Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
|
|
- Lidia Czerwińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną funkcji liniowej - wie jaką rolę pełnią współczynniki ( kierunkowy i przesunięcia) - potrafi narysować wykres zadanej funkcji liniowej Uczeń: - określa monotoniczność i miejsca zerowe - zapisuje wzór funkcji na podstawie określonych danych - potrafi zbadać, jakie jest położenie dwóch prostych względem siebie, które są zadane równaniem kierunkowym - potrafi znaleźć równanie prostej równoległej oraz prostej prostopadłej do danej, gdy jest ona zadana równaniem kierunkowym Uczeń: Uczeń: Postać ogólna i kanoniczna funkcji kwadratowej -rozpoznaje na podstawie wzoru, funkcję kwadratową w dowolnej postaci -zamienia f. kwadr. z postaci ogólnej na kanoniczną i odwrotnie - rozwiązuje proste zadania tekstowe pozwalające znaleźć dowolną postać f. kwadr. - dobiera najprostszą metodę do rozwiązania zadania mającego na celu uzyskanie odpowiedniej postaci f. kwadratowej Wykres funkcji kwadratowej - umie narysować wykres dowolnej f. kwadr., - rysuje wykres funkcji kwadr. w postaci g(x)= f(x) -rysuje wykres funkcji kwadr. w postaci g(x)= f( x )
2 obliczając odpowiednie wielkości korzystając z parzystości funkcji Zadania prowadzące do wykorzystania ekstremum funkcji -potrafi określić ekstremum funkcji w zależności od współczynników -znaleźć wartość najmniejszą i największą w podanym przedziale - rozwiązuje proste zadania geometryczne wykorzystujące najmniejszą i największą wartość funkcji - rozwiązuje bardziej złożone zadania z zastosowaniem wart. najmniejszej i największej funkcji - rozwiązuje złożone zadania z zastosowaniem wart. najmniejszej i największej funkcji Miejsca zerowe i znak funkcji kwadr. - potrafi określić warunki, przy których f. kwadr. ma miejsca zerowe - potrafi znajdować miejsca zerowe proste zadania z parametrem na istnienie miejsc zerowych f. kw. złożone zadania z parametrem na istnienie miejsc zerowych f. kw - dobiera odpowiednią metodę do rozwiązania zadania - wyprowadza wzory na miejsca zerowe f. kwadr. złożone zadania z parametrem na istnienie miejsc zerowych f. kw, wykorzystujące inne działy matematyki Wzory Viete a - stosuje wzory Viete a do znajdowania miejsc zerowych - znajduje postać iloczynową trójmianu kwadr. - rozwiązuje proste zadania z parametrem z wykorzystaniem wzorów Viete a -wyprowadza wzory Viete a - rozwiązuje złożone zadania z parametrem z wykorzystaniem wzorów Viete a -wyprowadza wzory Viete a - stosuje wzory Viete a do zagadnień funkcji dwukwadratowej Równania i nierówności kwadratowe - rozwiązuje proste równania i nierówności kwadratowe w postaci zupełnej i niezupełnej - rozwiązuje proste równania i nierówności kwadratowe w postaci niezupełnej bez liczenia wyróżnika - rozwiązuje równania i nierówności kwadratowe z wartością bezwzględną i parametrem -rozwiązuje złożone równania i nierówności kwadratowe z wartością bezwzględną i parametrem Zadania tekstowe - znajduje proste modele matematyczne do zadań tekstowych - znajduje bardziej złożone modele matematyczne do zadań tekstowych -wykorzystuje równania i nierówności kwadratowe do innych działów matem. -stosuje równania i nierówności kwadratowe do zadań tekstowych z innych
3 działów matem. Wielomian jednej zmiennej - rozpoznaje wielomian jednej zmiennej, określa stopień wielomianu i wielomian zerowy Działania na wielomianach - wykonuje dodawanie, odejmowanie i mnożenie wielomianów - dzieli proste wielomiany - zna definicję dzielenia wielomianu przez wielomian - wykonuje trudniejsze dzielenia wiel. przez wielomian - dzieli wielomiany z parametrem - określa kiedy wielomian z parametrem jest podzielny przez inny wielomian - wykonuje dzielenie wielomianów z dwoma parametrami Tw. Bezout a i schemat Hornera -zna tw. Bezout a i wie kiedy się je stosuje - umie zastosować schemat Hornera - umie znaleźć resztę z dzielenia wielomianu przez dwumian, - umie znaleźć resztę z dzielenia wielomianu przez dwumian, nie wykonując dzielenia -umie wykorzystać tw. B. do wyznaczania reszty z dzielenia wiel. przez wielomian rozkładalny na czynniki - umie przeprowadzić dowód tw. B. - rozwiązuje trudniejsze zadania z parametrem Rozkład wielomianu na czynniki liniowe -rozkłada proste wielomiany na czynniki liniowe, dowolną metodą -dobiera odpowiednią metodę do zadania -zna tw. o pierwiastkach wymiernych wielomianu -zna i umie zastosować tw. o pierwiastkach wymiernych wielomianu - zna twierdzenie o rozkładzie wielomianu na czynniki Równania i nierówności wielomianowe -rozwiązuje proste równania i nierówności wielomianowe -rozwiązuje równania i nierówności wielomianowe z doborem optymalnej metody -rozwiązuje równania i nierówności wielomianowe z wartością bezwzględną - rozwiązuje równania i nierówności wielomianowe z wartością bezwzględną i parametrem Funkcje wymierne i działania na nich - rozpoznaje funkcję wymierną - sprowadza wyrażenia wymierne do wspólnego
4 -określa dziedzinę f. wym. -wykonuje działania na f. wym. mianownika Równania i nierówności wymierne Funkcja homograficzna -rozwiązuje proste równania i nierówności wymierne -zna definicję f. homograficznej i określa jej dziedzinę -rysuje wykres f. homog. podając równania asymptot i pkt. przecięcia wykresu z osiami ukł. współrzędnych - rozwiązuje złożone równania i nierówności wymierne - zamienia wzór f. hom. z postaci ogólnej na kanoniczną - rozwiązuje równania i nierówności wymierne z modułem i parametrem -rysuje wykresy f. hom. z wartością bezwzględną - rozwiązuje trudniejsze równanie i nierówności wymierne, zadania tekstowe, zadania - - wykorzystujące własności funkcji homograficznej odwołujące się do innych działów matematyki Zadania tekstowe - rozwiązuje proste zadania tekstowe - rozwiązuje trudniejsze zadania tekstowe Indukcja matematyczna - wie na czym polega zasada indukcji matematycznej i kiedy należy ją stosować - potrafi zastosować zasadę indukcji matematycznej do dowodzenia prostych równości - stosuje zasadę indukcji matematycznej do dowodzenia podzielności - stosuje zasadę indukcji matematycznej do dowodzenia nierówności - stosuje zasadę indukcji matematycznej do dowodzenia niestandardowych twierdzeń Ciągi liczbowe - zna pojęcie ciągu -zna sposoby określania ciągu Określa monotoniczność ciągu z definicji - posługuje się def. rekurencyjną ciągu - znajduje wzór ogólny ciągu z def. rekurencyjnej - potrafi udowodnić indukcyjnie równoważność pomiędzy def. rekurencyjną, a ogólną ciągu
5 Ciąg arytmetyczny i geometryczny Granica ciągu Szereg geometryczny - rozpoznaje ciąg arytmetyczny i geometryczny -zna i umie zastosować zależność między trzema kolejnymi wyrazami ciągu arytm. i geom. - zna pojęcie sumy częściowej ciągu arytm. i geom. - liczy proste granice ciągów stosując twierdzenia o granicach ciągów zbieżnych - zna pojęcie szeregu geometrycznego i warunek jego zbieżności oraz wylicza granicę szeregu zbieżnego -bada monotoniczność ciągu geom. i arytm. -rozwiązuje proste zadania wykorzystujące pojęcie ciągu arytm., geom. - zna def. granicy ciągu i umie ją wyjaśnić - zna tw.: o trzech ciągach, o ciągu zbieżnym do liczby e, o iloczynie granicy ciągów zbieżnego do zera i ograniczonego. Umie zastosować powyższe twierdzenia - rozwiązuje proste zadania z wykorzystaniem szeregu geometrycznego -rozwiązuje bardziej złożone zadania z wykorzystaniem cg. arytm. i geom. -rozwiązuje zadania z wykorzystaniem obu ciągów - sprawdza na mocy def. czy dana liczba jest granicą ciągu - oblicza złożone granice - bada zbieżność szeregu geometrycznego w zadaniach złożonych -stosuje ciągi arytmetyczny i geometryczny do innych działów matematyki - zna dowód tw. o liczbie e -rozwiązuje zadania wykorzystujące inne działy matematyki Iloczyn skalarny wektorów - zna definicję iloczynu skalarnego - potrafi zbadać prostopadłość wektorów -zna i umie zastosować własności iloczynu skalarnego - potrafi policzyć kąt między wektorami -umie zastosować iloczyn skalarny w geometrii -rozwiązuje złożone zadania z geometrii z zastosowaniem iloczynu skalarnego Geometria na płaszczyźnie - zna i umie zastosować w zadaniach tw. sinusów i -rozwiązuje bardziej złożone zadania z planimetrii - rozwiązuje złożone zadania z planimetrii, dobierając - dowodzi tw. sin i cos., - stosuje poznane
6 Brzeg, wnętrze i zewnętrze figury. Figury ograniczone cosinusów - potrafi wskazać punkt: wewnętrzny, zewnętrzny i brzegowy figury oraz stwierdzić czy dana figura jest ograniczona czy nie - potrafi określić (z uzasadnieniem) czy podana figura jest wklęsła czy wypukła - zna tw. Ptolemeusza i stosuje w zadaniach - zna definicję punktu brzegowego, zewnętrznego i wewnętrznego figury - zna definicję figury wklęsłej i wypukłej - podaje przykłady figury wklęsłej i wypukłej optymalną metodę - stosuje tw. sin. i cos. do dowodzenia związków miarowych w trójkącie i czworokącie - zna działania mnogościowe na figurach wypukłych twierdzenia do złożonych zadań geometrycznych Kąty w kole - zna definicję kąta wpisanego i środkowego w kole - potrafi, dla danego kąta środkowego, znaleźć kąt wpisany oparty na tym samym łuku - zna twierdzenia dotyczące kąta środkowego i wpisanego - rozwiązuje proste zadania w oparciu o poznane definicje i twierdzenia - potrafi wykorzystać twierdzenia o kątach w kole do rozwiązywania zadań - potrafi zastosować poznane twierdzenia do rozwiązywania zadań - potrafi dowieść zależności między kątem wpisanym i środkowym opartych na tym samym łuku - rozwiązuje trudniejsze zadania z wykorzystaniem - potrafi wyciągnąć wnioski z otrzymanych zależności - rozwiązuje trudne zadania z wykorzystaniem poznanych twierdzeń Trójkąt i jego punkty szczególne - zna definicje symetralnej boku, środkowej, - potrafi udowodnić twierdzenia o punktach - potrafi udowodnić twierdzenia o punktach - potrafi samodzielnie rozwiązywać bardziej
7 wysokości w trójkącie i dwusiecznej kąta - zna twierdzenie o przecinaniu się w dowolnym trójkącie dwusiecznych. symetralnych boków i wysokości oraz środkowych - wpisuje w trójkąt okrąg i opisuje okrąg na trójkącie - rozwiązuje proste zadania z wykorzystaniem przecięcia symetralnych i dwusiecznych - potrafi zastosować poznane twierdzenia do rozwiązywania zadań przecięcia wysokości oraz środkowych - rozwiązuje trudniejsze zadania z wykorzystaniem złożone zadania z wykorzystaniem Twierdzenie Talesa i twierdzenie do niego odwrotne - potrafi sformułować oba twierdzenia proste zadania z zastosowaniem twierdzenia Talesa - zna twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie - rozwiązuje proste zadania z wykorzystaniem - potrafi wskazać równoważne proporcje wynikające z twierdzenia Talesa - potrafi zastosować poznane twierdzenia i zależności do rozwiązywania zadań - przeprowadza dowód twierdzenia Talesa oraz o dwusiecznej kąta wewnętrznego - rozwiązuje zadania na dowodzenie oraz przeprowadza proste konstrukcje - przeprowadza samodzielnie trudniejsze dowody - rozwiązywać bardziej złożone zadania z wykorzystaniem
8 Czworokąty oraz czworokąt i koło Figury przystające i podobne - dokonuje klasyfikacji czworokątów i podaje ich charakteryzację - zna twierdzenie o czworokącie, w który da się wpisać okrąg i na którym da się opisać okrąg i stosuje je w prostych zadaniach -zna cechy przystawania i podobieństwa trójkątów -umie rozpoznać figury przystające i podobne - wykorzystuje wiedzę o figurach podobnych i przystających do rozwiązywania prostych zadań - wykorzystuje poznane własności i twierdzenia do rozwiązywania zadań -umie wykorzystać własności figur przystających i podobnych do rozwiązywania standardowych zadań - samodzielnie potrafi rozwiązywać trudniejsze zadania -umie wykorzystać własności figur przystających i podobnych do rozwiązywania trudniejszych zadań - przeprowadza dowody - rozwiązuje bardziej złożone zadania - umie wykorzystać własności figur przystających i podobnych do rozwiązywania skomplikowanych zadań Granica funkcji - zna definicję granicy funkcji w punkcie w sensie Heinego oraz w sensie Cauchy ego - zna definicję granicy niewłaściwej funkcji w punkcie w sensie Heinego oraz w sensie Cauchy ego; - zna definicję granicy funkcji w nieskończoności w sensie - sprawdza z definicji Heinego czy funkcja ma granice w punkcie - potrafi wyznaczać równania asymptot pionowych i ukośnych dla wykresów funkcji wymiernych; - umie obliczać granice typu - zna twierdzenie o trzech funkcjach i potrafi je stosować do obliczania granic funkcji; - umie obliczać granice funkcji typu f(x) ( ) nietypowe zadania dotyczące granic funkcji o podwyższonym stopniu trudności z wykorzystaniem ; - potrafi udowodnić z definicji, że podana funkcja
9 Heinego i w sensie Cauchy ego - zna twierdzenie o działaniach arytmetycznych na granicach funkcji; - potrafi obliczać granice funkcji z wykorzystaniem ; - zna pojęcie granicy jednostronnej w punkcie i potrafi obliczać takie granice przy pomocy poznanych twierdzeń, - potrafi wyznaczać równania asymptot pionowych dla wykresów funkcji wymiernych; lim = 1 nie ma granicy; Ciągłość funkcji - zna definicję ciągłości funkcji w punkcie w sensie Heinego i w sensie Cauchy ego; - zna definicję ciągłości jednostronnej; - zna i rozumie pojęcie ciągłości funkcji w zbiorze; - zna własność Darboux; - sprawdza ciągłość funkcji w punkcie oraz zbiorze - potrafi wykorzystać własność Darboux do stwierdzenia że funkcja ciągła ma w danym przedziale pierwiastek; - zna twierdzenie Weierstrassa; - bada ciągłość funkcji w zależności od parametru funkcji będącej sklejeniem - rozróżnia typy nieciągłości - dookreśla funkcję, aby nowo powstała funkcja była funkcją ciągłą nietypowe zadania lub o podwyższonym stopniu trudności dotyczące ciągłości
10 Pochodna funkcji - zna pojęcie ilorazu różnicowego funkcji, potrafi wyznaczyć iloraz różnicowy w danym punkcie; - zna definicję pochodnej funkcji w punkcie; - zna geometryczną interpretację pochodnej funkcji w punkcie; - zna podstawowe wzory na pochodne; - zna twierdzenia o pochodnej sumy, iloczynu, ilorazu funkcji różniczkowalnych; - potrafi obliczać pochodne nieskomplikowanych funkcji przy pomocy poznanych twierdzeń i wzorów; - potrafi liczyć pochodną funkcji złożonej oraz funkcji odwrotnej - zna pojęcie stycznej do wykresu funkcji; potrafi wyznaczać równanie stycznej do wykresu funkcji różniczkowalnej w danym punkcie; - bada monotoniczność funkcji różniczkowalnej przy pomocy pochodnej; - zna pojęcie ekstremum funkcji; - potrafi korzystając z definicji obliczyć pochodną funkcji w punkcie; - zna definicję pochodnej jednostronnej funkcji w punkcie; - potrafi zbadać czy funkcja do określenia której użyto kilku wzorów, jest różniczkowalna; - bada przebieg zmienności funkcji; - rozwiązuje proste zadania optymalizacyjne, ze szczególnym uwzględnieniem stereometrii; - wyznacza ekstremum funkcji w punkcie x w przypadku gdy jest różniczkowalna tylko w sąsiedztwie x ; - potrafi udowodnić twierdzenie o związku monotoniczności funkcji różniczkowalnej w przedziale, ze znakiem pochodnej w tym przedziale; - rozwiązuje zadania optymalizacyjne o podwyższonym stopniu trudności, ze szczególnym uwzględnieniem stereometrii; nietypowe zadania dotyczące pochodnej funkcji o podwyższonym stopniu trudności z wykorzystaniem
11 - zna warunek konieczny i wystarczający istnienia ekstremum funkcji różniczkowalnej; - wyznacza ekstremum funkcji różniczkowalnej;
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II
Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
Wymagania edukacyjne z matematyki Klasa II zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa II zakres rozszerzony Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Wymagania edukacyjne z matematyki Klasa II M+ zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa II M+ zakres rozszerzony Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Podstawowy., Oficyna Edukacyjna
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 1. TRYGONOMETRIA STOPIEŃ UMIEJĘTNOŚCI UCZNIA Dopuszczający Zna i
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra
Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
Plan wynikowy klasa 2
Plan wynikowy klasa 2 Przedmiot: matematyka Klasa 2 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 36 tyg. 3 h = 108 h (94 h + 14 h do dyspozycji
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.
Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.
1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie rozszerzonym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne
PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Kształcenie w zakresie podstawowym. Klasa 3
Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
IV etap edukacyjny. Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń używa prostych,
Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)
IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
PSO matematyka 2LO rozszerzenie. Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
PSO matematyka 2LO rozszerzenie Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 Poniżej podajemy umiejętności, jakie
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,