Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III"

Transkrypt

1 Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III

2 Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać częściowy wykres nieskończonego ciągu i określać, czy prawie wszystkie jego wyrazy należą do podanego otoczenia liczby, objaśnić zapisy n i lim an 0, n podać przykłady ciągów zbieżnych do zera, podać przykłady ciągów geometrycznych zbieżnych do zera. 2 Ciągi zbieżne i ich własności stosować twierdzenia o działaniach na granicach ciągów tj. a) granicy sumy i różnicy ciągów, b) granicy iloczynu ciągów, c) granicy ilorazu ciągów, d) granicy iloczynu liczby k i ciągu. podawać przykłady ciągu o określonej wartości granicy,

3 1 1 obliczać granice ciągów korzystając z granic ciągów typu i n 2 n ciągów, oraz z twierdzeń o granicach sumy, różnicy, iloczynu i ilorazu 3 Szereg geometryczny i jego suma obliczać granicę szeregu geometrycznego zbieżnego wg wzoru obliczać sumę szeregu geometrycznego, S n a1 lim Sn 1 q, gdy q 1, zamieniać ułamek okresowy na zwykły wykorzystując własności szeregu geometrycznego zbieżnego, rozwiązywać zadania do których rozwiązania wykorzystuje wzór na sumę szeregu geometrycznego, gdy q 1, rozwiązywać równania i nierówności, gdzie jedna ze stron jest zbieżnym szeregiem geometrycznym oraz których rozwiązanie sprowadza się do rozwiązywania równań kwadratowych, wielomianowych, wymiernych lub liniowych. n 4 Granica niewłaściwa ciągu objaśnić pojęcie ciągu rozbieżnego podając odpowiednie przykłady, np. a n n, b 5, rysować częściowe wykresy ciągów rozbieżnych, obliczać granice ciągów rozbieżnych korzystając z twierdzeń o działaniach na granicach oraz granic ciągów typu: a 1 n n, 1 k b n n 2 i cn n, gdzie n N i n 1 oraz k N. n

4 4/23 Granica i ciągłość funkcji 5 Granica funkcji w punkcie podać przykłady ciągów, których granicą jest liczba q, obliczyć wyrazy ciągu wartości funkcji f x n, dla której argumentami są kolejne wyrazy ciągu o podanym wzorze np. 1 lub a n 3 itp. n objaśnić sąsiedztwo lewostronne i prawostronne liczby x 0 i objaśnić to na przykładowym rysunku, wykorzystywać wszystkie twierdzenia dotyczące granic ciągów przy obliczaniu granic funkcji, a n 1 n n obliczać granice funkcji w punkcie 0 x np. lim x 2 2 x 1, x x 1 lim 1 2 itp. x 1

5 5/23 6 Granice jednostronne funkcji w punkcie objaśnić pojęcie granicy niewłaściwej funkcji f lewostronnej i prawostronnej w punkcie x 0, jako ciągu wartości funkcji f, które są kolejnymi wartościami ciągu zbieżnego do x 0, zilustrować graficznie granicę funkcji f: lim f x lim f x a), b) x x0 x x0 lim f x lim f x c), d) x x0 x x0 odczytać z rysunku wartości granicy lewostronnej i granicy prawostronnej funkcji w punkcie,, x 0 D f, obliczać granice jednostronne funkcji f w punkcie 0 lim f x 0 i x D f x x, 0 7 Granica niewłaściwa funkcji w punkcie objaśnić pojęcie granicy niewłaściwej funkcji f lewostronnej i prawostronnej w punkcie x 0, jako ciągu wartości funkcji f, które są kolejnymi wartościami ciągu zbieżnego do x 0, zilustrować graficznie granicę funkcji f: lim f x lim f x a), b) x x0 x x0 lim f x lim f x c), d) x x0 x x0 odczytać z rysunku wartości granicy lewostronnej i granicy prawostronnej funkcji w punkcie obliczać granice jednostronne funkcji f w punkcie stosować wzory na obliczanie granic funkcji,, 0 lim f x 0 i x D f x x x, a y, gdy: a 0, x D f f x 0 D f, 0 i lim f x 0 x x oraz lim f x 0 x x 0 0, czyli

6 6/23 a) c) lim a f x x x0 0 lim a f x x x 0 0 a, b) a, d) lim a f x a x x0 0 lim a f x x x0 0, a, obliczać granice funkcji f w punktach nie należących do dziedziny. 8 Ciągłość funkcji wymienić warunki, jakie spełnia funkcja ciągła w punkcie x 0, mając wykres funkcji wymienić jej argumenty, dla których nie są spełnione warunki funkcji ciągłej; uzasadniać swoją decyzję, badać ciągłość funkcji określonej w różnych przedziałach różnymi wzorami, rozwiązywać zadania, w których określa wartość parametru, dla którego funkcja jest ciągła, podać przykłady funkcji ciągłych w swojej dziedzinie.

7 7/23 9 Własności funkcji ciągłych mając wykres funkcji ciągłej w przedziale a; b, gdzie a b, podać f MIN i f MAX, dla funkcji kwadratowej w przedziale wykresu lub obliczyć f a, b określić czy funkcja x a; b określić, czy odcięta x w wierzchołka należy do przedziału f i f x i stwierdzić czy ; y f ma w przedziale b w f xw a b, a; co najmniej jedno miejsce zerowe, gdy a f b 0 f. a; b oraz odczytać z 10 Granica funkcji w nieskończoności obliczać granice funkcji f, gdy ciąg jej argumentów jest rozbieżny do: a), b), stosować twierdzenia o działaniach na granicach ciągu do obliczania granic w, stosować twierdzenia o granicach ilorazu lub iloczynu ciągów rozbieżnych do obliczania granic funkcji.

8 8/23 Pochodna funkcji i jej interpretacja

9 9/23 11 Iloraz różnicowy funkcji i jego interpretacja objaśnić pojęcie przyrostu wartości funkcji f ( f ) i przyrost argumentu funkcji od x 1 do x 2 ( x ), podać interpretację geometryczną, chemiczną i fizyczną i inną interpretację ilorazu różnicowego f x funkcji f. 12 Pochodna funkcji w punkcie i jej interpretacja obliczać pochodną funkcji f w punkcie, gdy określać różniczkowalność funkcji w punkcie, x 0 D f, podać interpretację geometryczną, podać interpretację fizyczną pochodnej, pisać równanie stycznej do krzywej y f x obliczając współczynnik kierunkowy stycznej m f, x 0 korzystać z fizycznej interpretacji pochodnej i mając np. drogę S x obliczyć t St i przyspieszenie at t. 13 Pochodna jako funkcja obliczać pochodne funkcji potęgowych, wielomianowych i wymiernych, objaśnić co to oznacza wypowiedzenie funkcja różniczkowalna, obliczać pochodną ilorazu funkcji i ich iloczynu.

10 10/23 14 Interpretacja geometryczna i fizyczna pochodnej funkcji 15 Związek pochodnej z monotonicznością funkcji rozwiązywać zadania dotyczące: a) pisania stycznej do wykresu funkcji f w zadanym punkcie, b) mając wzór na drogę ciała w zależności od czasu obliczyć prędkość i przyspieszenie tego ciała. obliczać pochodną funkcji, określać znak funkcji pochodnej rozwiązując nierówności wielomianowe i wymierne, określać monotoniczność funkcji w zależności od znaku funkcji pochodnej w wyznaczonych przedziałach.

11 11/23 16 Ekstrema lokalne funkcji wymiernych odczytywać z wykresu funkcji f maksimum lokalne funkcji f, wyznaczać ekstrema funkcji korzystając z wzoru f x 0 0 i x0 D f.

12 12/23 17 Zastosowanie pochodnej przy obliczaniu największej i najmniejszej wartości funkcji obliczać wartość funkcji ciągłej na końcach domkniętego przedziału określoności obliczać ekstrema lokalne funkcji w przedziale a; b, porównywać f a, b f i y MIN ( y MAX ). a; b, Funkcje trygonometryczne dowolnego kąta 17 Miara łukowa kąta i kąt jako miara obrotu stosować miarę łukową, zamieniać miarę łukową kąta na stopniową i odwrotnie 18 Funkcje trygonometryczne dowolnego kąta korzystać z definicji i wyznaczać wartości funkcji sinus, cosinus i tangens dowolnego kąta o mierze wyrażonej w stopniach lub radianach 19 Znaki wartości funkcji trygonometrycznych dowolnego kąta wyznaczać wartości funkcji sinus, cosinus i tangens wielokrotności kąta, wartości sin, cos, tg 2 wartości funkcji sinus, cosinus i tangens. oraz znaki 20 Wzory redukcyjne wyznaczać wartości funkcji sinus, cosinus i tangens dowolnego kąta poprzez sprowadzanie do przypadku kąta ostrego,

13 13/23 i okresowość funkcji trygonometrycznych wykorzystywać okresowość funkcji trygonometrycznych. 21 Związki między funkcjami trygonometrycznymi tego samego kąta 22 Funkcje trygonometryczne sumy i różnicy kątów. znając wartość jednej z funkcji sinus lub cosinus, wyznaczać wartości pozostałych funkcji tego samego kąta. stosować wzory na sinus i cosinus sumy i różnicy kątów. 23 Suma i różnica funkcji trygonometrycznych stosować wzory na sumę i różnicę sinusów i cosinusów kątów. 24 Wykresy i własności funkcji trygonometrycznych 25 Przekształcanie wykresów funkcji trygonometrycznych sporządzić wykresy funkcji sinus, cosinus i tangens w zadanym przedziale. naszkicować wykresy funkcji trygonometrycznych: y sin x p, y cos x p, y x p y x y cos x q, y tg x q, y sin x, y cos x, y tg x, y sin x, y cos x, y x tg, sin q, tg, naszkicować wykresy funkcji y sin x, y cos x, y tg x, y c sin x, y c cos x, y c tg x y cos c x, y tg c x., y c x sin,

14 14/23 26 Równania trygonometryczne rozwiązywać równania trygonometryczne korzystając z poznanych wzorów, potrafi podać interpretację graficzną równania (w prostych przypadkach). 27 Nierówności trygonometryczne posługiwać się wykresami funkcji trygonometrycznych do rozwiązywania nierówności typu: sin x a, cos x a, tg x a, 1 cos 2x. 2 Okręgi i proste na płaszczyźnie 28 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia, wycinka kołowego. 29 Kąt wpisany i jego związek z kątem środkowym stosować zależności między kątem środkowym i kątem wpisanym. 30 Styczna do okręgu i jej własności rozpoznawać wzajemne położenie prostej i okręgu, rozpoznawać styczną do okręgu,

15 15/23 korzystać z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności, korzystać z własności stycznej do okręgu. 31 Okręgi styczne i ich własności korzystać z własności okręgów stycznych. Wielokąty na płaszczyźnie i obliczenia z zastosowaniem trygonometrii Lp. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 32 Trójkąty rozwiązywać trójkąty korzystając z własności funkcji trygonometrycznych, rozwiązywać zadania z zastosowaniem wzoru na promień okręgu wpisanego w trójkąt i na promień okręgu opisanego na trójkącie oraz wzorów na pole trójkąta. 33 Prostokąty i kwadraty korzystać z własności funkcji trygonometrycznych do obliczania długości odcinków i kątów w prostokątach i kwadratach oraz ich pól.

16 16/23 34 Równoległoboki korzystać z własności funkcji trygonometrycznych do obliczania długości odcinków i kątów w równoległobokach i ich pól. 35 Trapezy i deltoidy korzystać z własności funkcji trygonometrycznych do obliczania długości odcinków i kątów w trapezach, deltoidach oraz ich pól. 36 Okrąg wpisany w czworokąt stosować twierdzenia charakteryzujące czworokąty opisane na okręgu (tzn. stosować twierdzenia o okręgu wpisanym w czworokąt). 37 Okrąg opisany na czworokącie stosować twierdzenia charakteryzujące czworokąty wpisane w okrąg 38 Zadania optymalizacyjne z planimetrii wykorzystywać własności funkcji kwadratowej i elementów rachunku różniczkowego do obliczania najmniejszych lub największych wymiarów figur płaskich. Twierdzenie sinusów i twierdzenie cosinusów Lp. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 39 Twierdzenie znajdować związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów.

17 17/23 Lp. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: sinusów i twierdzenie cosinusów znajdować związki miarowe w figurach płaskich z zastosowaniem twierdzenia cosinusów. znajdować związki miarowe w figurach płaskich z zastosowaniem twierdzenia sinusów i twierdzenia cosinusów. Graniastosłupy Lp. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 40 Wzajemne położenie prostych i płaszczyzn w przestrzeni i pojęcie kąta dwuściennego rozpoznać położenie prostych w przestrzeni,. rozpoznać wzajemne położenie prostej i płaszczyzny w przestrzeni, rozpoznać wzajemne położenie dwóch płaszczyzn w przestrzeni, rozpoznać kąt dwuścienny i wyznaczać kąt płaski będący jego miarą. 41 Graniastosłup rozpoznawać graniastosłupy prawidłowe, rozpoznawać siatki graniastosłupów prostych. 42 Odcinki w graniastosłupach i kąty między tymi odcinkami rozpoznawać w graniastosłupach kąty między odcinkami (np. krawędziami, krawędziami i przekątnymi) i obliczać miary tych kątów, stosować trygonometrię do obliczeń długości odcinków i miar kątów.

18 18/23 Lp. Temat lekcji Uczeń demonstruje opanowanie umiejętności rozwiązując zadania, w których potrafi: 43 Kąty w graniastosłupie między odcinkami i płaszczyznami rozpoznawać w graniastosłupach kąty między odcinkami i płaszczyznami (np. między krawędziami i ścianami, przekątnymi i ścianami) i obliczać miary tych kątów, stosować trygonometrię do obliczeń długości odcinków i miar kątów. 44 Kąty między ścianami w graniastosłupie rozpoznawać w graniastosłupach kąty między ścianami i obliczać ich miary, stosować trygonometrię do obliczeń długości odcinków i miar kątów. 45 Przekroje prostopadłościanu wyznaczać przekroje prostopadłościanu płaszczyzną, stosować trygonometrię do obliczeń długości odcinków i pól powierzchni figur otrzymanych w wyniku przekroju. 46 Przekroje graniastosłupa określać, jaką figurą jest dany przekrój graniastosłupa płaszczyzną. 47 Pole powierzchni i objętość graniastosłupa stosować trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości, stosować pochodną do rozwiązywania zagadnień optymalizacyjnych.

19 19/23 Ostrosłupy 48 Odcinki i kąty w ostrosłupie rozpoznawać w ostrosłupach kąty między odcinkami (np. krawędziami, krawędziami i przekątnymi), obliczać miary tych kątów, rozpoznawać w ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami, przekątnymi i ścianami), obliczać miary tych kątów, rozpoznawać w ostrosłupach kąty między ścianami, stosować trygonometrię do obliczeń długości odcinków i miar kątów. 49 Przekroje ostrosłupa określać, jaką figurą jest dany przekrój ostrosłupa płaszczyzną. 50 Pola powierzchni i objętości ostrosłupów stosować trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości, stosować pochodną do rozwiązywania zagadnień optymalizacyjnych. Walec, stożek i kula 51 Walec, jego pole powierzchni i objętość rozpoznawać w walcach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami, obliczać miary tych kątów, stosować trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości.

20 20/23 52 Stożek, jego pole powierzchni i objętość rozpoznawać w stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami (np. kąt między tworzącymi stożka, kąt między tworzącą a podstawą), obliczać miary tych kątów, stosować trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości, stosować pochodną do rozwiązywania zagadnień optymalizacyjnych. 53 Kula jej pole powierzchni i objętość. Przekroje sfery obliczać pole powierzchni i objętość kuli (także w zadaniach osadzonych w kontekście praktycznym). określać, jaką figurą jest przekrój sfery płaszczyzną, rozwiązywać zadania optymalizacyjne.

21 21/23 Rachunek prawdopodobieństwa 54 Doświadczenie losowe i zbiór zdarzeń elementarnych zliczać obiekty w prostych sytuacjach kombinatorycznych, stosować regułę mnożenia i regułę dodawania. 55 Obliczanie liczby oczekiwanych wyników doświadczenia losowego stosować regułę mnożenia i regułę dodawania, zliczać obiekty w prostych sytuacjach kombinatorycznych. 56 Zdarzenie losowe i jego prawdopodobieństwo obliczać prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa. 57 Obliczanie prawdopodobieństwa metodą drzew obliczać prawdopodobieństwa w prostych sytuacjach, stosując regułę mnożenia i regułę dodawania oraz rysując odpowiednie grafy. 58 Własności prawdopodobieństwa określać liczbę zdarzeń elementarnych (podawać zdarzenia) sprzyjających zajściu: zdarzenia A lub zdarzenia B, jednoczesnemu zdarzeń A i B, obliczać prawdopodobieństwo sumy zdarzeń A i B.

22 22/23 Kombinatoryka a prawdopodobieństwo 59 Pojęcie silni n! obliczać wartości wyrażeń z silnią, obliczać wartości wyrażeń w których występuje symbol Newtona. 60 Permutacje Wariacje bez powtórzeń Wariacje z powtórzeniami Kombinacje korzystać z wzorów na liczbę permutacji do zliczania obiektów w bardziej złożonych sytuacjach kombinatorycznych. korzystać z wzorów na liczbę wariacji bez powtórzeń do zliczania obiektów w bardziej złożonych sytuacjach kombinatorycznych. korzystać z wzorów na liczbę wariacji z powtórzeniami do zliczania obiektów w bardziej złożonych sytuacjach kombinatorycznych. korzystać z wzorów na liczbę kombinacji obiektów w bardziej złożonych sytuacjach kombinatorycznych. 61 Rozwiązywanie zadań różnych z zastosowaniem kombinatoryki korzystać z wzorów na liczbę permutacji, kombinacji, wariacji i wariacji z powtórzeniami do zliczania obiektów w bardziej złożonych sytuacjach kombinatorycznych.

23 23/23 Prawdopodobieństwo warunkowe i całkowite 62 Prawdopodobieństwo warunkowe i jego własności obliczać prawdopodobieństwo warunkowe. 63 Prawdopodobieństwo całkowite korzystać z twierdzenia o prawdopodobieństwie całkowitym.

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.

MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji. Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum, technikum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

PDM 3 zakres podstawowy i rozszerzony PSO

PDM 3 zakres podstawowy i rozszerzony PSO PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 3.

PLAN WYNIKOWY (zakres rozszerzony) klasa 3. PLAN WYNIKOWY (zakres rozszerzony) klasa 3. Spis treści 1. Funkcja wykładnicza i funkcja logarytmiczna 4 2. Elementy analizy matematycznej.... 8 3. Geometria analityczna.... 13 4. Kombinatoryka i rachunek

Bardziej szczegółowo

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki

Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Zmiany dotyczące egzaminu maturalnego 2015 z matematyki Egzamin maturalny od 2015 r. wieńczy proces wchodzenia w życie podstawy programowej kształcenia ogólnego, którą zaczęto stosować w klasach I liceum

Bardziej szczegółowo

1. Funkcja wykładnicza i logarytmiczna

1. Funkcja wykładnicza i logarytmiczna WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria

Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/2016 1. Trygonometria 1. wie, co to jest miara łukowa kąta; 2. zamienia stopnie na radiany i radiany na stopnie; 3.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony

Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P

Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P MATeMAtyka 3 Plan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; wymagania wykraczające - dopuszczający;

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA

Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA . Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

MATEMATYKA IV etap edukacyjny

MATEMATYKA IV etap edukacyjny MATEMATYKA IV etap edukacyjny Cele kształcenia wymagania ogólne POZIOM PODSTAWOWY POZIOM ROZSZERZONY Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik Uczeń uŝywa

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Spis treści. Spis treści

Spis treści. Spis treści Spis treści 3 Spis treści I. Liczby rzeczywiste 1. Liczby naturalne, całkowite, wymierne... 5 2. Potęga o wykładniku naturalnym, całkowitym, wymiernym... 9 3. Pierwiastki, liczby niewymierne... 13 4. Wyrażenia

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony

Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony Załącznik nr 2 do PSO z matematyki, ZSP Nr 1 w Krośnie. Treści nauczania zakres rozszerzony W poniższych tabelach: Pogrubieniem oznaczono te hasła i wymagania, które wykraczają poza podstawę programową

Bardziej szczegółowo

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)

Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby

Bardziej szczegółowo