Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie"

Transkrypt

1 Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X. W każdym kroku podział dokonywany jest tak, aby uzyskane części były możliwie jednorodne. Podzbiory które nie podlegają dalszemu podziałowi nazywać będziemy końcowymi. Do każdego podzbioru końcowego przypisana jest dokładnie jedna etykieta klasy.

2 Wprowadzenie Idea konstrukcji drzew klasyfikacyjnych jest bardzo podobna do metody stosowanej w diagnostyce medycznej. Lekarz pragnący zdiagnozować pacjenta zadaje mu szereg pytań. Kolejność pytań nie jest przypadkowa, a następne pytanie jest często uzależnione od uzyskanej odpowiedzi na pytanie poprzednie. Przykładowo, lekarz zaczyna od pytania najważniejszego ze względu na diagnozę, np. pytania o wiek pacjenta. Załóżmy, że istotne jest czy pacjent przekroczył 60 rok życia. Sam wiek nie jest wystarczający do podjęcia decyzji. Zatem lekarz zadaje następne pytanie. Zwróćmy uwagę, że być może w grupie osób starszych (wiek > 60) będzie ono dotyczyło poziomu cholesterolu we krwi, bo ta właśnie informacja jest najważniejsza w tej grupie wiekowej. Z kolei w grupie osób młodszych (wiek 60) pytanie będzie dotyczyło ciśnienia tętniczego krwi. Postępując w ten sposób, po kilku krokach, lekarz jest w stanie podjąć decyzję.

3 Wprowadzenie Opisany powyżej proces można przedstawić graficznie przy pomocy drzewa (stąd nazwa metody). Niech T oznacza drzewo klasyfikacyjne. Węzły (wierzchołki) drzewa T utożsamiać będziemy z podzbiorami przestrzeni próby X i oznaczać literą t. Węzły odpowiadające podzbiorom końcowym nazywać będziemy liśćmi, a zbiór wszystkich liści drzewa T oznaczać będziemy przez T.

4 Wprowadzenie

5 Wprowadzenie Cechą charakterystyczną drzewa klasyfikacyjnego są związane z nim dwie funkcje. Określona na zbiorze liści T funkcja ind przyporządkowująca każdemu z nich etykietę klasy oraz określona dla każdego węzła wewnętrznego funkcja podziału s. Funkcja ta każdemu elementowi węzła t przyporządkowuje jedną z dwóch wartości prawda lub fałsz. Wszystkie elementy z węzła t dla których podział s przyjmuje wartość prawda są przyporządkowywane do węzła potomka t L, a te elementy dla których podział s przyjmuje wartość fałsz do węzła potomka t R.

6 Wprowadzenie Prezentując graficznie drzewo klasyfikacyjne wygodnie jest nanieść w węzłach wewnętrznych drzewa kryteria podziału s, a liściom przyporządkować etykiety klas.

7 Wprowadzenie Podsumowując, każdy klasyfikator zbudowany w oparciu o drzewo klasyfikacyjne T ma następującą postać: ˆd T (x) = t T ind(t)i (x t).

8 Wprowadzenie Najpopularniejsze metody konstrukcji drzew klasyfikacyjnych to: CHAID, CART, C4.5, QUEST, CRUISE.

9 Konstrukcja Konstrukcja drzewa klasyfikacyjnego oparta jest na próbie uczącej L n = {(x 1, y 1 ),..., (x n, y n )}, gdzie x j jest wektorem obserwowanych cech, a y j etykietą klasy (j = 1, 2,..., n). Składa się ona z trzech podstawowych elementów: 1 wyboru metody optymalnego podziału węzłów, 2 doboru optymalnej wielkości drzewa klasyfikacyjnego, czyli reguły decydującej o tym czy dany węzeł ma być węzłem końcowym, czy ma podlegać dalszemu podziałowi, 3 sposobu w jaki każdemu węzłowi końcowemu przyporządkowujemy etykietę klasy.

10 Konstrukcja Wprowadźmy następujące oznaczenia: n i to liczba obserwacji w próbie uczącej L n należących do i tej klasy, n i (t) liczba obserwacji w węźle t należących do i tej klasy (i = 1,..., K). Wtedy n = n n K jest liczbą obserwacji uczących, a n(t) = n 1 (t) + + n K (t) jest liczbą obserwacji uczących w węźle t. Dla dowolnego obiektu Z = (X, Y ) określmy następujące prawdopodobieństwa: p(t) = P(X t), p(t i) = P(X t Y = i), K p(t) = π i p(t i), i=1 gdzie π i jest prawdopodobieństwem a priori tego, że obiekt należy do i tej klasy (i = 1,..., K).

11 Konstrukcja Przyjmując estymator częstościowy prawdopodobieństwa p(t i) postaci ˆp(t i) = n i(t) n i oraz jeżeli prawdopodobieństwa a priori π i oszacujemy przez n i /n to otrzymujemy następujący estymatory: ˆp(t) = K i=1 π i n i (t) n i = n(t) n, p(i t) = π ip(t i) p(t) = n i(t) n(t).

12 Konstrukcja Ogólnie rzecz biorąc, każdy podział s generowany jest przez odpowiadające mu pytanie postaci: czy x A, A X? Postać powyższego pytania jest bardzo ogólna. Może ona dotyczyć jedynie jednej cechy (podziały jednowymiarowe) lub wielu cech (podziały wielowymiarowe). Poszukując optymalnego podziału s rozważyć powinniśmy możliwie duży zbiór pytań. Im jednak będzie on większy tym bardziej skomplikowana i długa będzie droga wyboru optymalnego podziału s.

13 Konstrukcja Każdy podział s jest uwarunkowany przez obserwacje ze zbioru uczącego L n, należące do danego węzła t. Praktycznie trzeba zatem rozdzielić je na dwa podzbiory możliwie jednorodne ze względu na etykietę klasy. Gdyby zatem w węźle t znajdowały się obserwacje tylko z dwóch klas, to idealnym byłby taki podział, który przypisałby obserwacje uczące z jednej klasy do węzła t L, a z drugiej klasy do węzła t R. Dla każdego węzła t określmy pewną miarę i(t) niejednorodności elementów w tym węźle. Stąd, dla każdego podziału s węzła t będziemy mogli zmierzyć niejednorodność elementów w tym węźle oraz w jego potomkach t L i t R.

14 Konstrukcja Niech φ oznacza funkcję określoną dla wszystkich K-elementowych ciągów prawdopodobieństw (p 1, p 2,..., p K ) takich, że K i=1 p i = 1, p i 0 (i = 1, 2,..., K), spełniającą następujące warunki: 1 funkcja φ osiąga maksimum tylko w punkcie ( 1 K, 1 K,..., 1 K ), 2 funkcja φ osiąga minimum tylko w punktach: (1, 0,..., 0), (0, 1,..., 0),..., (0, 0,..., 1), 3 funkcja φ jest symetryczną funkcją swoich argumentów. Miarę niejednorodności i(t) w węźle t definiujemy następująco: i(t) = φ(p(1 t),..., p(k t)).

15 Konstrukcja φ 1 (p 1,..., p K ) = 1 max{p 1,..., p K }. Miara niejednorodności oparta o tę funkcję określa błąd klasyfikacji. φ 2 (p 1,..., p K ) = K p i log p i. i=1 Funkcja ta nazywana jest funkcją entropii. φ 3 (p 1,..., p K ) = 1 K pi 2. i=1 Funkcja ta nazywana jest indeksem Giniego. Wybierany jest taki podział, który daje maksymalną redukcję niejednorodności indeksu przynależności do klasy w węźle.

16 Konstrukcja

17 Konstrukcja Wybór optymalnej wielkości drzewa klasyfikacyjnego jest równoważny z podaniem reguły decydującej o tym czy dany węzeł ma podlegać podziałowi czy ma być liściem drzewa. Zwróćmy uwagę, że stosując metodę ponownego podstawiania do szacowania poprawności klasyfikacji za pomocą drzewa klasyfikacyjnego T dochodzimy do następującego wniosku: jeżeli drzewo klasyfikacyjne T powstało z drzewa klasyfikacyjnego T poprzez podział dowolnego węzła końcowego, to ê R (T ) ê R (T ). Co więcej, kontynuując odpowiednio długo proces dzielenia węzłów otrzymamy maksymalne drzewo klasyfikacyjne T max, dla którego w każdym węźle końcowym znajdować się będą tylko te obiekty z próby uczącej L n, które należą do tej samej klasy.

18 Konstrukcja Budując jednak zbyt duże drzewo klasyfikacyjne mamy do czynienia z tzw. efektem przetrenowania. Polega on na tym, że drzewo doskonale klasyfikuje obiekty z próby uczącej L n lecz coraz słabiej (w miarę zwiększania liczby liści) nowe elementy. z

19 Konstrukcja Pojawia się zatem problem optymalnego wyboru wielkości drzewa klasyfikacyjnego. Prostym rozwiązaniem (niestety dającym zwykle słabe rezultaty) jest wprowadzenie tzw. reguły stopu. Najprostsza reguła tego typu, każe nie dzielić dalej węzła t, gdy liczba przyporządkowanych mu obserwacji ze zbioru uczącego L n jest odpowiednio mała. Inna reguła stopu każe uznać węzeł t za końcowy, po uzyskaniu odpowiedniej jednorodności drzewa klasyfikacyjnego T.

20 Konstrukcja Bardziej efektywnym podejściem (choć zwiększającym znacząco czasochłonność procesu konstrukcji optymalnego drzewa klasyfikacyjnego) jest procedura polegająca na wstępnym tworzeniu drzewa maksymalnego, a następnie na selektywnym przycinaniu jego krawędzi. Proces przycinania ma na celu modyfikację postaci maksymalnego drzewa klasyfikacyjnego w ten sposób, aby uzyskać nowe drzewo, które daje możliwie minimalne prawdopodobieństwo błędnej klasyfikacji. Prowadzi on do redukcji wielkości drzewa wyeliminowane zostają te podziały, które nie mają istotnego znaczenia dla poprawności klasyfikacji.

21 Konstrukcja Ocena błędu dla poddrzewa jest sumą ważoną błędów jego liści. Ocena błędu (e) dla węzła (liścia) ma postać: e = f + z2 2N + z f N f 2 N + z2 4N 2, 1 + z2 N gdzie f jest błędem na zbiorze uczącym, N jest liczbą obserwacji w węźle (liściu), z jest kwantylem z rozkładu normalnego, odpowiadającym poziomowi ufności 1 α (w poniższym przykładzie α = 25%).

22 Konstrukcja Błąd w węźle rodzicu wynosi 0,46, a w węźle potomku 0,51. Czyli ten podział zwiększa błąd, zatem powinniśmy przyciąć.

23 Konstrukcja Jednym z podstawowych elementów drzewa klasyfikacyjnego jest określona na liściach drzewa funkcja ind. Przyporządkowuje ona etykietę klasy każdemu z węzłów końcowych. Zdefiniujmy ją następująco: ind(t) = arg max 1 i K ˆp(i t). Jeżeli maksimum wypada dla dwóch lub więcej klas, wybór jednej z nich jest dowolny.

24 zalety 1 możliwość wykorzystania do klasyfikacji zarówno cech ilościowych jak i jakościowych, 2 prosta forma końcowa drzewa klasyfikacyjnego umożliwiająca w szybki i efektywny sposób klasyfikację nowych obiektów, 3 odporność na obserwacje odstające i sytuacje, w których niektóre zmienne są nieobserwowane, 4 intuicyjna interpretacja.

25 wady 1 niestabilność nawet niewielkie zmiany próby uczącej mogą prowadzić do dużych różnic w końcowej postaci drzewa, 2 problemy z jakością klasyfikacji.

26 idea Obecnie bardzo coraz popularną metodą są lasy losowe, zaproponowane przez Breimana (1995). Jest to metoda łączenia wielu drzew klasyfikacyjnych. Wpierw losujemy K prób bootstrapowych, dla każdej z nich konstruujemy drzewo klasyfikacyjne w taki sposób, że w każdym węźle losujemy m (mniej niż liczba wszystkich cech) cech, które będą uczestniczyły w wyborze najlepszego podziału. Drzewa budowane są bez przycinania. Ostatecznie obserwacja klasyfikowana jest poprzez metodę głosowania. Jedynym parametrem metody jest współczynnik m, który powinien być znacznie mniejszy od wymiaru danych p, i przyjmuje się najczęściej (klasyfikacja) jego wartość równą m = p. Szybkość konstrukcji lasów losowych pozwala używać je nawet dla bardzo dużych danych. Oprócz klasyfikacji lasy losowe mogą być wykorzystane w regresji oraz analizie przeżycia.

27 Top R Packages for Machine Learning (2017) KDnuggets

28 Machine Learning Workflow

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.Wkażdymkrokupodziałdokonywanyjesttak,aby

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Wprowadzenie. Data Science Uczenie się pod nadzorem

Wprowadzenie. Data Science Uczenie się pod nadzorem Wprowadzenie Wprowadzenie Wprowadzenie Wprowadzenie Machine Learning Mind Map Historia Wstęp lub uczenie się z przykładów jest procesem budowy, na bazie dostępnych danych wejściowych X i oraz wyjściowych

Bardziej szczegółowo

Regresyjne metody łączenia klasyfikatorów

Regresyjne metody łączenia klasyfikatorów Regresyjne metody łączenia klasyfikatorów Tomasz Górecki, Mirosław Krzyśko Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza XXXV Konferencja Statystyka Matematyczna Wisła 7-11.12.2009

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. Metoda CART. MiNI PW

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. Metoda CART. MiNI PW WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. Metoda CART MiNI PW Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora atrybutów (dowolne atrybuty:

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp

Wprowadzenie. Metody bayesowskie Drzewa klasyfikacyjne i lasy losowe Sieci neuronowe SVM. Klasyfikacja. Wstęp Wstęp Problem uczenia się pod nadzorem, inaczej nazywany uczeniem się z nauczycielem lub uczeniem się na przykładach, sprowadza się do określenia przydziału obiektów opisanych za pomocą wartości wielu

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2 Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję

Bardziej szczegółowo

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART Zaawansowane Metody Uczenia Maszynowego Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora

Bardziej szczegółowo

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber

Drzewa decyzyjne. Inteligentne Obliczenia. Wydział Mechatroniki Politechniki Warszawskiej. Anna Sztyber Drzewa decyzyjne Inteligentne Obliczenia Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber INO (IAiR PW) Drzewa decyzyjne Anna Sztyber / Drzewa decyzyjne w podstawowej wersji algorytm klasyfikacji

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Kompresja danych Streszczenie Studia Dzienne Wykład 10,

Kompresja danych Streszczenie Studia Dzienne Wykład 10, 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Co to są drzewa decyzji

Co to są drzewa decyzji Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: DRZEWA KLASYFIKACYJNE I REGRESYJNE. METODA CART Zaawansowane Metody Uczenia Maszynowego Drzewa służą do konstrukcji klasyfikatorów prognozujących Y {1, 2,..., g} na podstawie p-wymiarowego wektora

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora

Bardziej szczegółowo

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Wnioskowanie bayesowskie

Wnioskowanie bayesowskie Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla

Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Wyznaczanie strategii w grach

Wyznaczanie strategii w grach Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu.

Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu. Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Plan wykładu Generowanie

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału.

Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału. Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału Wiktor Miszuris 2 czerwca 2004 Przepustowość kanału Zacznijmy od wprowadzenia równości IA, B HB HB A HA HA B Można ją intuicyjnie

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Drzewa klasyfikacyjne algorytm podstawowy

Drzewa klasyfikacyjne algorytm podstawowy DRZEWA DECYZYJNE Drzewa klasyfikacyjne algorytm podstawowy buduj_drzewo(s przykłady treningowe, A zbiór atrybutów) { utwórz węzeł t (korzeń przy pierwszym wywołaniu); if (wszystkie przykłady w S należą

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Podstawy Informatyki. Metody dostępu do danych

Podstawy Informatyki. Metody dostępu do danych Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Metody probabilistyczne klasyfikatory bayesowskie

Metody probabilistyczne klasyfikatory bayesowskie Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006 SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych DRZEWA KLASYFIKACYJNE ICH BUDOWA, PROBLEMY ZŁOŻONOŚCI I SKALOWALNOŚCI

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych DRZEWA KLASYFIKACYJNE ICH BUDOWA, PROBLEMY ZŁOŻONOŚCI I SKALOWALNOŚCI Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych PRACA DYPLOMOWA MAGISTERSKA MATEMATYKA DRZEWA KLASYFIKACYJNE ICH BUDOWA, PROBLEMY ZŁOŻONOŚCI I SKALOWALNOŚCI Autor: Mariusz Gromada Promotor:

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Automatyczne wyodrębnianie reguł

Automatyczne wyodrębnianie reguł Automatyczne wyodrębnianie reguł Jedną z form reprezentacji wiedzy jest jej zapis w postaci zestawu reguł. Ta forma ma szereg korzyści: daje się łatwo interpretować, można zrozumieć sposób działania zbudowanego

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo