Systemy Wspomagania Decyzji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy Wspomagania Decyzji"

Transkrypt

1 Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014

2 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie

3 Problem Lista produktów M Muminki R Reksio B Bolek i Lolek S Smerfy T Teletubisie Transakcje TID Zakupy 10 M R S T 20 R B T 30 M R S T 40 M R B T 50 M R B S T 60 R B S Co jest często kupowane? Które produkty kupowane są razem? Co robić aby zwiększyć sprzedaż?

4 W jakiej formie wyrazić wzorzec macierz kolokacji: M R B S T M R B S T reguły: M R T R R B S T

5 Problem pożarniczy ID data # GBA pożar obiekt piętro powierzchnia tak blok IV tak dom I nie samochód tak fabryka nie śmietnik - 0, tak mieszkanie VII tak hala tak garaż obiekt # GBA obiekt powierzchnia

6 Reguły asocjacyjne Definicja Reguła asocjacyjna to każda implikacja typu X Y gdzie X, Y są atrybutami. Jakość reguł mierzymy za pomocą funkcji: wsparcie (support) - liczba wierszy w których wystąpiły wspólnie atrybuty X i Y. wiarygodność (confidence) - liczba wierszy w których wystąpiły wspólnie atrybuty X i Y przez liczbę wystąpień X.

7 Problem obliczeniowy Liczba wszystkich reguł asocjacyjnych wynosi 3 n, gdzie n jest liczbą wierszy. Sprawdzanie wszystkich reguł jest niewykonywalne! Proponowano różne metody szukania z użyciem różnych technik obliczeń: sekwencyjne, równoległe.

8 Schemat wyszukiwania reguł Większość istniejących algorytmów działa w dwóch krokach: znajdź częste zbiory znajdź zbiory wierszy i atrybutów o wsparciu większym niż min sup. podziel częste zbiory dla każdego częstego zbioru, znajdź podziały tego zbioru na 2 podzbiory w taki sposób aby powstały reguły o wiarygodności większej niż min conf.

9 Przykład Transakcje TID Zakupy 10 M R S T 20 R B T 30 M R S T 40 M R B T 50 M R B S T 60 R B S Częste zbiory Wsparcie Zbiór 100% (6) R 83% (5) RT 67% (4) M,B,S, MR,MT,RB, RS,MRT min. wsparcie = 67% (7) min. wiarygodność = 75% reguły dla MR: M R (wiarygodność 100%) R M (wiarygodność 66%)

10 Wyszukiwanie częstych zbiorów Obserwacje: jeżeli {A, B} są częstymi zbiorami to {A} i {B} też muszą być częstymi zbiorami. Idea: znajdź wszystkie 1-elementowe częste zbiory, generuj 2-elementowe częste zbiory z 1-elementowych częstych zbiorów.... generuj k-elementowe częste zbiory poprzez łączenie (k-1)-elementowych częstych zbiorów.

11 Przykład min. wsparcie = 67% (4) min. wiarygodność = 80% Transakcje TID Zakupy 10 M R S T 20 R B T 30 M R S T 40 M R B T 50 M R B S T 60 R B S Częste zbiory F 1 C 2 F 2 C 3 F 3 Zbiór M,R,B,S,T MR,MB,MS,MT... MR,MT,RB,RS,RT MRS,MRT,MST,RBT,RST MRT

12 Zagrożenia akcje

13 Podsumowanie Zaprezentowano metodę wyszukiwania wzorców w danych. Metoda polega na wyszukaniu zależności pomiędzy atrybutami i reprezentowaniu ich w formie reguł. Jakość reguł jest mierzona za pomocą wsparcia oraz wiarygodności.

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Ewelina Dziura Krzysztof Maryański

Ewelina Dziura Krzysztof Maryański Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Rodzaje danych oraz ich przetwarzanie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 29, 2014 1 Dane tabelaryczne 2 Dane tekstowe 3 Dane sensoryczne 4 Dane multimedialne 5 Podsumowanie

Bardziej szczegółowo

Odkrywanie asocjacji

Odkrywanie asocjacji Odkrywanie asocjacji Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Odkrywanie asocjacji wykład 1 Wykład jest poświęcony wprowadzeniu i zaznajomieniu się z problemem odkrywania reguł asocjacyjnych.

Bardziej szczegółowo

Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com

Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Reguły asocjacyjne

Inżynieria Wiedzy i Systemy Ekspertowe. Reguły asocjacyjne Inżynieria Wiedzy i Systemy Ekspertowe Reguły asocjacyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Reguły

Bardziej szczegółowo

Algorytmy odkrywania binarnych reguł asocjacyjnych

Algorytmy odkrywania binarnych reguł asocjacyjnych Algorytmy odkrywania binarnych reguł asocjacyjnych A-priori FP-Growth Odkrywanie asocjacji wykład 2 Celem naszego wykładu jest zapoznanie się z dwoma podstawowymi algorytmami odkrywania binarnych reguł

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Reguły asocjacyjne na giełdzie

Reguły asocjacyjne na giełdzie Hurtownie danych i data mining - Grupa dra Piotra Lipińskiego II UWr 2009/2010 Adam Grycner, Mateusz Łyczek, Marta Ziobro Reguły asocjacyjne na giełdzie 1 Problem 1.1 Opis problemu - intuicyjnie Będziemy

Bardziej szczegółowo

Ćwiczenie 5. Metody eksploracji danych

Ćwiczenie 5. Metody eksploracji danych Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Wyszukiwanie reguł asocjacji i ich zastosowanie w internecie

Wyszukiwanie reguł asocjacji i ich zastosowanie w internecie Bartosz BACHMAN 1, Paweł Karol FRANKOWSKI 1,2 1 Wydział Elektryczny, 2 Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie E mail: bartosz.bachman@sk.sep.szczecin.pl 1. Wprowadzenie

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Bazy danych Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności May 18, 2015 1 Płaskie pliki 2 Hierarchiczne bazy danych 3 Sieciowe bazy danych 4 Relacyjne bazy danych 5 Kolumnowe Bazy Danych

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Strona główna góra. Profesjonalny sklep internetowy

Strona główna góra. Profesjonalny sklep internetowy Opis wyglądu Strona główna góra 4 5 6 7 8 9 10 3 2 1 11 12 1. Menu sklep 2. Menu działy główne 3. Logo sklepu (templates/images/logo.png) 4. Schowek produktów (schowek daje możliwość klientom przechowania

Bardziej szczegółowo

Strona główna- góra. Profesjonalny sklep internetowy

Strona główna- góra. Profesjonalny sklep internetowy Opis wyglądu Strona główna- góra 4 5 6 7 8 8 9 3 10 2 11 1 12 10 1. Menu sklep 2. Tłumacz stronę za pomocą Google Translate (Jeśli włączone Panel administracyjny-> Języki-> Włącz usługę Google Translate

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne

Bardziej szczegółowo

Odkrywanie wzorców sekwencji

Odkrywanie wzorców sekwencji Odkrywanie wzorców sekwencji Sformułowanie problemu Algorytm GSP Eksploracja wzorców sekwencji wykład 1 Na wykładzie zapoznamy się z problemem odkrywania wzorców sekwencji. Rozpoczniemy od wprowadzenia

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Teoria decyzji Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności February 5, 2016 1 Definicje 2 Normatywna teoria decyzji 3 Opisowa teoria decyzji 4 Naturalistyczny model podejmowania decyzji

Bardziej szczegółowo

Data Mining Kopalnie Wiedzy

Data Mining Kopalnie Wiedzy Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo

Sprzedawaj jeszcze więcej dzięki usłudze Ads!

Sprzedawaj jeszcze więcej dzięki usłudze Ads! allegro ads.manual wstęp co to jest? Sprzedawaj jeszcze więcej dzięki usłudze Ads! Zaprezentuj pierwszy swoją Ofertę klientom dokładnie w momencie, w którym szukają jej w Allegro. Zapłacisz tylko wtedy,

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Implementacja metod eksploracji danych - Oracle Data Mining

Implementacja metod eksploracji danych - Oracle Data Mining Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji

Bardziej szczegółowo

System monitorowania i sterowania produkcją

System monitorowania i sterowania produkcją Plan prezentacji System monitorowania i sterowania produkcją Tomasz Żabiński, Tomasz Mączka STAN PRAC 2013 GZPŚ, POIG, 8.2 Harmonogramowanie produkcji Monitorowanie produkcji w toku Sterowanie produkcją

Bardziej szczegółowo

Spis treści 3. Spis treści

Spis treści 3. Spis treści 3 Wstęp... 9 1. Informatyka w procesie zarządzania przedsiębiorstwem... 15 1.1. Związek informatyki z zarządzaniem przedsiębiorstwem... 17 1.2. System informacyjny a system informatyczny... 21 1.3. Historia

Bardziej szczegółowo

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,

Bardziej szczegółowo

Eksploracja danych. Wielkie bazy danych. Zależności w bazach danych Przykład 1. Zależności w bazach danych Przykład 2

Eksploracja danych. Wielkie bazy danych. Zależności w bazach danych Przykład 1. Zależności w bazach danych Przykład 2 Wielkie bazy danych Eksploracja danych Marek Wojciechowski Instytut Informatyki Politechnika Poznańska Wielkie bazy danych (Very Large Databases) i hurtownie danych (Data Warehouses) Rozmiary współczesnych

Bardziej szczegółowo

Budowanie aplikacji biznesowych przy użyciu. Presentation Foundation i wzorca MVVM

Budowanie aplikacji biznesowych przy użyciu. Presentation Foundation i wzorca MVVM Budowanie aplikacji biznesowych przy użyciu Windows Presentation Foundation i wzorca MVVM Raffaele Garofalo Przekład: Jakub Niedźwiedź APN Promise Warszawa 2011 Spis treści Wstęp................................................................

Bardziej szczegółowo

Zagadnienie klasyfikacji (dyskryminacji)

Zagadnienie klasyfikacji (dyskryminacji) Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka

Bardziej szczegółowo

Projekt bazy danych dla komisu samochodowego

Projekt bazy danych dla komisu samochodowego Projekt bazy danych dla komisu samochodowego Bazy danych Prowadzący: mgr inż. Józefa Górska-Zając Autor: Michał Nowicki Grupa 2.1, Informatyka, Rok II Wydział Nauk Technicznych i Ekonomicznych Państwowa

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. 1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą

Bardziej szczegółowo

5. Arkusz kalkulacyjny Excel 205

5. Arkusz kalkulacyjny Excel 205 Informatyka dla kadry kierowniczej przedsiębiorstwa : podręcznik akademicki / Jan Kowalczuk, Barbara Niekrasz, Anna Wallis ; pod red. Eugeniusza Michalskiego. Koszalin, 2012 Spis treści Wstęp 9 1. Informatyka

Bardziej szczegółowo

SQL, LIKE, IN, CASE, EXISTS. Marcin Orchel

SQL, LIKE, IN, CASE, EXISTS. Marcin Orchel SQL, LIKE, IN, CASE, EXISTS Marcin Orchel Spis treści 1 LIKE 2 2 BETWEEN 4 3 IN 5 4 EXISTS 6 5 WYRAŻENIA CASE 7 6 Zadania 9 1 Rozdział 1 LIKE Predykat LIKE jest testem dopasowującym wzorzec łańcucha. Składnia

Bardziej szczegółowo

Opis serwisu IT-PODBESKIDZIE Wersja 1.0

Opis serwisu IT-PODBESKIDZIE Wersja 1.0 Opis serwisu IT-PODBESKIDZIE Wersja 1.0 Projekt współfinansowany przez Unię Społecznego Spis treści 1.Wstęp...3 2.Założenia serwisu...3 3.Opis serwisu...4 4.Użytkownicy...4 5.Grupy tematyczne...5 6.Funkcjonalność

Bardziej szczegółowo

Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych procedur generowania zapytań

Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych procedur generowania zapytań Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Rozprawa doktorska Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

Eksploracja danych - wykład II

Eksploracja danych - wykład II - wykład 1/29 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Październik 2015 - wykład 2/29 W kontekście odkrywania wiedzy wykład - wykład 3/29 CRISP-DM - standaryzacja

Bardziej szczegółowo

Jarosław Kuchta Administrowanie Systemami Komputerowymi. Active Directory

Jarosław Kuchta Administrowanie Systemami Komputerowymi. Active Directory Jarosław Kuchta Active Directory Usługa katalogowa Użytkownicy Konta Przywileje Profile Inne katalogi Białe strony E - Biznes Klienci Windows Profile zarządzania Informacja sieciowa Active Directory Serwery

Bardziej szczegółowo

CO MOZ NA WYCISNA C Z SAMOOBSŁUGI CZYLI SPRZEDAZ W KANAŁACH SELF CARE? Bartosz Szkudlarek

CO MOZ NA WYCISNA C Z SAMOOBSŁUGI CZYLI SPRZEDAZ W KANAŁACH SELF CARE? Bartosz Szkudlarek CO MOZ NA WYCISNA C Z SAMOOBSŁUGI CZYLI SPRZEDAZ W KANAŁACH SELF CARE? Bartosz Szkudlarek Self Care, Big Data i sprzedaż 2 Czym jest Self Care? Aplikacja Self Care pozwala użytkownikom na obsługę swojego

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Rozkład materiału nauczania z przedmiotu INFORMATYKA. dla gimnazjum

Rozkład materiału nauczania z przedmiotu INFORMATYKA. dla gimnazjum Rozkład materiału nauczania z przedmiotu INFORMATYKA dla gimnazjum (wykonany w oparciu o program nauczania nr DKW 4014-87/99) Ilość godzin: 72 jednostki lekcyjne w dwuletnim cyklu nauczania Organizacja

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy

Bardziej szczegółowo

Wybrane problemy z dziedziny modelowania i wdrażania baz danych przestrzennych w aspekcie dydaktyki. Artur Krawczyk AGH Akademia Górniczo Hutnicza

Wybrane problemy z dziedziny modelowania i wdrażania baz danych przestrzennych w aspekcie dydaktyki. Artur Krawczyk AGH Akademia Górniczo Hutnicza Wybrane problemy z dziedziny modelowania i wdrażania baz danych przestrzennych w aspekcie dydaktyki Artur Krawczyk AGH Akademia Górniczo Hutnicza Problem modelowania tekstowego opisu elementu geometrycznego

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Symulacja obliczeń kwantowych

Symulacja obliczeń kwantowych Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Kancelaria 2.26 zmiany w programie czerwiec 2014

Kancelaria 2.26 zmiany w programie czerwiec 2014 Aktualizacja musi odbyć się przy zamkniętych programach na wszystkich końcówkach. Przed zainstalowaniem nowej wersji programu należy wykonać kopię zapasową bazy danych oraz całego folderu, w którym znajduje

Bardziej szczegółowo

problem w określonym kontekście siły istotę jego rozwiązania

problem w określonym kontekście siły istotę jego rozwiązania Wzorzec projektowy Christopher Alexander: Wzorzec to sprawdzona koncepcja, która opisuje problem powtarzający się wielokrotnie w określonym kontekście, działające na niego siły, oraz podaje istotę jego

Bardziej szczegółowo

Algorytmy komputerowe. dr inŝ. Jarosław Forenc

Algorytmy komputerowe. dr inŝ. Jarosław Forenc Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010

Bardziej szczegółowo

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne) Bazy danych 1 Wykład 5 Metodologia projektowania baz danych (projektowanie logiczne) Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym 2. Wyznacz relacje

Bardziej szczegółowo

MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH

MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH Mikołaj MORZY, Marek WOJCIECHOWSKI Streszczenie: Eksploracja danych to proces interaktywny i iteracyjny. Użytkownik definiuje zbiór interesujących

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

MEODY GRUPOWANIA DANYCH

MEODY GRUPOWANIA DANYCH Sztuczna inteligencja 9999 pages 17 MEODY GRUPOWANIA DANYCH PB 1 CWICZENIE I 1. Ze zbioru danych iris.tab wybra nastepuj ce obiekty: ID SL SW PL PW C 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

1 TEMAT LEKCJI: 2 CELE LEKCJI: 3 METODY NAUCZANIA. Scenariusz lekcji. 2.1 Wiadomości: 2.2 Umiejętności: Scenariusz lekcji

1 TEMAT LEKCJI: 2 CELE LEKCJI: 3 METODY NAUCZANIA. Scenariusz lekcji. 2.1 Wiadomości: 2.2 Umiejętności: Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Algorytmy wyszukiwania wzorca w ciągu 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje wyszukiwania wzorca w tekście; opisać algorytm naiwny wyszukiwania

Bardziej szczegółowo

Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych

Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych UNIWERSYTET EKONOMICZNY WE WROCŁAWIU WYDZIAŁ ZARZĄDZANIA, INFORMATYKI I FINANSÓW Piotr Skrzypczak Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych Praca magisterska

Bardziej szczegółowo

ColDis Poradnik użytkownika

ColDis Poradnik użytkownika ColDis Poradnik użytkownika Jak zrobić generację faktur najmu Data publikacji: 2011-06-15 Projekt: ColDis Wersja dokumentu: 1.0 Autor: Jakub Kusowski Podręcznik użytkownika jak zrobić generację faktur

Bardziej szczegółowo

Rozproszona korelacja w radioastronomii

Rozproszona korelacja w radioastronomii Rozproszona korelacja w radioastronomii Dominik Stokłosa Poznańskie Centrum Superkomputerowo Sieciowe Konferencja I3: internet infrastruktury innowacje, Poznań 4-6 listopada 2009 Obserwacje radiowe i optyczne

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne

ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Grzegorz Harańczyk, StatSoft Polska Sp. z o.o.

Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. CO Z CZYM I PO CZYM, CZYLI ANALIZA ASOCJACJI I SEKWENCJI W PROGRAMIE STATISTICA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z zagadnień analizy danych jest wyszukiwanie w zbiorach danych wzorców,

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury

Bardziej szczegółowo

Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich

Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich Sprawiedliwość i efektywność tradycyjnych i skomputeryzowanych metod organizacji masowego naboru do szkół średnich Andrzej P.Urbański Instytut Informatyki Politechnika Poznańska Rozwiązywane problemy podział

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Wprowadzenie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 Tarnów, Październik 2004, 2 Strażaków Zginęło w Pożarze Neuilly, Wrzesień 2002, 5 Strażaków Zginęło w Backdrafcie

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ Opis działania raportów w ClearQuest Historia zmian Data Wersja Opis Autor 2008.08.26 1.0 Utworzenie dokumentu. Wersja bazowa dokumentu. 2009.12.11 1.1

Bardziej szczegółowo

WYKRYWANIE NIESPÓJNOŚCI DANYCH W ROZPROSZONYCH SYSTEMACH TRANSAKCYJNYCH Z WYKORZYSTANIEM REGUŁ ASOCJACYJNYCH (ALGORYTM A PRIORI)

WYKRYWANIE NIESPÓJNOŚCI DANYCH W ROZPROSZONYCH SYSTEMACH TRANSAKCYJNYCH Z WYKORZYSTANIEM REGUŁ ASOCJACYJNYCH (ALGORYTM A PRIORI) STUDIA INFORMATICA 2010 Volume 31 Number 2A (89) Łukasz MOSIEJ Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Informatyki WYKRYWANIE NIESPÓJNOŚCI DANYCH W ROZPROSZONYCH

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy)

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy) Zapytania SQL. Polecenie SELECT jest używane do pobierania danych z bazy danych (z tabel lub widoków). Struktura polecenia SELECT SELECT FROM WHERE opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje

Bardziej szczegółowo

Uczeń otrzymuje ocenę z przedmiotu uzależnioną od opanowania przez niego wymagań edukacyjnych na określonym poziomie.

Uczeń otrzymuje ocenę z przedmiotu uzależnioną od opanowania przez niego wymagań edukacyjnych na określonym poziomie. Wymagania edukacyjne w klasie III z przedmiotu Informatyka obowiązujące w Gimnazjum Nr 4 w Bielsku-Białej. Uczeń otrzymuje ocenę z przedmiotu uzależnioną od opanowania przez niego wymagań edukacyjnych

Bardziej szczegółowo

Eksploracja danych - wykład IV

Eksploracja danych - wykład IV - wykład 1/41 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 27 października 2016 - wykład 2/41 wykład 1 2 3 4 5 - wykład 3/41 CRISP-DM - standaryzacja wykład

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

GS1 Globalny Język Biznesu. GS1 Smart Search. GTIN w sieci czy to ma sens? Artur Kośmider Instytut Logistyki i Magazynowania

GS1 Globalny Język Biznesu. GS1 Smart Search. GTIN w sieci czy to ma sens? Artur Kośmider Instytut Logistyki i Magazynowania GS1 Smart Search GTIN w sieci czy to ma sens? Artur Kośmider Instytut Logistyki i Magazynowania 13.05.2016 GTIN przypomnijmy Przypomnijmy, że GTIN to nie cały kod kreskowy w postaci graficznej Unikalny

Bardziej szczegółowo

ECDL zaawansowany, moduł EXCEL

ECDL zaawansowany, moduł EXCEL ECDL zaawansowany, moduł EXCEL Szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Czas trwania szkolenia - 20h (3 dni szkoleniowe) Grupa- 10 osób Terminy - 18-20

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym Modyfikacja programu klasy 2 nym Cele modyfikacji Celem modyfikacji jest poszerzenie zakresu wiedzy zawartej w podstawie programowej które pomoże uczniom uzmysłowić sobie treści etyczne związane z pracą

Bardziej szczegółowo

SPIS TREŚCI Funkcje systemu operacyjnego Zapewnia obsługę dialogu między użytkownikiem a komputerem Nadzoruje wymianę informacji między poszczególnymi urządzeniami systemu komputerowego Organizuje zapis

Bardziej szczegółowo

Systemy ekspertowe : Tablice decyzyjne

Systemy ekspertowe : Tablice decyzyjne Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-P1, P2 MAJ 2015 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Metoda oceny efektywności serwisu internetowego

Metoda oceny efektywności serwisu internetowego UNIWERSYTET SZCZECIŃSKI WYDZIAŁ NAUK EKONOMICZNYCH I ZARZĄDZANIA mgr Artur Kulpa autoreferat rozprawy doktorskiej Metoda oceny efektywności serwisu internetowego Promotor: Dr hab. prof. US Waldemar Wolski

Bardziej szczegółowo

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;

Bardziej szczegółowo

Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2. dr Piotr Wąsiewicz

Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2. dr Piotr Wąsiewicz Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2 dr Piotr Wąsiewicz. Ze zbioru treningowego podanego w tabeli poniżej wykreować metodą zstępującej konstrukcji drzewo decyzyjne(jak najmniej rozbudowane-

Bardziej szczegółowo

Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego. mgr inż. Piotr Lewandowski

Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego. mgr inż. Piotr Lewandowski Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego mgr inż. Piotr Lewandowski Terminy i definicje Przyrząd pomiarowy urządzenie służące do wykonywania pomiarów, użyte indywidualnie

Bardziej szczegółowo