DRZEWA REGRESYJNE I LASY LOSOWE JAKO

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "DRZEWA REGRESYJNE I LASY LOSOWE JAKO"

Transkrypt

1 DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska VI spotkanie Polskiej Grupy Badawczej Systemów Uczących się Częstochowa, r.

2 PROBLEM PREDYKCJI SZEREGU CZASOWEGO Predykcja szeregu czasowego z wieloma cyklami wahań sezonowych w horyzoncie τ na podstawie przebiegu historycznego. 2 P, GW Rok P, GW zima wiosna lato jesień 2 pn 24 wt 48 śr 72 cz 96 pt 2 sb 44 nd 68 Godzina Obciążenie system elektroenergetycznego z cyklami rocznymi, tygodniowymi i dobowymi 2

3 IDEA 3

4 IDEA 4

5 5 Definicja obrazów cykli dobowych Obrazy wejściowe i = [ i, i,2 i,n ] odwzorowują wyrazy poprzedzające moment prognozy obciążenia doby i: P i = [P i, P i,2 P i,n ] = = = n j i j i i t i t i t i P P P P P g 2,,,, Obrazy i są unormowanymi wersjami wektorów P i Ich długość jest jednostkowa, średnia zerowa, a wariancja jednakowa REPREZENTACJA SZEREGÓW CZASOWYCH

6 REPREZENTACJA SZEREGÓW CZASOWYCH Obrazy wyjściowe y i = [y i, y i,2 y i,n ] odwzorowują wyrazy w okresie prognozowanym w kolejnych chwilach doby prognozy i+τ: P i+τ = [P i+τ, P i+τ,2 P i+τ,n ] y i, t = h P i+ τ, t = n P j= i+ τ, t P i, j P i P i 2 Inne definicje obrazów: Dudek G.: Systemy uczące się oparte na podobieństwie obrazów do prognozowania szeregów czasowych obciążeń elektroeneregtycznych. EXIT, Warszawa 22 Dudek G.: Pattern Similarity-based Methods for Short-term Load Forecasting Part : Principles. Applied Soft Computing, vol. 37, pp , 25 6

7 REPREZENTACJA SZEREGÓW CZASOWYCH Cel Odfiltrowanie trendu i cykli dłuższych niż podstawowy dobowy, sprowadzenie szeregu do stacjonarności 4 2 Zima P.5 Lato Godziny Obrazy Obrazy y.5 y

8 IDEA MODELI PROGNOSTYCZNYCH OPARTYCH NA REPREZENTACJA PODOBIEŃSTWIE SZEREGÓW CZASOWYCH OBRAZÓW MODEL Model prognostyczny f : X Y Wyjściem modelu jest prognoza obrazu y lub jego składowej Prognoza wyrazów szeregu czasowego P + P n 2 i+ τ, t = h Pi + τ, t = yi, t Pi, j Pi j= i 8

9 DRZEWO REGRESYJNE CART Cechy Reprezentacja drzewiasta lub zbiór reguł decyzyjnych jeśli to Działanie na zmiennych ilościowych i jakościowych Podział przestrzeni cech na hiper-prostopadłościany Lokalna aproksymacja funkcji stałą wewnątrz hiperprostopadłościanu aproksymacja dyskretna Zależnie od funkcji docelowej drzewo decyzyjne może pełnić rolę klasyfikatora lub modelu regresyjnego 9

10 DRZEWO REGRESYJNE CART T <2. N T N T N <. <3.5 y=3. y=2.6 y=3.2 T <4 N y=4. y=4.2 y

11 DRZEWO REGRESYJNE Z ROZMYTYMI WĘZŁAMI Sposób konstrukcji drzewa regresyjnego z rozmytymi węzłami jest taki sam jak drzewa w wariancie podstawowym Testy przeprowadzanie w węzłach pośrednich zmieniają postać:, jeśli i > θi T = T =,, jeśli i θi Lewa gałąź Prawa gałąź -2 - θ 2,5, jeśli i θi a,5 =, jeśli i θi + a, 5,5 a i θ +,5, jeśli θi > i > θi + a a Lewa gałąź Prawa gałąź -2 - θ 2 = + ep a i θ i = Dudek G.: Prognozowanie krótkoterminowe obciążeń systemów elektroenergetycznych z wykorzystaniem rozmytych drzew regresyjnych. Przegląd Elektrotechniczny, r. 9, nr 4, s. 8-, 24.

12 2,75,2,7,9,2,7,26,2,83,2,8, = = = y y y y y DRZEWO REGRESYJNE Z ROZMYTYMI WĘZŁAMI

13 LAS LOSOWY. Powtarzaj dla każdego drzewa dla k = do K.. Wylosuj ze zbioru uczącego próbę bootstrapową o rozmiarze N.2. Zbuduj drzewo T k na próbie bootstrapowej, powtarzając dla każdego węzła, jeśli jego rozmiar jest większy od m.2.. Wylosuj F n składowych obrazu.2.2. Znajdź składową i i wartość progową θ i przegląd zupełny.2.3. Rozdziel węzeł na dwa węzły potomne 2. Zwróć drzewa {T k } k=, 2,, K Wyznaczenie prognozy dla obrazu : f = K K T k k= Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer 29 3

14 BADANIA SYMULACYJNE Dane Szereg czasowy obciążeń krajowego systemu elektroenergetycznego w okresie Problem prognostyczny Prognoza obciążeń godzinowych w kolejnych dniach stycznia i lipca 24, τ = Zbiór uczący Zbiór uczący zawierał przykłady reprezentujące te same typy dni tygodnia, co przykład testowy Błąd prognozy MAPE = M M j= P P j P j j 4

15 BADANIA SYMULACYJNE Drzewo regresyjne CART Parametr - m przegląd zupełny, local leave-one-out.6636 <.2544 >= < < >= >= < >= < < < < < < >= < >= < >= >= >= >= >= >= Drzewo regresyjne utworzone w zadaniu prognozy obciążenia dn r. o godz. 2, m = 8 N u m e r p ró b k i t e s t o w e j Godzina Optymalne wartości m 5

16 BADANIA SYMULACYJNE Drzewo regresyjne z rozmytymi węzłami Fuzzy CART Parametr - kąt nachylenia funkcji przynależności α przegląd zupełny, local leave-one-out Wariant drzewa Parametry MAPE wal MAPE tst CART m = var,27,42 Fuzzy CART m = m CART, α = var,2,33 Fuzzy CART m = 3, α = var,22,36 Fuzzy CART m =, α = var,22,33 Fuzzy CART m = m CART, α = var,3,3 Fuzzy CART m = 3, α = var,23,42 Częstość α Histogram optymalnych kątów nachylenia funkcji przynależności Fuzzy CART m =, α = var,23,35 Fuzzy CART m = m CART, α,, α m = var,74,37 6

17 BADANIA SYMULACYJNE Las losowy Parametry - liczba drzew K, liczba składowych F, m przegląd zupełny, out-of-bag MSE F = 8 m = MSE K = m = Frequency MSE K F m 3 Dudek G.: Short-Term Load Forecasting using Random Forests. In: Filev D. et al. eds.: Intelligent Systems 24, Advances in Intelligent Systems and Computing 323, pp , 25. 7

18 BADANIA SYMULACYJNE Las losowy Ważność składowych Importance Forecast for: January 5, hour July, hour.5 Importance Forecast for: January 5, hour 2 July, hour Importance Forecast for: January 5, hour 24 July, hour 24 2 Variable Variable Variable 8

19 BADANIA SYMULACYJNE Wyniki Model Styczeń Lipiec Średni MAPE tst IQR MAPE tst IQR MAPE tst IQR Las losowy CART Fuzzy CART ARIMA Wygładzanie wykładnicze Sieć neuronowa Prognoza naiwna

20 BADANIA SYMULACYJNE Rozkład błędów Number of observations 2 RF 2 CART 2 Fuzzy CART -5 5 PE ARIMA 2 ES 2 ANN

21 WNIOSKI Reprezentacja szeregów czasowych za pomocą obrazów cykli sezonowych ułatwia prognozowanie szeregów niestacjonarnych z trendem i wieloma cyklami wahań sezonowych Model prognostyczne oparte na drzewach regresyjnych wyróżnia prosta i zrozumiała budowa oraz niewielka liczba parametrów Rozmyta wersja drzew regresyjnych pozwala sterować równowagą między obciążeniem i wariancją modelu Lasy losowe jako komitet słabych uczniów pozwalają zredukować błąd prognozy i uzyskać stabilniejsze rezultaty 2

22 Dziękuję za uwagę 22

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Prognozowanie krótkoterminowe w procesie planowania zasobów

Prognozowanie krótkoterminowe w procesie planowania zasobów Analiza danych Data mining Sterowanie jakością Analityka przez Internet Prognozowanie krótkoterminowe w procesie planowania zasobów Marzena Imiłkowski,, GE Money Bank Andrzej Sokołowski, StatSoft Polska

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING

PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z ważnych obszarów analizy danych jest prognozowanie szeregów czasowych. Któż nie chciałby znać przyszłości

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Inżynieria Rolnicza 5(114)/2009

Inżynieria Rolnicza 5(114)/2009 Inżynieria Rolnicza 5(114)/2009 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ I. ALGORYTMY WYZNACZANIA MODELI ROZMYTYCH Jerzy

Bardziej szczegółowo

Metody konstrukcji oraz symulacyjne badanie właściwości jednorodnych i niejednorodnych komitetów klasyfikatorów

Metody konstrukcji oraz symulacyjne badanie właściwości jednorodnych i niejednorodnych komitetów klasyfikatorów Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Zuzanna Branicka Nr albumu: 214711 Metody konstrukcji oraz symulacyjne badanie właściwości jednorodnych i niejednorodnych komitetów klasyfikatorów

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej

Rozmyte drzewa decyzyjne. Łukasz Ryniewicz Metody inteligencji obliczeniowej µ(x) x µ(x) µ(x) x x µ(x) µ(x) x x µ(x) x µ(x) x Rozmyte drzewa decyzyjne Łukasz Ryniewicz Metody inteligencji obliczeniowej 21.05.2007 AGENDA 1 Drzewa decyzyjne kontra rozmyte drzewa decyzyjne, problemy

Bardziej szczegółowo

WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH

WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Inżynieria Rolnicza 1(110)/2009 WYKORZYSTANIE MODELI TAKAGI SUGENO DO KRÓTKOTERMINOWEGO PROGNOZOWANIA ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ ODBIORCÓW WIEJSKICH Małgorzata Trojanowska Katedra Energetyki

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

ANALIZA MODELU KRÓTKOTERMINOWEGO PROGNOZOWANIA OBCIĄŻEŃ SYSTEMÓW ELEKTROENERGETYCZNYCH OPARTEGO NA KLASTERYZACJI ROZMYTEJ**

ANALIZA MODELU KRÓTKOTERMINOWEGO PROGNOZOWANIA OBCIĄŻEŃ SYSTEMÓW ELEKTROENERGETYCZNYCH OPARTEGO NA KLASTERYZACJI ROZMYTEJ** B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 007 Grzegorz DUDEK* ANALIZA MODELU KRÓTKOTERMINOWEGO PROGNOZOWANIA OBCIĄŻEŃ SYSTEMÓW ELEKTROENERGETYCZNYCH OPARTEGO NA KLASTERYZACJI ROZMYTEJ** Zaprezentowano

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

TWORZENIE I STOSOWANIE MODELU PROGNOSTYCZNEGO Z WYKORZYSTANIEM STATISTICA ENTERPRISE

TWORZENIE I STOSOWANIE MODELU PROGNOSTYCZNEGO Z WYKORZYSTANIEM STATISTICA ENTERPRISE TWORZENIE I STOSOWANIE MODELU PROGNOSTYCZNEGO Z WYKORZYSTANIEM STATISTICA ENTERPRISE Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Badanie przebiegu rozmaitych wielkości w czasie w celu znalezienia

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych

Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych Prognozowanie zanieczyszczeń atmosferycznych przy użyciu sieci neuronowych prof. zw. dr hab. inż. Stanisław Osowski dr inż. Krzysztof Siwek Politechnika Warszawska Kontynuacja prac Prace prowadzone w roku

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH

WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH Joanna Trzęsiok Uniwersytet Ekonomiczny w Katowicach WYKORZYSTANIE REGRESJI NIEPARAMETRYCZNEJ DO MODELOWANIA WIELKOŚCI OSZCZĘDNOŚCI GOSPODARSTW DOMOWYCH Wprowadzenie Nieparametryczne metody regresji można

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU

PROGNOZOWANIE W ZARZĄDZANIU Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie

Bardziej szczegółowo

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Centrum Informatyczne TASK Politechnika Gdańska Instytut Oceanologii Polskiej Akademii Nauk (IO PAN) INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA Gdańsk Sopot,

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Statystyka Małych Obszarów w badaniach próbkowych

Statystyka Małych Obszarów w badaniach próbkowych Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

OD POJEDYNCZYCH DRZEW DO LOSOWEGO LASU

OD POJEDYNCZYCH DRZEW DO LOSOWEGO LASU OD POJEDYNCZYCH DRZEW DO LOSOWEGO LASU Tomasz Demski, StatSoft Polska Sp. z o.o. Zgłębianie danych (data mining) Obecnie coraz częściej dysponujemy dużą liczbą danych opisujących interesujące nas zjawisko

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

WYKORZYSTANIE MODELU ARIMA DO ANALIZY SZEREGU CZASOWEGO

WYKORZYSTANIE MODELU ARIMA DO ANALIZY SZEREGU CZASOWEGO ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 292, Elektrotechnika 34 RUTJEE, z. 34 (3/2015), lipiec-wrzesień 2015, s. 23-30 Wiesława MALSKA 1 Henryk WACHTA 2 WYKORZYSTANIE MODELU ARIMA DO ANALIZY SZEREGU

Bardziej szczegółowo

Prognozowanie liczby pacjentów poradni ortopedycznej

Prognozowanie liczby pacjentów poradni ortopedycznej Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 876 Kraków 2011 Studia Doktoranckie Wydziału Zarządzania Prognozowanie liczby pacjentów poradni ortopedycznej 1. Wprowadzenie W

Bardziej szczegółowo

Spis treści. Przedmowa

Spis treści. Przedmowa Spis treści Przedmowa 1.1. Magazyn i magazynowanie 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości 1.1.2. Funkcje i zadania magazynów 1.1.3. Rodzaje magazynów 1.1.4. Rodzaje zapasów 1.1.5. Warunki

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.

Bardziej szczegółowo

Organizacja i monitorowanie procesów magazynowych / Stanisław

Organizacja i monitorowanie procesów magazynowych / Stanisław Organizacja i monitorowanie procesów magazynowych / Stanisław KrzyŜaniak [et al.]. Poznań, 2013 Spis treści Przedmowa 11 1.1. Magazyn i magazynowanie 13 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości

Bardziej szczegółowo

DATA MINING W PROGNOZOWANIU ZAPOTRZEBOWANIA

DATA MINING W PROGNOZOWANIU ZAPOTRZEBOWANIA DATA MINING W PROGNOZOWANIU ZAPOTRZEBOWANIA NA NOŚNIKI ENERGII Andrzej Sokołowski, Agnieszka Pasztyła StatSoft Polska Sp. z o. o.; Akademia Ekonomiczna w Krakowie, Katedra Statystyki Wprowadzenie Metody

Bardziej szczegółowo

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN

PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN PRZEWIDYWANIE WŁAŚCIWOŚCI PRODUKTU Z WYKORZYSTANIEM UCZENIA MASZYN Tomasz Demski, StatSoft Polska Sp. z o.o. Przewidywanie właściwości produktu na podstawie składu surowcowego oraz parametrów przebiegu

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież

KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Analiza doboru predyktorów pogodowych do prognozowania zmiennych zależnych w budownictwie

Analiza doboru predyktorów pogodowych do prognozowania zmiennych zależnych w budownictwie ROGALSKA Magdalena 1 Analiza doboru predyktorów pogodowych do prognozowania zmiennych zależnych w budownictwie WSTĘP Statystyczne metody wyznaczania wartości zmiennych zależnych na podstawie predyktorów

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

wprowadzenie do analizy szeregów czasowych

wprowadzenie do analizy szeregów czasowych 19 stycznia 2016 Wprowadzenie Prezentacja danych Dekompozycja Preprocessing Model predykcji ARIMA Dobór parametrów modelu ARIMA Podsumowanie Definicje i przykłady Definicje Szeregiem czasowym nazywamy

Bardziej szczegółowo

STYCZEŃ LUTY. Dyżury aptek w Grójcu 2014

STYCZEŃ LUTY. Dyżury aptek w Grójcu 2014 STYCZEŃ LUTY Dyżury aptek w Grójcu 2014 01.01.2014 śr 02.01.2014 czw 03.01.2014 pt 04.01.2014 so 05.01.2014 nd 06.01.2014 pn 07.01.2014 wt 08.01.2014 śr 09.01.2014 czw 10.01.2014 pt 11.01.2014 so 12.01.2014

Bardziej szczegółowo

Zastosowania sieci neuronowych predykcja - energia

Zastosowania sieci neuronowych predykcja - energia Zastosowania sieci neuronowych predykcja - energia LABORKA Piotr Ciskowski KSE KRAJOWY SYSTEM ENERGETYCZNY ZAPOTRZEBOWANIE MOCY Krajowy System Energetyczny (KSE) zapotrzebowanie mocy http://energetyka.wnp.pl/notowania/zapotrzebowanie_mocy_kse/

Bardziej szczegółowo

Człowiek - najlepsza inwestycja

Człowiek - najlepsza inwestycja Wstępny harmonogram realizowanych usług w ramach projektu Kompetentni Usługi będą odbywać się w dni powszednie i/lub w weekendy w ramach jednego z trybów I lub II decydują preferencje przedsiębiorstw.

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Metoda reprezentacyjna

Metoda reprezentacyjna Metoda reprezentacyjna Stanisław Jaworski Katedra Ekonometrii i Statystyki Zakład Statystyki Populacja, cecha, parametr, próba Metoda reprezentacyjna Przedmiotem rozważań metody reprezentacyjnej są metody

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

Mapy poznawcze jako narzędzia rozumienia informacji

Mapy poznawcze jako narzędzia rozumienia informacji Mapy poznawcze jako narzędzia rozumienia informacji Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska i Wydział Matematyki i Informatyki Uniwersytet w Białymstoku www.mini.pw.edu.pl/ homenda

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

WPŁYW WSTĘPNEGO PRZETWARZANIA DANYCH NA JAKOŚĆ KRÓTKOTERMINOWYCH PROGNOZ ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ

WPŁYW WSTĘPNEGO PRZETWARZANIA DANYCH NA JAKOŚĆ KRÓTKOTERMINOWYCH PROGNOZ ZAPOTRZEBOWANIA NA ENERGIĘ ELEKTRYCZNĄ I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 213: Z. 3(145) T.1 S. 291-299 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org WPŁYW WSTĘPNEGO PRZETWARZANIA DANYCH NA JAKOŚĆ

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

WYKORZYSTANIE LINIOWYCH MODELI ROZMYTYCH DO PROGNOZOWANIA DOBOWEGO ZAPOTRZEBOWANIA ODBIORCÓW WIEJSKICH NA ENERGIĘ ELEKTRYCZNĄ

WYKORZYSTANIE LINIOWYCH MODELI ROZMYTYCH DO PROGNOZOWANIA DOBOWEGO ZAPOTRZEBOWANIA ODBIORCÓW WIEJSKICH NA ENERGIĘ ELEKTRYCZNĄ Problemy Inżynierii Rolniczej nr 4/2008 Małgorzata Trojanowska Katedra Energetyki Rolniczej Jerzy Małopolski Katedra Inżynierii Rolniczej i Informatyki Uniwersytet Rolniczy w Krakowie WYKORZYSTANIE LINIOWYCH

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego

Bardziej szczegółowo

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W

Bardziej szczegółowo

Prognozowanie produkcji energii elektrycznej w systemach fotowoltaicznych

Prognozowanie produkcji energii elektrycznej w systemach fotowoltaicznych ARTYKUŁY NAUKOWE ASO.A.9(1)/2017.285-296 Grzegorz DRAŁUS * Zbigniew GOMÓŁKA ** Prognozowanie produkcji energii elektrycznej w systemach fotowoltaicznych Forecasting electrical energy in photovoltaic systems

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo