Prognozowanie liczby pacjentów poradni ortopedycznej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prognozowanie liczby pacjentów poradni ortopedycznej"

Transkrypt

1 Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 876 Kraków 2011 Studia Doktoranckie Wydziału Zarządzania Prognozowanie liczby pacjentów poradni ortopedycznej 1. Wprowadzenie W miarę pogarszania się stanu zdrowia społeczeństwa i wzrostu zachorowań pojawia się zwiększone zapotrzebowanie społeczeństwa na świadczenia medyczne. Możliwość łatwego dostępu do lekarzy specjalistów stwarza pacjentom szanse kontynuacji leczenia na poziomie dostosowanym do ich potrzeb zdrowotnych. W związku z powyższym szczególnie ważną rolę odgrywa prognozowanie przyjęć pacjentów w określonym przedziale czasu. Racjonalne planowanie i nadzór nad wizytami w poradni specjalistycznej potrzebny jest nie tylko do poprawy dostępności do lekarzy danej specjalności, ale także pozwoli ustalić oczekiwane przychody i zaplanować zmiany organizacyjne w jednostce. Celem pracy jest pokazanie, jakie problemy pojawić się mogą podczas budowania modelu szeregu czasowego, dobrze oddającego jego przebieg w przeszłości oraz pozwalającego na sformułowanie sensownych prognoz przyjęć pacjentów. Badanie przeprowadzono w poradni ortopedycznej, która wchodzi w skład Samodzielnego Publicznego Zespołu Opieki Zdrowotnej, znajdującego się na terenie województwa małopolskiego. Poradnia świadczy usługi medyczne w ramach umowy podpisanej z Małopolskim Oddziałem Narodowego Funduszu Zdrowia. Zatrudnionych jest w niej siedmiu lekarzy. W badaniach wykorzystano szereg mierzony z częstotliwością jednego dnia powszedniego i odwzorowujący liczbę przyjętych pacjentów przez lekarzy w godzinach pracy poradni. Oczywiście istnieje naturalny związek pomiędzy dzienną liczbą przyjęć pacjentów a dziennym harmonogramem pracy lekarzy.

2 72 W pracy przedstawiono kolejne etapy budowy regresyjnego modelu prognostycznego. W wielu zagadnieniach praktycznych tego typu modele okazują się zadowalająco skuteczne. Oszacowano również model ARIMA oraz zastosowano procedurę wyrównywania wykładniczego. Wszystkie obliczenia i rysunki wykonano w programie STATISTICA ver. 9 (por. [Kot, Jakubowski i Sokołowski 2007]) Liczba porad skorygowana Rys. 1. Wykres skorygowanej liczby porad Oryginalny szereg czasowy obejmował okres od 1 stycznia 2004 r. do 30 października 2009 r. Z szeregu wyodrębniono ostatnie cztery tygodnie i potraktowano je jako zbiór testowy. Jakość prognozy dla tego okresu będzie podstawowym kryterium oceny jakości budowanych modeli prognostycznych. Tydzień w badanym szeregu obejmuje pięć dni roboczych od poniedziałku do piątku. Jeżeli w dni te przypadało święto, to szereg skorygowano w ten sposób, że przyjęto wartość sprzed tygodnia. Jak widać na rys. 1, w rozpatrywanym szeregu wariancja jest niestabilna. Po zlogarytmowaniu wartości empirycznych szereg nadal wykazywał dwa wyraźne

3 Prognozowanie liczby pacjentów Liczba porad Rys. 2. Wykres szeregu empirycznego liczby porad w poradni ortopedycznej podokresy, jeżeli chodzi o rozmiar wariancji. W związku z tym zdecydowano się jako część uczącą dla modeli przyjąć wartości tylko z drugiego okresu. Rozpoczyna się on od 1 listopada 2006 r. Szereg skrócony zawiera 763 obserwacje. Na rys. 2 widać, że tym razem rozsądnie można uznać, iż w badanym okresie wariancja była stabilna. 2. Model regresyjny Analizę rozpoczynamy od poszukiwania ewentualnego trendu. Najpierw do danych dopasowano parabolę. Jednak parametr przy kwadracie zmiennej czasowej nie wykazywał istotności statystycznej (p = 0,2068), co oznacza, że parabola nie jest dobrą funkcją aproksymującą trend w tym zjawisku. Zgodnie z zasadami regresji krokowej zstępującej eliminujemy zmienną t 2 i dopasowujemy trend liniowy.

4 74 Otrzymujemy równanie trendu o postaci: ŷ t = 60, ,0115t. Współczynnik kierunkowy jest istotny statystycznie (p = 0,0009). Średni błąd dopasowania trendu wyniósł 21 pacjentów (dziennie). Trend zilustrowano na rys Liczba porad Rys. 3. Trend liniowy liczby pacjentów Na przedstawionym wykresie widzimy, że liczba porad w badanym okresie rośnie. Nieznaczny trend usprawiedliwia policzenie funkcji autokorelacji na danych oryginalnych, bez różnicowania. Funkcja autokorelacji (rys. 4) wskazuje na występowanie wyraźnych wahań tygodniowych. Przypominamy, że poradnia nie jest czynna w soboty i niedziele. Na wstępie analizy uzupełniono brakujące dane (dni wolne od pracy przypadające w środku tygodnia) poprzez wykorzystanie informacji z poprzedniego tygodnia, z analogicznego dnia. Na przykład dla Bożego Ciała wprowadzono liczbę pacjentów z czwartku poprzedniego tygodnia. Ten zabieg zapewnił stałą długość cyklu tygodniowego.

5 Prognozowanie liczby pacjentów 75 Opóźn. Kor. S.E. Funkcja autokorelacji Q P 1,242,0361 2,126,0361 3,131,0361 4,245, ,809,0360 6,239,0360 7,130,0360 8,120,0360 9,249, ,790, ,245, ,125, ,133, ,236, ,89, ,01, ,22, ,6 0, ,8 0, ,8 0, ,9 0, ,1 0, ,1 0, , 0, , 0, , 0, , 0, , 0,000 1,0 0,5 0,0 0,5 1,0 Rys. 4. Funkcja autokorelacji szeregu oryginalnego Wykres średnich wyraźnie pokazuje, że najwięcej porad udzielanych było we wtorek, a najmniej w poniedziałek. Ta informacja pozwala zbudować model ze zmiennymi zero-jedynkowymi opisującymi dni tygodnia. Wynik estymacji takiego modelu przedstawia tabela 1. Jego średni błąd dopasowania wyniósł ok. 10 pacjentów, zaś współczynnik determinacji 0,764. Rozsądne wydaje się przypuszczenie, że w liczbie udzielanych porad ortopedycznych mogą występować wahania sezonowe. Gdy zastosowano jednoczynnikową analizę wariancji do szeregu pozbawionego trendu liniowego, to okazało się, że średnie odchylenia od trendu liczone dla poszczególnych miesięcy nie wykazują istotnego zróżnicowania (p = 0,608). Można sądzić, że ewentualny cykl roczny został w pewnym sensie przygaszony przez cykl tygodniowy, który w różnych proporcjach wchodził w skład poszczególnych miesięcy. Ponownie zastosowano więc test jednoczynnikowej analizy wariancji, tym razem dla reszt modelu zaprezentowanego w tabeli 1. W tym przypadku hipoteza o równości średnich (reszt)

6 Liczba porad Dzień tygodnia Rys. 5. Wykres średniej liczby porad według dni tygodnia Tabela 1. Wyniki estymacji modelu ze zmiennymi zero-jedynkowymi (skorygowany współczynnik determinacji = 0,764; średni błąd dopasowania = 10,3) Zmienna Współczynnik regresji cząstkowej Wartość p Wyraz wolny 43,69 0,0000 Zmienna czasowa t (w dniach) 0,01 0,0000 Wtorek 51,50 0,0000 Środa 13,70 0,0000 Czwartek 2,86 0,0157 Piątek 13,85 0,0000 Źródło: obliczenia własne. we wszystkich miesiącach została odrzucona (p = 0,0000). Rys. 6 pokazuje kształt czystego cyklu rocznego. Wielkość pudełek w wykresie ramkowym odpowiada błędowi średniemu. Podobne wielkości tych pudełek świadczą o podobieństwie poziomu zmienności w poszczególnych miesiącach.

7 Prognozowanie liczby pacjentów Reszty Miesiąc Rys. 6. Wykres ramkowy reszt modelu z tabeli 1 Tabela 2. Wyniki estymacji modelu ze zmiennymi zero-jedynkowymi oznaczającymi dni tygodnia i miesiące (skorygowany współczynnik determinacji = 0,773; średni błąd dopasowania = 10,1) Zmienna Współczynnik regresji cząstkowej Wartość p Wyraz wolny 37,28 0,0000 Zmienna czasowa t (w dniach) 0,01 0,0000 Wtorek 51,55 0,0000 Środa 13,73 0,0000 Czwartek 2,87 0,0135 Piątek 13,84 0,0000 Styczeń 6,17 0,0005 Luty 6,79 0,0002 Marzec 8,33 0,0000 Kwiecień 5,76 0,0011 Maj 4,31 0,0140 Czerwiec 2,21 0,2105

8 78 cd. tabeli 2 Zmienna Współczynnik regresji cząstkowej Wartość p Sierpień 7,27 0,0000 Wrzesień 5,60 0,0016 Październik 5,87 0,0022 Listopad 8,57 0,0000 Grudzień 7,48 0,0000 Źródło: obliczenia własne. Opóźn. Kor. S.E ,014,027,054,042 +,162 +,012,056 +,007,058 +,109,004,035,040 +,001 +,079,046,035,061 +,013 +,039 +,032,034,011,011 +,094 +,020 +,002,021 +,013 +,066,0361,0361,0361,0361,0360,0360,0360,0360,0359,0359,0359,0359,0358,0358,0358,0358,0358,0357,0357,0357,0357,0356,0356,0356,0356,0355,0355, ,0354 Funkcja autokorelacji Q,15,72 2,99 4,34 24,64 24,74 27,15 27,19 29,78 39,07 39,08 40,05 41,29 41,29 46,16 47,85 48,82 51,76 51,88 53,10 53,90 54,83 54,93 55,02 62,00 62,33 62,33 62,66 62,79 66,24 P,6987,6971,3929,3918,0002,0004,0003,0007,0005,0000,0002,0000,0002,0003,0002,0003,0002 1,0 0,5 0,0 0,5 1,0 Rys. 7. Funkcja autokorelacji reszt modelu ze zmiennymi zero-jedynkowymi opisującymi cykle tygodniowy i roczny Powyższe wyniki upoważniają do poszerzenia modelu regresyjnego o zmienne zero-jedynkowe oznaczające miesiące. Jako punkt odniesienia wybrano miesiąc

9 Prognozowanie liczby pacjentów 79 z najmniejszą liczbą porad, czyli lipiec. Taki model ma postać zaprezentowaną w tabeli 2. Funkcja autokorelacji reszt powyższego modelu wskazuje, że w przebiegu reszt mamy istotną autokorelację dla opóźnienia pięciodniowego (w naszych danych jest to tydzień) i jego niektórych wielokrotności (rys. 7). Tabela 3. Wyniki estymacji modelu autoregresji reszt (średni błąd dopasowania = 9,76) Opóźnienie reszt Współczynnik autoregresji cząstkowej Wartość p 5 dni 0, dni 0, , dni 0, ,0172 Źródło: obliczenia własne Liczba obserwacji Rys. 8. Rozkład reszt ostatecznego modelu regresyjnego Wartości funkcji autokorelacji przekraczające wartości krytyczne wskazują na potencjalne opóźnienia reszt, które należy uwzględnić w modelu autokorelacji reszt. Po zastosowaniu procedury regresji krokowej uzyskano model przedsta-

10 80 wiony w tabeli 3. Zauważmy, że model ten nie ma wyrazu wolnego. W związku z tym, że model podstawowy szacowany był metodą najmniejszych kwadratów, wartość przeciętna reszt jest równa zero. Stąd model autoregresji reszt pozbawiony jest wyrazu wolnego. Ostateczny prognostyczny model regresyjny otrzymujemy, dodając wartości teoretyczne modelu ze zmiennymi zero-jedynkowymi oraz wartości teoretyczne modelu autoregresji reszt. Reszty takiego modelu nie wykazują już autokorelacji, a ich rozkład bardzo dobrze pasuje do rozkładu normalnego (rys. 8). 3. Model ARIMA W toku budowy modelu regresyjnego stwierdzono występowanie cyklu tygodniowego oraz cyklu rocznego. W znakomitej większości programów komputerowych estymacja modeli ARIMA pozwala uwzględnić tylko jeden komponent sezonowy. Pewnym wyjściem jest wymnożenie przez siebie okresów składowych harmonicznych i utworzenie nowego okresu. W naszym zagadnieniu tego podejścia nie można zastosować ze względu na posiadaną długość szeregu. Zdecydowano się więc uwzględnić tylko cykl tygodniowy, licząc, że parametry modelu umożliwią jego wędrówkę po cyklu rocznym. W pierwszej kolejności wyeliminowano dwie składowe systematyczne, czyli trend liniowy i wahania tygodniowe. W tym celu poddano szereg jednokrotnemu różnicowaniu o opóźnieniu 1 oraz jednokrotnym różnicowaniu o opóźnieniu 5. Następnie metodą prób i błędów, z weryfikacją istotności parametrów modelu oraz autokorelacji reszt poszukiwano najbardziej odpowiedniego modelu. Przyjął on postać przedstawioną w tabeli 4. Funkcja autokorelacji reszt wskazuje, że model ARIMA dobrze uwzględnił składniki szeregu możliwe do opisania, a to, co pozostało, jest komponentem czysto losowym. Histogram reszt, którego tu nie przytaczamy, zdecydowanie przemawia za normalnością składnika losowego. Tabela 4. Wyniki estymacji modelu ARIMA(0, 1, 1)(0, 1, 1), średni błąd dopasowania = 11,12 Parametr Współczynnik Wartość p Niesezonowej średniej ruchowej q (1) 0, ,0000 Sezonowej średniej ruchomej Q s (1) 0, ,0000 Źródło: obliczenia własne.

11 Prognozowanie liczby pacjentów 81 Opóźn. Kor. S.E. 1,005,0363 2,021,0362 3,049,0362 4,012, ,013, ,061,0362 7,032, ,049,0361 9,013, ,005, ,051, ,004, ,009, ,055,0360 Funkcja autokorelacji Liczba porad: ARIMA (0, 1, 1)(0, 1, 1) reszty Q P,02,8863,34,8424 2,14,5434 2,25,6907 2,38,7943 5,24,5133 6,03,5366 7,84,4497 7,96,5384 7,98, ,00, ,02, ,08, ,38, ,002, ,38,6501 1,0 0,5 0,0 0,5 1,0 Rys. 9. Funkcja autokorelacji reszt modelu ARIMA 4. Wyrównywanie wykładnicze W związku z informacjami o strukturze analizowanego szeregu uzyskanymi z poprzednich analiz wybrano model wyrównywania wykładniczego trendem liniowym i addytywnym składnikiem sezonowości o okresie 5. Znaleziono optymalne wartości parametrów modelu na drodze przeszukiwania wszystkich możliwości z przedziału [0, 1], ze skokiem 0,001. Podstawowy parametr wyrównywania wykładniczego alfa wyniósł 0,025, natomiast parametr wygładzający wahania okresowe delta przyjął wartość 0,078. Reszty modelu podlegały rozkładowi normalnemu. Średni błąd dopasowania dla okresu testowego wyniósł 10,16. Model ten okazał się lepiej dopasowany niż model ARIMA, ale gorzej niż model regresyjny.

12 82 5. Porównanie prognoz Prognozy porównano z wartościami rzeczywistymi dla okresu testowego obejmującego cztery pięciodniowe tygodnie. Na rys. 10 przedstawiono prognozy trzech modeli i wartości zaobserwowane. Wszystkie modele na ogół poprawnie zaprognozowały przebieg szeregu, szczególnie dużą liczbę pacjentów, jaką obserwuje się we wtorek. W analizowanym okresie było też kilka takich dni, w których wszystkie modele prognozowały wartości za niskie lub za wysokie w stosunku do rzeczywistości Zbiór testowy Model regresyjny ostateczny ARIMA WyrWykł Rys. 10. Porównanie prognoz z wartościami rzeczywistymi W tabeli 5 pokazano ogólne charakterystyki ex-post uzyskiwanych modeli prognostycznych. Średni błąd standardowy jest w zasadzie podobny dla wszystkich modeli. Myliliśmy się średnio o 9 pacjentów, interpretując wyniki z nadmiarem. Stosunkowo duże wartości średniego absolutnego błędu procentowego wynikają stąd, że zależą one też od podstawy odniesienia. Dla wtorków błędy były dwukrotnie mniejsze od średniej. Ogólnie wynik porównywania prognoz z wartościami rzeczywistymi

13 Prognozowanie liczby pacjentów 83 jest nieco zaskakujący. Najlepszy okazał się model wyrównywania wykładniczego, mimo że w okresie uczącym miał gorszą dobroć dopasowania niż model regresyjny. Świadczy to o konieczności weryfikowania modeli prognostycznych na okresach testowych. Dobroć dopasowania modelu w okresie uczącym niekoniecznie musi skutkować jego dobrą jakością prognostyczną. Tabela 5. Błędy prognoz dla okresu testowego Model prognostyczny Największe niedoszacowanie liczby pacjentów Największe przeszacowanie liczby pacjentów Średni błąd standardowy Średni absolutny błąd procentowy Regresja ,37 12,30% ARIMA ,79 13,67% Wyrównywanie wykładnicze ,17 11,43% Źródło: obliczenia własne. W zakresie rozważanego problemu merytorycznego można twierdzić, że w kształtowaniu się liczby pacjentów w analizowanej poradni ortopedycznej obserwuje się występowanie istotnego trendu liniowego, wahań tygodniowych oraz wahań rocznych. Wydaje się, że stosunkowo duże znaczenie ma również składnik losowy. Pokazane modele prognostyczne pozwalają przewidywać dzienną liczbę pacjentów w horyzoncie miesięcznym ze średnim błędem 9 osób. Literatura Kot S.M., Jakubowski J., Sokołowski A. [2007], Statystyka, Centrum Doradztwa i Informacji Difin, Warszawa. Predicting the Number of Orthopedic Clinic Patients The paper analyses a time series of the daily number of patients visiting an orthopedics clinic. A learning set was chosen to ensure the homogeneity of series variance and three forecasting models were built. The regression model consists of the linear trend, dummy variables describing weekly and yearly seasonal components and the auto-regression of the residuals. ARIMA, with non-seasonal and seasonal differencing, contains only the components of the first order moving average. The exponential smoothing model covers the linear trend and weekly harmonic component. The residuals from all three models very closely follow normal distribution. Forecasts have been compared with actual data for a monthly test period and all models allow us to forecast the number of patients, with a mean square error of 9 people. Exponential smoothing appears to have the lowest MAPE for the test period.

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Prognozowanie krótkoterminowe w procesie planowania zasobów

Prognozowanie krótkoterminowe w procesie planowania zasobów Analiza danych Data mining Sterowanie jakością Analityka przez Internet Prognozowanie krótkoterminowe w procesie planowania zasobów Marzena Imiłkowski,, GE Money Bank Andrzej Sokołowski, StatSoft Polska

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

Październik Data Dzień tygodnia Szczęśliwy numerek [Wybierz inny miesiąc]

Październik Data Dzień tygodnia Szczęśliwy numerek [Wybierz inny miesiąc] Szczęśliwe numerki 2014/2015 Wybierz miesiąc: Wrzesień Październik Listopad Grudzień Styczeń Luty Marzec Kwiecień Maj Czerwiec Wrzesień 10 wrzesień 2014 Środa 16 11 wrzesień 2014 Czwartek 17 12 wrzesień

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020 Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020 Mariusz Kozakiewicz i Marek Kwas Szkoła Główna Handlowa 18 grudnia 2014 Spis treści Prognoza wybranych wskaźników rozwoju obrotu

Bardziej szczegółowo

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK

Bardziej szczegółowo

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO 5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING

PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING PROGNOZOWANIE Z WYKORZYSTANIEM METOD DATA MINING Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z ważnych obszarów analizy danych jest prognozowanie szeregów czasowych. Któż nie chciałby znać przyszłości

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2011 2016 Mariusz Kozakiewicz i Marek Kwas Szkoła Główna Handlowa 15 grudnia 2011 Spis treści Rozdział 1 Wprowadzenie... 3 1.1 Charakterystyka

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI

MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIV/3, 2013, str. 81 90 MODELE HARMONICZNE ZE ZŁOŻONĄ SEZONOWOŚCIĄ W PROGNOZOWANIU SZEREGÓW CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI Maria Szmuksta Zawadzka, Jan

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wiadomości ogólne o ekonometrii

Wiadomości ogólne o ekonometrii Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

Wytyczne do projektów

Wytyczne do projektów Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13 Wytyczne do projektów Prognozowanie i symulacje

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część III Program szkolenia część III Model regresji liniowej Współczynnik korelacji

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI

O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 2012, str. 202 212 O METODZIE PROGNOZOWANIA BRAKUJĄCYCH DANYCH W DZIENNYCH SZEREGACH CZASOWYCH Z LUKAMI SYSTEMATYCZNYMI Maria Szmuksta-Zawadzka Zachodniopomorski

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa,

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa, Barbara Batóg, Jacek Batóg Uniwersytet Szczeciński Ścieżka rozwoju polskiej gospodarki w latach - W artykule podjęta zostanie próba analizy, diagnozy i prognozy rozwoju polskiej gospodarki w latach -.

Bardziej szczegółowo

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA

EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

INNE ZASTOSOWANIA RYZYKA

INNE ZASTOSOWANIA RYZYKA INNE ZASTOSOWANIA RYZYKA Mariusz Doszyń Krzysztof Dmytrów Uniwersytet Szczeciński PORÓWNYWANIE EFEKTYWNOŚCI PROGNOZ EX POST WIELKOŚCI SPRZEDAŻY W PEWNYM PRZEDSIĘBIORSTWIE WYZNACZONYCH ZA POMOCĄ ROZKŁADU

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

DRZEWA REGRESYJNE I LASY LOSOWE JAKO

DRZEWA REGRESYJNE I LASY LOSOWE JAKO DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM

PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM 40/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE

Bardziej szczegółowo

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE

zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka MODELE zestaw zadań nr 7 Cel: analiza regresji regresja prosta i wieloraka Przebieg regresji liniowej: 1. Znaleźć funkcję y=f(x) (dopasowanie modelu) 2. Sprawdzić: a) Wsp. determinacji R 2 b) Test istotności

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Prognoza sprawozdania finansowego Bilans

Prognoza sprawozdania finansowego Bilans Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo