział komputerów dużej mocy Podstawowe informacje użytkowe Opis poszczególnych komputerów Systemy składowania danych

Bardziej szczegółowo

Apache Hadoop. Wolna implementacja GFS, MapReduce oraz Big Table. Michał Jaszczyk

Apache Hadoop. Wolna implementacja GFS, MapReduce oraz Big Table. Michał Jaszczyk Co to jest Hadoop? Trochę historii Wolna implementacja GFS, oraz Big Table Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Seminarium Systemów Rozproszonych 6 listopada 2008 Co to jest

Bardziej szczegółowo

Imię i nazwisko...kl...

Imię i nazwisko...kl... Gimnazjum nr 4 im. Ojca Świętego Jana Pawła II we Wrocławiu SPRAWDZIAN GENETYKA GR. A Imię i nazwisko...kl.... 1. Nauka o regułach i mechanizmach dziedziczenia to: (0-1pkt) a) cytologia b) biochemia c)

Bardziej szczegółowo

ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop Spis treści

ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop Spis treści ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop. 2016 Spis treści 1 Arkusz kalkulacyjny 9 Za co lubimy arkusze kalkulacyjne 12 Excel 2016 12 Przez wygodę do efektywności 14 Podsumowanie 16 2 Uruchamianie

Bardziej szczegółowo

Obiektowe programowanie rozproszone Java RMI. Krzysztof Banaś Systemy rozproszone 1

Obiektowe programowanie rozproszone Java RMI. Krzysztof Banaś Systemy rozproszone 1 Obiektowe programowanie rozproszone Java RMI Krzysztof Banaś Systemy rozproszone 1 Java RMI Mechanizm zdalnego wywołania metod Javy (RMI Remote Method Invocation) posiada kilka charakterystycznych cech,

Bardziej szczegółowo

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty

Bardziej szczegółowo

Przykładowe zagadnienia na sprawdzian z wiedzy ogólnej. Linux to nazwa: A. Programu biurowego. B. Systemu operacyjnego. C. Przeglądarki internetowej.

Przykładowe zagadnienia na sprawdzian z wiedzy ogólnej. Linux to nazwa: A. Programu biurowego. B. Systemu operacyjnego. C. Przeglądarki internetowej. Przykładowe zagadnienia na sprawdzian z wiedzy ogólnej Linux to nazwa: A. Programu biurowego. B. Systemu operacyjnego. C. Przeglądarki internetowej. Przycisk RESET znajdujący się na obudowie komputera,

Bardziej szczegółowo

System plików i zarządzanie pamięcią pomocniczą. Koncepcja pliku. Atrybuty pliku. Struktura pliku. Typ pliku nazwa, rozszerzenie (extension)

System plików i zarządzanie pamięcią pomocniczą. Koncepcja pliku. Atrybuty pliku. Struktura pliku. Typ pliku nazwa, rozszerzenie (extension) System plików i zarządzanie pamięcią pomocniczą Koncepcja pliku Ciągła logiczna przestrzeń adresowa Koncepcja pliku Metody dostępu Organizacja systemu plików Metody alokacji Struktura dysku Zarządzenie

Bardziej szczegółowo

KAMERA AKUSTYCZNA NOISE INSPECTOR DLA SZYBKIEJ LOKALIZACJI ŹRÓDEŁ HAŁASU

KAMERA AKUSTYCZNA NOISE INSPECTOR DLA SZYBKIEJ LOKALIZACJI ŹRÓDEŁ HAŁASU KAMERA AKUSTYCZNA NOISE INSPECTOR DLA SZYBKIEJ LOKALIZACJI ŹRÓDEŁ HAŁASU Hałas staje się widoczny Zastosowanie innowacyjnych rozwiązań w systemie Noise Inspector pozwala na konwersję emisji dźwięku do

Bardziej szczegółowo

ODWZOROWYWANIE NAZW NA ADRESY:

ODWZOROWYWANIE NAZW NA ADRESY: W PROTOKOLE INTERNET ZDEFINIOWANO: nazwy określające czego szukamy, adresy wskazujące, gdzie to jest, trasy (ang. route) jak to osiągnąć. Każdy interfejs sieciowy w sieci TCP/IP jest identyfikowany przez

Bardziej szczegółowo

I. WSTĘP. Przykład 1. Przykład 2. Programowanie czyli tworzenie programów komputerowych (aplikacji komputerowych)

I. WSTĘP. Przykład 1. Przykład 2. Programowanie czyli tworzenie programów komputerowych (aplikacji komputerowych) I. WSTĘP Programowanie czyli tworzenie programów komputerowych (aplikacji komputerowych) Algorytm - sposób na osiągnięcie celu w pewnych ograniczonych krokach. Program komputerowy realizuje zawsze algorytm.

Bardziej szczegółowo