PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY
|
|
- Aleksander Nowacki
- 2 lat temu
- Przeglądów:
Transkrypt
1 PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY ZAKRES PODSTAWOWY I ROZSZERZONY Maria Zioło Program nauczania matematyki dla szkół ponadgimnazjalnych, których ukończenie umożliwia uzyskanie świadectwa dojrzałości po zdaniu egzaminu maturalnego
2 Spis treści: 1. Wstęp Cele edukacyjne Cele kształcenia wymagania ogólne zawarte w podstawie programowej Propozycja ramowego rozkładu materiału Treści nauczania. Propozycja szczegółowego rozkładu materiału Propozycje oczekiwanych osiągnięć uczniów po realizacji poszczególnych działów programowych dla poziomu podstawowego Propozycje oczekiwanych osiągnięć uczniów po realizacji poszczególnych działów programowych dla poziomu rozszerzonego Procedury osiągania celów Metody kontroli i oceny Przykład diagnozy wstępnej, pracy klasowej i minimatury Przykład karty projektu dydaktycznego i scenariusza lekcji I Strona 2
3 1. WSTĘP Matematykę można znaleźć prawie we wszystkich dziedzinach nauki i niemal na każdym kroku w życiu codziennym. Fizyka, informatyka, nauki przyrodnicze, ekonomiczne, a nawet humanistyczne nie mogą się bez niej obejść. Umiejętności matematyczne potrzebne są, gdy prowadzimy firmę, remontujemy mieszkanie, wypełniamy zeznanie podatkowe, czy wybieramy najkorzystniejszą ofertę bankową zaciągając kredyt lub lokując swoje oszczędności. Umiejętność prowadzenia poprawnego rozumowania potrzebna jest zarówno inżynierowi, prawnikowi jak i każdemu z nas. Uczeń, który kończy szkołę ponadgimnazjalną i nie zamierza kontynuować nauki na uczelniach technicznych, czy kierunkach uniwersyteckich, na których nie jest niezbędna wiedza i umiejętności matematyczne powinien opanować podstawowy zakres umiejętności z matematyki. Podstawowy, czyli taki, który pozwoli mu zdać maturę i pomoże wypracować narzędzia matematyczne niezbędne w życiu codziennym. Realizacja treści rozszerzonych natomiast pozwoli przygotować uczniów do samodzielnego zdobywania wiedzy na dalszych etapach kształcenia, na przykład na politechnikach, czy uniwersyteckich kierunkach ścisłych. Opracowany przeze mnie program nauczania jest oparty na podstawie programowej kształcenia ogólnego dla szkół ponadgimnazjalnych, których ukończenie umożliwia uzyskanie świadectwa dojrzałości po zdaniu egzaminu maturalnego, zawartej w załączniku nr 4 ROZPORZĄDZENIA MINISTRA EDUKACJI NARODOWEJ, z dnia 23 grudnia 2008 r., w sprawie podstawy programowej wychowania przedszkolnego oraz kształcenia ogólnego w poszczególnych typach szkół (Dz. U. z dnia 15 stycznia 2009 r.) Treści programowe zostały tak podzielone, aby w pierwszej klasie uczeń opanował wiadomości i umiejętności matematyczne niezbędne do kontynuowania nauki matematyki w następnych klasach, zarówno na poziomie podstawowym jak i rozszerzonym. Realizacja tego programu zapewnia omówienie wszystkich zagadnień zawartych w nowej podstawie programowej. UWAGI NA TEMAT PROPONOWANEGO RAMOWEGO ROZKŁADU MATERIAŁU Uczniowie z pojęciem i podstawowymi wiadomościami na temat funkcji spotykają się już w szkole gimnazjalnej, dlatego też zasadnym jest umieszczenie działu Funkcje pod koniec pierwszej klasy liceum. Pozwala to na pogłębienie i utrwalenie wiadomości oraz umiejętności zdobytych w gimnazjum, a także na początku nauki w liceum. Możemy ćwiczyć sprawność rachunkową obliczając wartości różnych funkcji dla danego argumentu i odwrotnie, doprowadzać wzór funkcji do najprostszej postaci i sprawdzać, czy otrzymana funkcja jest liniowa, czy kwadratowa. Rysować wykresy i omawiać własności funkcji określonych różnymi wzorami w różnych przedziałach. Uczeń może sam zbudować wykres złożony z odcinków i fragmentów parabol, czy hiperbol, a później wyznaczyć wzór takiej funkcji. Możemy także wyznaczać dziedziny i miejsca zerowe różnych funkcji wykorzystując równania oraz nierówności liniowe i kwadratowe. Jest tu również miejsce na rozwiązywanie zadań tekstowych, których treść związana jest z życiem codziennym, a także geometrią, czy innymi, konkretnymi dziedzinami wiedzy. Poza tym kolejną zaletą takiej kolejności działów jest to, że Strona 3
4 wiele lekcji możemy przeprowadzać metodą pracy w grupach. Dzięki temu uczniowie doskonalą umiejętność twórczego rozwiązywania problemów oraz rozwijają abstrakcyjne myślenie matematyczne. Słabsi uczniowie zwiększają swoje zainteresowanie tematem, stają się bardziej samodzielni, wzrasta ich aktywność i zaangażowanie, co przekłada się później na lepsze wyniki w nauce. Uczniowie zdolni natomiast mogą wykazać się swoją wiedzą i pomóc słabszym koleżankom i kolegom. W klasie o niższym poziomie możemy ograniczyć kształcenie umiejętności do niezbędnego minimum, a w zdolnej jest to dobry sposób na pogłębienie zdobytych wiadomości i umiejętności, co z kolei daje znakomity start w klasie z rozszerzonym programem nauczania matematyki. W związku z tym, że typowo geometryczne działy pojawiają się w drugim semestrze drugiej klasy należy do każdego z realizowanych wcześniej działów włączać jak najwięcej zadań wykorzystujących wiadomości i umiejętności z geometrii zdobyte w gimnazjum. Mogą to być na przykład zadania dotyczące: zastosowania twierdzenia Pitagorasa, podobieństwa i przystawania wielokątów, pól, obwodów koła, wielokątów oraz pól powierzchni, czy objętości graniastosłupów, ostrosłupów, a także brył obrotowych. Pokażemy w ten sposób, że wszystkie działy matematyki łączą się w logiczną całość. To samo zadanie możemy bowiem rozwiązać metodą algebraiczną i geometryczną. Figurę czasem lepiej umieścić na płaszczyźnie kartezjańskiej i zadanie rozwiązać metodami geometrii analitycznej niż szukać rozwiązania na płaszczyźnie bez układu współrzędnych. Podręcznikami wspomagającymi osiąganie celów założonych w tym programie, spośród obecnie dopuszczonych przez MEN do użytku szkolnego przeznaczonych do kształcenia ogólnego do nowej podstawy programowej dla szkół ponadgimnazjalnych mogą być: MATeMAtyka. Zakres podstawowy oraz MATeMAtyka. Zakres podstawowy i rozszerzony, których autorami są Wojciech Babiański, Lech Chańko, Dorota Ponczek (Wydawnictwo Nowa Era). Szukając zadań, czy pomysłów na lekcję można oprócz różnych podręczników i zbiorów zadań wykorzystać także, co ważne bezpłatnie, zasoby portalu internetowego Scholaris.pl, gdzie znajdziemy między innymi narzędzie dla nauczycieli do tworzenia lekcji (www.scholaris.pl/edytor_materialow), ciekawe zadania, karty pracy ucznia, scenariusze lekcji, ćwiczenia interaktywne itp. CELE NAUCZANIA 2. CELE EDUKACYJNE 1. Przyswojenie przez uczniów określonego zasobu wiadomości matematycznych 2. Zrozumienie poznanych pojęć i twierdzeń matematycznych 3. Zdobycie przez uczniów umiejętności wykorzystania zdobytych wiadomości podczas wykonywania zadań i rozwiązywania problemów 4. Rozwijanie wyobraźni przestrzennej i myślenia abstrakcyjnego 5. Kształcenie umiejętności: sprawnego wykonywania obliczeń; Strona 4
5 posługiwania się opisem rozmaitych zjawisk za pomocą liczb; analizowania otrzymanych rozwiązań, sprawdzania poprawności rozwiązania; wykorzystania narzędzi matematyki w życiu codziennym oraz formułowania wniosków opartych na rozumowaniu matematycznym; operowania modelami matematycznymi takimi jak liczby, zmienne, wyrażenia algebraiczne, różnego rodzaju funkcje; czytania ze zrozumieniem, analizowania i przetwarzania informacji zawartych w treści zadań tekstowych lub tekście matematycznym; interpretacji tekstu matematycznego; zmatematyzowania problemu występującego w zadaniu tekstowym; wyboru własnej skutecznej strategii rozwiązania zadania; weryfikowania prawdziwości hipotez matematycznych za pomocą odpowiednio dobranych przykładów; wykorzystania wiedzy o charakterze naukowym do identyfikowania i rozwiązywania problemów matematycznych; sprawnego posługiwania się nowoczesnymi technologiami informacyjno komunikacyjnymi (kalkulatory, komputery); samodzielnego zdobywania wiedzy matematycznej; wyszukiwania, selekcjonowania i krytycznej analizy informacji. CELE WYCHOWANIA 1. Kształtowanie umiejętności rozpoznawania własnych potrzeb edukacyjnych 2. Kształtowanie takich cech osobowości jak staranność, systematyczność, precyzja 3. Kształcenie umiejętności: argumentowania, precyzyjnego formułowania i zapisywania myśli, wyciągania wniosków, zadawania pytań, dostrzegania problemów i ich rozwiązywania, dobrej organizacji pracy, właściwego planowania nauki, współpracy przy rozwiązywaniu problemów 4. Rozwijanie zainteresowań i uzdolnień ucznia 5. Wyrabianie takich cech jak: koleżeńskość, życzliwość, zaufanie, odpowiedzialność i tolerancyjność w pracy zespołowej. 6. Potępianie nieuczciwości objawiającej się w ściąganiu i podpowiadaniu. Strona 5
6 3. CELE KSZTAŁCENIA WYMAGANIA OGÓLNE (zawarte w podstawie programowej) ZAKRES PODSTAWOWY Wykorzystanie i tworzenie informacji Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. 1. Wykorzystanie i interpretowanie reprezentacji Uczeń używa prostych, dobrze znanych obiektów matematycznych. 2. Modelowanie matematyczne Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. 3. Użycie i tworzenie strategii Uczeń stosuje strategię, która jasno wynika z treści zadania. 4. Rozumowanie i argumentacja Uczeń prowadzi proste rozumowanie, składające się z niewielkiej liczby kroków. ZAKRES ROZSZERZONY 1. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego do opisu rozumowania i uzyskanych wyników. 2. Wykorzystanie i interpretowanie reprezentacji Uczeń rozumie i interpretuje pojęcia matematyczne oraz operuje obiektami matematycznymi. 3. Modelowanie matematyczne Uczeń buduje model matematyczny danej sytuacji, uwzględniając ograniczenia i zastrzeżenia. 4. Użycie i tworzenie strategii Uczeń tworzy strategię rozwiązania problemu. Strona 6
7 5. Rozumowanie i argumentacja Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność. 4. PROPOZYCJA RAMOWEGO ROZKŁADU MATERIAŁU Przedstawiam poniżej propozycję podziału treści programowych na poszczególne klasy oraz orientacyjną liczbę godzin potrzebną na ich realizację. Mamy do dyspozycji około 300 godzin w całym cyklu kształcenia dla poziomu podstawowego i 480 godzin dla poziomu rozszerzonego. Poziom podstawowy; 300 godzin Lp. Nazwa działu: Liczba godzin KLASA I; 110 godzin I Zbiór liczb rzeczywistych 20 II Funkcja liniowa 30 III Funkcja kwadratowa 30 IV Wyrażenia algebraiczne i proporcjonalność odwrotna 15 V Funkcje i ich własności 15 KLASA II; 110 godzin VI Funkcja wykładnicza i logarytmy 20 VII Ciągi liczbowe 20 VIII Trygonometria 20 IX Planimetria 25 X Geometria analityczna 25 KLASA III; 80 godzin XI Elementy statystyki. Teoria prawdopodobieństwa 20 i kombinatoryka XII Stereometria 30 XIII Przygotowanie do matury 30 Poziom rozszerzony; 480 godzin Strona 7
8 Lp. Nazwa działu Liczba godzin KLASA I; 110 godzin I Zbiór liczb rzeczywistych 20 II Funkcja liniowa 30 III Funkcja kwadratowa 30 IV Wyrażenia algebraiczne i proporcjonalność odwrotna 15 V Funkcje i ich własności 15 KLASA II; 240 godzin VI Wartość bezwzględna 20 VII Wielomiany 35 VIII Funkcje wymierne 20 IX Funkcja wykładnicza i funkcja logarytmiczna 25 X Ciągi liczbowe 30 XI Trygonometria 30 XII Planimetria 40 XIII Geometria analityczna 40 KLASA III; 130 godzin XIV Elementy statystyki. Teoria prawdopodobieństwa 35 i kombinatoryka XV Stereometria 45 XVI Rachunek różniczkowy 30 XVII Przygotowanie do matury TREŚCI NAUCZANIA wymagania szczegółowe. Propozycja szczegółowego rozkładu materiału Po każdej jednostce tematycznej i nazwie działu umieszczono proponowaną liczbę godzin potrzebną do realizacji danego tematu, czy działu. KLASA I poziom podstawowy i rozszerzony I. ZBIÓR LICZB RZECZYWISTYCH 20 godzin 1. Różne postacie liczb rzeczywistych przedstawianie ułamków zwykłych w postaci rozwinięć dziesiętnych, zapisywanie liczb za pomocą pierwiastków i potęg 1h 2. Pierwiastki arytmetyczne dowolnego stopnia. Prawa działań na pierwiastkach 2h 3. Wzory skróconego mnożenia 2h 4. Usuwanie niewymierności z mianownika i działania na liczbach postaci 2h 5. Obliczanie wartości liczbowej wyrażeń arytmetycznych (również wyrażeń wymiernych) 2h Strona 8
9 6. Przedziały liczbowe 2h 7. Sprawdzian 1h 8. Obliczenia procentowe 3h 9. Błąd bezwzględny, względny i procentowy przybliżenia 1h 10. Zastosowanie obliczeń procentowych do obliczania podatków, zysków z lokat (również procent składany i zysk z lokat złożonych na okres krótszy niż 1 rok) 3h 11. Sprawdzian 1h II. FUNKCJA LINIOWA; 30 godzin 1. Wykres i własności funkcji liniowej 1h 2. Rysowanie wykresów funkcji liniowych zapisanych za pomocą wzoru 1h 3. Interpretacja współczynników występujących we wzorze funkcji liniowej 2h 4. Wyznaczanie wzoru funkcji liniowej na podstawie informacji o funkcji lub jej wykresie 3h 5. Zadania tekstowe 3h 6. Sprawdzian 1h 7. Sprawdzanie, czy dana liczba jest rozwiązaniem równania lub nierówności 1h 8. Rozwiązywanie równań i nierówności pierwszego stopnia z jedną niewiadomą zastosowanie wzorów skróconego mnożenia i działań na pierwiastkach 4h 9. Zadania tekstowe prowadzące do równań i nierówności liniowych (zastosowanie np. w geometrii, fizyce, życiu codziennym) 4h 10. Układy równań pierwszego stopnia z dwiema niewiadomymi i ich interpretacja geometryczna 3h 11. Zadania tekstowe prowadzące do układów równań (zastosowanie np. w geometrii, fizyce, życiu codziennym) 4h 12. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h Strona 9
10 III. FUNKCJA KWADRATOWA; 30 godzin 1. Wykres i własności funkcji 1h 2. Postać kanoniczna i ogólna funkcji kwadratowej 2h 3. Postać iloczynowa i miejsca zerowe funkcji kwadratowej 2h 4. Przekształcanie wzorów funkcji kwadratowej 1h 5. Interpretacja współczynników występujących we wzorze funkcji kwadratowej 2h 6. Szkicowanie wykresu funkcji kwadratowej na podstawie jej wzoru 2h 7. Wyznaczanie wzoru funkcji kwadratowej na podstawie informacji o funkcji lub jej wykresie 3h 8. Wyznaczanie wartości największej i najmniejszej funkcji kwadratowej w przedziale domkniętym 3h 9. Równania kwadratowe z jedną niewiadomą 2h 10. Nierówności kwadratowe z jedną niewiadomą 3h 11. Rozwiązywanie zadań tekstowych prowadzących do rozwiązywania równań i nierówności kwadratowych i wykorzystujących własności funkcji kwadratowej (zastosowanie np. w geometrii, fizyce, życiu codziennym) 6h 12. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h IV. WYRAŻENIA ALGEBRAICZNE I PROPORCJONALNOŚĆ ODWROTNA; 15 godzin 1. Działania na wyrażeniach algebraicznych i obliczanie wartości liczbowej tych wyrażeń 1h 2. Równania wyższych stopni niż drugi prowadzące do wykorzystania definicji pierwiastka i własności iloczynu np. 1h 3. Rozkładanie wyrażeń algebraicznych na czynniki (zastosowanie wzorów na miejsca zerowe funkcji kwadratowej, wzorów skróconego mnożenia i wyłączanie wspólnego czynnika poza nawias) 1h Strona 10
11 4. Rozwiązywanie równań typu 1h 5. Wykres i własności funkcji 1h 6. Przekształcanie wykresów funkcji - 1h 7. Wielkości wprost i odwrotnie proporcjonalne 1h 8. Zadania wykorzystujące wzór i wykres funkcji do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi (zastosowanie w geometrii i zadania typu: prędkość droga czas) 3h 9. Rozwiązywanie prostych równań wymiernych, prowadzących do równań liniowych lub kwadratowych np. 2h 10. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h V. FUNKCJE I ICH WŁASNOŚC; 15 godzin 1. Pojęcie funkcji, różne sposoby opisywania funkcji (wzór, tabela, wykres, opis słowny) 1h 2. Obliczanie ze wzoru wartości funkcji dla danego argumentu i dla jakiego argumentu funkcja przyjmuje daną wartość 1h 3. Odczytywanie własności funkcji na podstawie wykresu (dziedzina, zbiór wartości funkcji, miejsca zerowe, maksymalne przedziały, w których funkcja maleje, rośnie, ma stały znak, punkty, w których funkcja przyjmuje w danym przedziale wartość największą lub najmniejszą) 4h 4. Przekształcanie wykresów funkcji (na podstawie wykresu funkcji szkicowanie wykresów funkcji 2h 5. Rozwiązywanie zadań - zastosowanie wykresów i własności różnych funkcji 4h 6. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h KLASA II poziom podstawowy VI. FUNKCJA WYKŁADNICZA I LOGARYTMY; 20 godzin Strona 11
12 1. Potęga o wykładniku wymiernym. Prawa działań na potęgach o wykładniku wymiernym 2h 2. Zastosowanie własności potęg do rozwiązywania zadań związanych z innymi dziedzinami wiedzy fizyka, chemia np. notacja wykładnicza 2h 3. Rozwiązywanie prostych równań wykładniczych 1h 4. Wykres i własności funkcji wykładniczej 1h 5. Przekształcanie wykresów funkcji wykładniczej 1h 6. Posługiwanie się funkcjami wykładniczymi do opisu np. zjawisk fizycznych, chemicznych lub zagadnień związanych z życiem codziennym 3h 7. Definicja logarytmu 1h 8. Wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym 3h 9. Zastosowanie wzorów na logarytmowanie w zadaniach. Upraszczanie wyrażeń arytmetycznych zawierających potęgi i logarytmy 3h 10. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h VII. CIĄGI LICZBOWE; 20 godzin 1. Pojęcie ciągu liczbowego, wyznaczanie wyrazów ciągu określonego wzorem ogólnym 1h 2. Wykres i własności ciągu liczbowego 1h 3. Ciąg arytmetyczny. Badanie, czy dany ciąg jest arytmetyczny 1h 4. Wzór ogólny, suma n początkowych wyrazów ciągu arytmetycznego 5h 5. Ciąg geometryczny. Badanie, czy dany ciąg jest geometryczny 1h 6. Wzór ogólny, suma n początkowych wyrazów ciągu geometrycznego 5h 7. Ciąg arytmetyczny i geometryczny zadania 3h 8. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h Strona 12
13 VIII. TRYGONOMETRIA; 20 godzin 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym 1h 2. Wartości funkcji trygonometrycznych kątów o miarach od 0 do 180 2h 3. Rozwiązywanie trójkątów prostokątnych (korzystanie z dokładnych i przybliżonych wartości funkcji trygonometrycznych) 3h 4. Podstawowe tożsamości trygonometryczne oraz i ich zastosowanie 3h 5. Obliczanie wartości pozostałych funkcji trygonometrycznych tego samego kąta ostrego, gdy dana jest wartość funkcji sinus lub cosinus tego kąta 2h 6. Zastosowanie funkcji trygonometrycznych w zadaniach 6h 7. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h IX. PLANIMETRIA; 25 godzin 1. Kąt środkowy i wpisany 1h 2. Zależności między kątem środkowym i wpisanym 2h 3. Styczna do okręgu 2h 4. Okręgi styczne 2h 5. Podobieństwo trójkątów 4h 6. Pole trójkąta; zadania (uwzględnić zastosowanie wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi) 4h 7. Zadania na obliczanie długości odcinków w wielokątach oraz pól i obwodów wielokątów z zastosowaniem funkcji trygonometrycznych 7h 8. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h Strona 13
14 X. GEOMETRIA ANALITYCZNA; 25 godzin 1. Równanie ogólne i kierunkowe prostej 2h 2. Współczynnik kierunkowy prostej jako tangens kąta nachylenia danej prostej do osi x 2h 3. Równanie prostej przechodzącej przez dwa punkty 2h 4. Równanie prostej równoległej do prostej danej w postaci kierunkowej i przechodzącej przez dany punkt 2h 5. Równanie prostej prostopadłej do prostej danej w postaci kierunkowej i przechodzącej przez dany punkt 2h 6. Obliczanie współrzędnych punktu przecięcia dwóch prostych 2h 7. Środek odcinka 1h 8. Odległość dwóch punktów. Obliczanie długości odcinków, pól i obwodów figur płaskich 3h 9. Figury symetryczne względem osi układu współrzędnych 1h 10. Figury symetryczne względem początku układu współrzędnych 1h 11. Zadania utrwalające materiał 4h 12. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h KLASA III poziom podstawowy XI. ELEMENTY STATYSTYKI I RACHUNEK PRAWDOPODOBIEŃSTWA; 20 godzin Średnia arytmetyczna 1h Średnia ważona 2h Odchylenie standardowe 2h Reguła mnożenia i dodawania 3h Pojęcie prawdopodobieństwa klasycznego 1h Strona 14
15 Własności prawdopodobieństwa 1h Zastosowanie klasycznej definicji prawdopodobieństwa w zadaniach 5h Rozwiązywanie zadań za pomocą drzewka 2h Powtórzenie wiadomości, praca klasowa i jej omówienie 3h XII. STEREOMETR; 30 godzin 1. Graniastosłupy i ich rodzaje 1h 2. Kąty między odcinkami w graniastosłupach 2h 3. Kąty między odcinkami i płaszczyznami w graniastosłupach (między krawędziami i ścianami, między przekątnymi i ścianami) 2h 4. Kąty dwuścienne w graniastosłupach 2h 5. Przekrój prostopadłościanu płaszczyzną 1h 6. Zastosowanie trygonometrii do obliczania długości odcinków, miar kątów, pól powierzchni i objętości graniastosłupów 3h 7. Sprawdzian 1h 8. Ostrosłupy i ich rodzaje 1h 9. Kąty między odcinkami w ostrosłupach 2h 10. Kąty między odcinkami i płaszczyznami w ostrosłupach (między krawędziami i ścianami, między przekątnymi i ścianami) 2h 11. Kąty dwuścienne w ostrosłupach 2h 12. Zastosowanie trygonometrii do obliczania długości odcinków, miar kątów, pól powierzchni i objętości graniastosłupów 3h 13. Sprawdzian 1h 14. Bryły obrotowe 1h 15. Kąty między odcinkami i płaszczyznami w bryłach obrotowych (np. kąt rozwarcia stożka, kąt między tworząca i podstawą) 1h Strona 15
16 16. Zastosowanie trygonometrii do obliczania długości odcinków, miar kątów, pól powierzchni i objętości brył obrotowych 2h 17. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h KLASA II poziom rozszerzony (pogrubioną czcionką zaznaczono tematy realizowane tylko dla zakresu rozszerzonego, zwykła czcionka to tematy realizowane w obu zakresach) I. WARTOŚĆ BEZWZGLĘDNA; 20 godzin 1. Definicja wartości bezwzględnej i jej interpretacja geometryczna 1h 2. Własności wartości bezwzględnej 1h 3. Upraszczanie wyrażeń z wartością bezwzględną 2h 4. Równania z wartością bezwzględną 1h 5. Nierówności z wartością bezwzględną 2h 6. Opisywanie za pomocą równań i nierówności zbiorów liczbowych zaznaczonych na osi liczbowej 1h 7. Rozwiązywanie równań i nierówności z wartością bezwzględną o poziomie nie wyższym niż:, 3h 8. Funkcja i jej własności 1h 9. Szkicowanie wykresów różnych funkcji z wartością bezwzględną (funkcje związane z funkcją liniową, kwadratową i 3h 10. Rozwiązywanie różnych zadań związanych z pojęciem wartości bezwzględnej 2h 11. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h II. WIELOMIANY; 35 godzin Rozwiązywanie równań i nierówności liniowych z parametrem 2h Wzory Viete a 1h Zastosowanie wzorów Viete a w zadaniach 2h Rozwiązywanie równań i nierówności kwadratowych z parametrem 2h Rozwiązywanie układów równań prowadzących do równań kwadratowych 1h Wzory skróconego mnożenia na, 1h Zastosowanie wzorów skróconego mnożenia w zadaniach 2h Wielomian jednej zmiennej 1h Dodawanie, odejmowanie i mnożenie wielomianów 2h Działania łączne na wielomianach 2h Dzielenie wielomianu przez dwumian 2h Strona 16
17 Rozkładanie wielomianu na czynniki stosując wzory skróconego mnożenia, postać iloczynową funkcji kwadratowej lub wyłączając wspólny czynnik poza nawias 2h Pierwiastki wielomianu. Podzielność wielomianu przez dwumian 2h Rozwiązywanie równań wielomianowych dających się łatwo sprowadzić do równań kwadratowych 2h Rozwiązywanie nierówności wielomianowych 2h Twierdzenie o reszcie z dzielenia wielomianu przez dwumian Zastosowanie w zadaniach twierdzenia o reszcie z dzielenia wielomianu przez dwumian 2h Twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych 1h Zastosowanie w zadaniach twierdzenia o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych 2h Powtórzenie wiadomości, praca klasowa i jej omówienie 3h 1h III. FUNKCJE WYMIERNE; 20 godzin 1. Wyrażenia wymierne ( dziedzina, wartość liczbowa, równość wyrażeń wymiernych) 2h 2. Upraszczanie wyrażeń wymiernych z zastosowaniem wzorów skróconego mnożenia, postaci iloczynowej funkcji kwadratowej i wyłączania wspólnego czynnika poza nawias 2h 3. Działania na wyrażeniach wymiernych 4h 4. Funkcja homograficzna wykres i własności 1h 5. Przekształcanie wykresu funkcji homograficznej 2h 6. Rozwiązywanie równań i nierówności związanych z funkcją homograficzną 2h 7. Rozwiązywanie prostych nierówności wymiernych typu,, 2h 8. Zastosowanie wiadomości o funkcjach wymiernych w różnych zadaniach 2h Strona 17
18 9. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h IV. FUNKCJA WYKŁADNICZA I LOGARYTMICZNA; 25 h 1. Potęga o wykładniku wymiernym. Prawa działań na potęgach o wykładniku wymiernym 2h 2. Zastosowanie własności potęg do rozwiązywania zadań związanych z innymi dziedzinami wiedzy fizyka, chemia np. notacja wykładnicza 2h 3. Rozwiązywanie prostych równań wykładniczych 1h 4. Wykres i własności funkcji wykładniczej 1h 5. Przekształcanie wykresów funkcji wykładniczej 1h 6. Posługiwanie się funkcjami wykładniczymi do opisu np. zjawisk fizycznych, chemicznych lub zagadnień związanych z życiem codziennym 3h 7. Definicja logarytmu 1h 8. Wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym 2h 9. Wzór na zmianę podstawy logarytmu 1h 10. Zastosowanie wzorów na logarytmowanie w zadaniach. Upraszczanie wyrażeń arytmetycznych zawierających potęgi i logarytmy 3h 11. Funkcja logarytmiczna wykres i własności 1h 12. Szkicowanie wykresów funkcji logarytmicznych dla różnych podstaw 1h 13. Przekształcanie wykresów funkcji logarytmicznych 1h 14. Posługiwanie się funkcjami logarytmicznymi do opisu zjawisk fizycznych, chemicznych, a także w zagadnieniach osadzonych w kontekście praktycznym 2h 15. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h V. CIĄGI LICZBOWE; 30 godzin Strona 18
19 1. Pojęcie ciągu liczbowego, wyznaczanie wyrazów ciągu określonego wzorem ogólnym 1h 2. Wzór rekurencyjny ciągu 1h 3. Wykres i własności ciągu liczbowego 1h 4. Ciąg arytmetyczny. Badanie, czy dany ciąg jest arytmetyczny 1h 5. Wzór ogólny, suma n początkowych wyrazów ciągu arytmetycznego 5h 6. Ciąg geometryczny. Badanie, czy dany ciąg jest geometryczny 1h 7. Wzór ogólny, suma n początkowych wyrazów ciągu geometrycznego 5h 8. Ciąg arytmetyczny i geometryczny zadania 3h 9. Granice ciągów typu, 1h 10. Twierdzenie o działaniach na granicach ciągów 1h 11. Obliczanie granic ciągów, korzystając z granic ciągów typu, i twierdzeń o działaniach na granicach ciągów 2h 12. Szereg geometryczny i jego suma 1h 13. Zastosowanie wzoru na sumę szeregu geometrycznego w zadaniach 2h 14. Rozwiązywanie różnych zadań utrwalających związanych z ciągami i szeregiem geometrycznym 2h 15. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h VI. TRYGONOMETRIA; 30 godzin 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym 1h 2. Wartości funkcji trygonometrycznych kątów o miarach od 0 do 180 2h 3. Rozwiązywanie trójkątów prostokątnych (korzystanie z dokładnych i przybliżonych wartości funkcji trygonometrycznych) 2h 4. Podstawowe tożsamości trygonometryczne oraz i ich zastosowanie 2h 5. Obliczanie wartości pozostałych funkcji trygonometrycznych tego samego kąta ostrego, gdy dana jest wartość funkcji sinus lub cosinus tego kąta 2h Strona 19
20 6. Zastosowanie funkcji trygonometrycznych w zadaniach 2h 7. Sprawdzian 1h 8. Miara łukowa kąta 1h 9. Wykresy funkcji sinus, cosinus i tangens i ich własności 1h 10. Znaki funkcji trygonometrycznych w ćwiartkach układu współrzędnych 1h 11. Wzory redukcyjne 1h 12. Zastosowanie wzorów redukcyjnych 1h 13. Przekształcanie wykresów funkcji trygonometrycznych 2h 14. Wzory na sinus i cosinus sumy i różnicy kątów, sumę i różnicę sinusów i cosinusów 2h 15. Dowodzenie tożsamości trygonometrycznych 2h 16. Rozwiązywanie nierówności typu,, 2h 17. Rozwiązywanie równań i nierówności trygonometrycznych typu,,, 2h 18. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h VII. PLANIMETRIA; 40 godzin 1. Kąt środkowy i wpisany 1h 2. Zależności między kątem środkowym i wpisanym 2h 3. Styczna do okręgu 2h 4. Czworokąty wpisane w okrąg i czworokąty opisane na okręgu 1h 5. Zastosowanie twierdzenia charakteryzującego czworokąty wpisane w okrąg i czworokąty opisane na okręgu 2h 6. Okręgi styczne 2h 7. Podobieństwo trójkątów 3h 8. Pole trójkąta zadania (uwzględnić zastosowanie wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi) 3h 9. Zadania na obliczanie długości odcinków w wielokątach oraz pól i obwodów wielokątów z zastosowaniem funkcji trygonometrycznych 5h 10. Sprawdzian 1h Strona 20
21 11. Twierdzenie Talesa i do niego odwrotne 1h 12. Zastosowanie twierdzenia Talesa i do niego odwrotnego do obliczania długości odcinków i ustalenia równoległości prostych i odcinków 3h 13. Znajdowanie obrazów niektórych figur geometrycznych (np. odcinka, trójkąta, czworokąta, koła) w jednokładności 1h 14. Zastosowanie własności figur podobnych i jednokładnych w zadaniach (także w kontekstach praktycznych) 3h 15. Twierdzenie sinusów i jego zastosowanie w zadaniach 2h 16. Twierdzenie cosinusów i jego zastosowanie w zadaniach 2h 17. Rozwiązywanie różnych zadań utrwalających materiał z planimetrii 3h 18. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h VIII. GEOMETRIA ANALITYCZNA; 40 godzin 1. Równanie ogólne i kierunkowe prostej 2h 2. Współczynnik kierunkowy prostej jako tangens kąta nachylenia danej prostej do osi x 2h 3. Równanie prostej przechodzącej przez dwa punkty 2h 4. Interpretacja graficzna nierówności liniowej z dwiema niewiadomymi oraz układu takich nierówności 3h 5. Równanie prostej równoległej do prostej danej w postaci kierunkowej i ogólnej przechodzącej przez dany punkt 2h 6. Równanie prostej prostopadłej do prostej danej w postaci kierunkowej i ogólnej przechodzącej przez dany punkt 2h 7. Badanie równoległości i prostopadłości prostych na podstawie ich równań ogólnych - 1h 8. Odległość punktu od prostej 1h 9. Zastosowanie wzoru na odległość punktu od prostej do obliczania długości wysokości w trójkątach i czworokątach 2h 10. Obliczanie współrzędnych punktu przecięcia dwóch prostych 1h 11. Środek odcinka 1h 12. Odległość dwóch punktów. Obliczanie długości odcinków, pól i obwodów figur płaskich 3h 13. Figury symetryczne względem osi układu współrzędnych 1h 14. Figury symetryczne względem początku układu współrzędnych 1h Strona 21
22 15. Równanie okręgu i nierówność koła (postać ogólna i kanoniczna) 2h 16. Przekształcanie równania okręgu do postaci kanonicznej i ogólnej 1h 17. Styczna i sieczna okręgu 2h 18. Wektor w układzie współrzędnych 1h 19. Wektory równe i wektory przeciwne 1h 20. Działania na wektorach i ich interpretacja geometryczna 2h 21. Zastosowanie wektorów do opisu przesunięcia wykresu funkcji 2h 22. Zastosowanie wektorów w zadaniach 2h 23. Powtórzenie wiadomości, praca klasowa i jej omówienie 3h KLASA III poziom rozszerzony IX. ELEMENTY STATYSTYKI. TEORIA PRAWDOPODOBIEŃSTWA I KOMBINATORYKA; 35 godzin 1. Średnia arytmetyczna 1h 2. Średnia ważona 2h 3. Odchylenie standardowe 2h 4. Reguła mnożenia i dodawania 3h 5. Silnia i symbol Newtona 1h 6. Permutacje 1h 7. Kombinacje 1h 8. Wariacje bez powtórzeń i z powtórzeniami 1h 9. Rozwiązywanie zadań z wykorzystaniem wzorów na liczbę permutacji, kombinacji, wariacji bez powtórzeń i z powtórzeniami 3h 10. Sprawdzian 1h 11. Pojęcie prawdopodobieństwa klasycznego 1h 12. Własności prawdopodobieństwa 1h 13. Zastosowanie klasycznej definicji prawdopodobieństwa w zadaniach 5h 14. Rozwiązywanie zadań za pomocą drzewka 2h Strona 22
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego
Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki
Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.
Standardy wymagań maturalnych z matematyki - matura 2010
Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego
Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)
IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń
MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.
Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA
IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Rozkład materiału: matematyka na poziomie rozszerzonym
Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:
MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Rozkład materiału KLASA I
I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
Zmiany dotyczące egzaminu maturalnego 2015 z matematyki
Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum
Matematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY
PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY ZAKRES PODSTAWOWY I ROZSZERZONY Maria Zioło Program nauczania matematyki dla szkół ponadgimnazjalnych, których ukończenie umożliwia uzyskanie świadectwa
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum
LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego
Kalendarium maturzysty
Matura 2012 Kalendarium maturzysty matematyka poziom podstawowy Liczby i ich zbiory TYDZIEŃ 1-4 (4 tygodnie) 3-28 października liczby naturalne, całkowite, wymierne i niewymierne planowanie i wykonywanie
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Maria Zioło. Program nauczania matematyki IV etap edukacyjny zakres podstawowy i rozszerzony
Maria Zioło Program nauczania matematyki IV etap edukacyjny zakres podstawowy i rozszerzony PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY ZAKRES PODSTAWOWY I ROZSZERZONY Maria Zioło Program nauczania
1. Funkcja wykładnicza i logarytmiczna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
PLAN WYNIKOWY (zakres rozszerzony) klasa 3.
PLAN WYNIKOWY (zakres rozszerzony) klasa 3. Spis treści 1. Funkcja wykładnicza i funkcja logarytmiczna 4 2. Elementy analizy matematycznej.... 8 3. Geometria analityczna.... 13 4. Kombinatoryka i rachunek
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA
. Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku
Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste
CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o