Trenuj przed sprawdzianem! Matematyka Test 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Trenuj przed sprawdzianem! Matematyka Test 4"

Transkrypt

1 mię i nazwisko ucznia Klasa Numer w dzienniku nformacja do zadań od 1. do 3. Historia telewizji w Polsce sięga 1937 roku, kiedy to w Warszawie uruchomiona została pierwsza doświadczalna stacja telewizyjna. W 1953 roku emisję programu rozpoczął nadawca publiczny Telewizja Polska, a 18 lat później nadano pierwszy program w kolorze. 1. le lat po uruchomieniu pierwszej doświadczalnej stacji telewizyjnej emisję programu rozpoczęła Telewizja Polska? A. 16 B. 18 C. 24 D W którym roku wyemitowano pierwszy program w kolorze? A. W 1956 roku. B. W 1957 roku. C. W 1961 roku. D. W 1971 roku. 3. Zapisz słownie liczbę opisującą rok rozpoczęcia emisji programu przez Telewizję Polską nformacja do zadania 4. i 5. Emisja pierwszego polskiego eksperymentalnego programu telewizyjnego rozpoczęła się 25 października 1952 roku o godzinie i trwała 30 minut. Program ten odbierany był przez 24 odbiorniki rozmieszczone w klubach i świetlicach. 4. Który zegar wskazuje godzinę zakończenia emisji pierwszego polskiego eksperymentalnego programu telewizyjnego? A B C D 1

2 5. Napisz w kolejności rosnącej wszystkie dzielniki liczby odbiorników, dzięki którym oglądano pierwszy wyemitowany program. Zapisz rozwiązanie , , , , , , , , 6. Liczba 24 zapisana znakami rzymskimi to A. XXV B. XXV C. XXX D. XXX 7. Rok 1952 był rokiem przestępnym. Którym dniem 1952 roku był 25 października? A. 296 B. 297 C. 298 D Warszawski Ośrodek Telewizyjny rozpoczął emisję programu 30 kwietnia 1956 roku. Zasięg tej stacji wynosił około 55 km, czyli A. około 550 m. B. około m. C. około m. D. około m. 9. Odległość w terenie między Warszawą a Wyszkowem jest równa 55 km. Oblicz, ile wynosi odległość między Warszawą a Wyszkowem na mapie wykonanej w skali 1 : Pierwszy produkowany seryjnie w Polsce telewizor nazywał się Wisła i miał ekran w kształcie zbliżonym do prostokąta o wymiarach 180 mm 240 mm. Obwód prostokąta o takich wymiarach jest równy A. 420 mm B. 432 mm C. 820 mm D. 840 mm 2

3 nformacja do zadania 11. i 12. Belweder to drugi model telewizora produkowanego w Polsce. Miał on kształt prostopadłościanu o wymiarach 51 cm 41 cm 37 cm. 11. Oblicz objętość prostopadłościanu o wymiarach takich jak wymiary telewizora Belweder. 12. le co najmniej cm 2 tektury potrzeba na wykonanie modelu prostopadłościanu o wymiarach takich, jakie wymiary miał telewizor Belweder? 13. Przekątna ekranu telewizora Belweder była równa 14 cali. Oblicz długość przekątnej tego telewizora w centymetrach. Przyjmij, że 1 cal = 2,54 cm. 3

4 14. Telewizor Belweder ważył 23 kg, czyli A g B. 230 dag C. 0,23 t D. 0,023 t 15. Pan Jan kupił na raty telewizor w cenie 1750 zł. Pierwsza wpłata wynosiła 5 1 ceny telewizora, a pozostała kwota była podzielona na 10 równych rat. Oblicz, ile wynosiła pierwsza wpłata oraz każda z pozostałych rat. 16. Pan Jan powiesił telewizor na prostokątnej ścianie o wymiarach 4 m 3 m. Front telewizora ma kształt prostokąta o wymiarach 100 cm 60 cm. Jaką część powierzchni ściany stanowi powierzchnia frontu telewizora? 4

5 nformacja do zadania 17. i 18. Rozdzielczość telewizora określa liczbę punktów wyświetlanych na ekranie. Podaje się ją jako iloczyn dwóch liczb, np , gdzie pierwsza liczba to liczba punktów wyświetlanych na ekranie w poziomej linii, a druga to liczba punktów wyświetlanych w pionowej linii. 17. Liczba punktów wyświetlanych na ekranie telewizora o rozdzielczości jest równa A B C D O ile więcej punktów w jednej poziomej linii tworzy obraz na ekranie telewizora o rozdzielczości niż ten sam obraz na ekranie telewizora o rozdzielczości ? A B C. 504 D

6 Numer zadania Schemat punktowania zadań Odpowiedź Zasady przyznawania punktów Punktacja 1 A Zaznaczenie poprawnej odpowiedzi 2 D Zaznaczenie poprawnej odpowiedzi 3 tysiąc dziewięćset pięćdziesiąt trzy Poprawne zapisanie roku rozpoczęcia emisji programu przez Telewizję Polską 4 D Zaznaczenie poprawnej odpowiedzi 5 1, 2, 3, 4, 6, 8, 12, 24 Poprawne uzupełnienie ośmiu lub siedmiu luk 2 punkty. Poprawne uzupełnienie sześciu lub pięciu luk 0 2 Poprawne uzupełnienie mniej niż pięciu luk 0 punktów. 6 A Zaznaczenie poprawnej odpowiedzi 7 D Zaznaczenie poprawnej odpowiedzi 8 C Zaznaczenie poprawnej odpowiedzi : ,5 cm 55 km = cm do obliczenia długości odcinka w skali 1 : Poprawne obliczeni długości odcinka w skali 1 : Poprawna zamiana jednostek w zadaniu 10 D Zaznaczenie poprawnej odpowiedzi cm cm , cm 2 do obliczenia objętości prostopadłościanu Poprawne obliczenie objętości prostopadłościanu do obliczenia pola powierzchni całkowitej prostopadłościanu Poprawne obliczenie pola powierzchni całkowitej prostopadłościanu do wyznaczenia długości przekątnej telewizora w centymetrach Poprawne obliczenie długości przekątnej telewizora w centymetrach 14 D Zaznaczenie poprawnej odpowiedzi V 1750 : zł ( ) : zł do wyznaczenia wysokości pierwszej raty Poprawne obliczenie wysokości pierwszej raty do wyznaczenia wysokości pozostałych rat Poprawne obliczenie wysokości pozostałych rat

7 cm cm 2 0,05 V 3 m = 300 cm 4 m = 400 cm Zapisanie wyrażeń prowadzących do wyznaczenia pól powierzchni ściany i frontu telewizora Poprawne obliczenie pól powierzchni ściany i frontu telewizora Poprawne obliczenie, jaką część powierzchni ściany stanowi powierzchnia frontu telewizora Poprawna zamiana jednostek w zadaniu 17 A Zaznaczenie poprawnej odpowiedzi 18 B Zaznaczenie poprawnej odpowiedzi Numer zadania Wymagania szczegółowe Uczeń: Kartoteka Standardy 1 odejmuje liczby naturalne 5. Wykorzystywanie wiedzy w praktyce 2 dodaje liczby naturalne 5. Wykorzystywanie wiedzy w praktyce. 3 zapisuje liczby naturalne wielocyfrowe 4 wykonuje proste obliczenia zegarowe 5 wskazuje dzielniki liczby 5. Wykorzystywanie wiedzy w praktyce 6 przedstawia w systemie rzymskim liczby zapisane w systemie dziesiątkowym 5. Wykorzystywanie wiedzy w praktyce 7 wykonuje proste obliczenia kalendarzowe 8 zamienia i stosuje jednostki długości oblicza długość odcinka w skali, gdy dana jest jego rzeczywista długość 9 dzieli liczby naturalne 5. Wykorzystywanie wiedzy w praktyce zamienia i stosuje jednostki długości 10 oblicza obwód wielokąta o danych długościach boków 5. Wykorzystywanie wiedzy w praktyce 11 stosuje wzór na objętość prostopadłościanu mnoży liczby naturalne 5. Wykorzystywanie wiedzy w praktyce stosuje wzór na pole powierzchni 12 prostopadłościanu dodaje i mnoży liczby naturalne 5. Wykorzystywanie wiedzy w praktyce prowadzi rozumowania z wykorzystaniem 13 własności liczb naturalnych i działań na nich mnoży liczby naturalne 5. Wykorzystywanie wiedzy w praktyce 14 zamienia i stosuje jednostki masy 5. Wykorzystywanie wiedzy w praktyce. prowadzi rozumowania z wykorzystaniem własności liczb naturalnych i działań na nich dzieli liczby naturalne 5. Wykorzystywanie wiedzy w praktyce 15 prowadzi rozumowania z wykorzystaniem własności liczb naturalnych i działań na nich 5. Wykorzystywanie wiedzy w praktyce V oblicza wartości wyrażeń arytmetycznych z liczbami naturalnymi 0 4 7

8 stosuje wzór na pole prostokąta 16 mnoży liczby naturalne opisuje część danej całości za pomocą ułamka V stosuje jednostki długości 5. Wykorzystywanie wiedzy w praktyce 17 mnoży liczby naturalne 5. Wykorzystywanie wiedzy w praktyce 18 porównuje różnicowo liczby naturalne 5. Wykorzystywanie wiedzy w praktyce 8

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4 PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV SZKOŁA PODSTAWOWA W KLĘCZANACH ROK SZKOLNY 2014/ 2015 Dostosowane do programu,,matematyka z kluczem'' I półrocze Dopuszczający Dostateczny

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny

Wojewódzki Konkurs Przedmiotowy z Matematyki. dla uczniów szkół podstawowych - etap szkolny 25.10.2013r. Kod ucznia: Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych - etap szkolny Wypełnia komisja konkursowa Nr zadania Punktacja 1 2 3 4 5 A B C D A B C D A B C D A

Bardziej szczegółowo

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji 1 2 Temat lekcji Wakacje, wakacje i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek

Bardziej szczegółowo

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody. Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie

Bardziej szczegółowo

PLANIMETRIA. Poziom podstawowy

PLANIMETRIA. Poziom podstawowy LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,

Bardziej szczegółowo

Szczegółowe kryteria ocen dla klasy czwartej.

Szczegółowe kryteria ocen dla klasy czwartej. SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS 4-6 SP ROK SZKOLNY 2016/2017 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości

Bardziej szczegółowo

Własności figur płaskich

Własności figur płaskich Klasa VI Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje, mnoży, dzieli liczby

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 4

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 4 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 4 Plan wynikowy z rozkładem materiału Klasa 4 Matematyka z kluczem Lp. Temat lekcji Punkty z podstawy programowej z dnia 27 sierpnia 2012

Bardziej szczegółowo

TEST Z MATEMATYKI W KLASIE IV pt. Matematyka w historii

TEST Z MATEMATYKI W KLASIE IV pt. Matematyka w historii TEST Z MATEMATYKI W KLASIE IV pt. Matematyka w historii Twój kod ------------------- Witaj! Przed Tobą test sprawdzający umiejętności i wiadomości z zakresu matematyki klasy IV. Zawiera 0 zadań. W zadaniach,,

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych

KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych INSTRUKCJA KASA EDUKACYJNA WARIANT I - dla dzieci młodszych rekwizyty: 1) plansza (żółta) 2) pionki - 4 szt. 3) kostka do gry 4) żetony (50 szt.) 6) kaseta z monetami i banknotami rys. 1 Przygotowanie

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY CZWARTEJ

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY CZWARTEJ PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY CZWARTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY IV SZKOŁY PODSTAWOWEJ Materiał przedstawia Przedmiotowe Zasady Oceniania z matematyki

Bardziej szczegółowo

INSTRUKCJE WEJŚCIA I WYJŚCIA

INSTRUKCJE WEJŚCIA I WYJŚCIA INSTRUKCJE WEJŚCIA I WYJŚCIA Zadanie nr 1 Napisz algorytm za pomocą a i schematów blokowych. Algorytm ma wczytywać z klawiatury wartości dwóch liczb, obliczać sumę tych liczb i wyświetlać jej wartość na

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Matematyka klasa 6 Wymagania na poszczególne oceny

Matematyka klasa 6 Wymagania na poszczególne oceny Matematyka klasa 6 Wymagania na poszczególne oceny Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne

Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Wokół Nas - klasa 5 Katalog wymagań programowych na poszczególne stopnie szkolne Kategorie zostały określone następująco: dotyczące wiadomości uczeń zna uczeń rozumie dotyczące przetwarzania

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Wśród uczniów klas piątych przeprowadzono

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP)

Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP) Podstawa programowa z matematyki - II etap edukacyjny (klasy IV-VI SP) Cele kształcenia (wymagania ogólne): sprawność rachunkowa - uczeń wykonuje proste działania pamięciowe na liczbach naturalnych, całkowitych

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

SPRAWDZIAN NR 1 A. XX B. XXX C. III D. XXI. Rozmiar opon Gumix Opon-net. 175/ zł / szt. 210 zł / szt. 175/ zł / szt. 190 zł / szt.

SPRAWDZIAN NR 1 A. XX B. XXX C. III D. XXI. Rozmiar opon Gumix Opon-net. 175/ zł / szt. 210 zł / szt. 175/ zł / szt. 190 zł / szt. SPRAWDZIAN NR 1 PAULINA CZERENKO IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz na osi liczbowej liczby: 2, 5 i 6. 2. Zaznacz poprawne dokończenie zdania. Liczba 30 zapisana znakami rzymskimi to A. XX B. XXX

Bardziej szczegółowo

Plan wynikowy dla klasy 6 Matematyka wokół nas"

Plan wynikowy dla klasy 6 Matematyka wokół nas Plan wynikowy dla klasy 6 Matematyka wokół nas" NR LEKCJI 3-4 TEMAT LEKCJI Nowy rok szkolny poznajemy program oraz podręcznik do klasy VI. Zapoznanie z systemem oceniania i wymaganiami edukacyjnymi z matematyki.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem

Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem Wymagania edukacyjne dla klasy IV z matematyki opracowane na podstawie programu nauczania Matematyka z plusem Wymagania Skala ocen konieczne dopuszczający podstawowe dostateczny rozszerzające dobry dopełniający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ 2012. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30

WPISUJE UCZEŃ GRUDZIEŃ 2012. Czas pracy: 90 minut. Liczba punktów do uzyskania: 30 WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 17.).

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Rachunek prawdopodobieństwa. Uczeń: Uczeń: 1-2 Permutacje. - zna symbol n!; - stosuje

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Kod ucznia Liczba punktów: Zad. 1- Zad. 2- Zad. 3- Zad.4- Zad.5- R A Z E M : pkt. WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ WOJEWÓDZKI 13. 03. 2014 R. 1. Zestaw

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

Zakres pomiaru (Ω) Rozdzielczość (Ω) Dokładność pomiaru

Zakres pomiaru (Ω) Rozdzielczość (Ω) Dokładność pomiaru Miernik parametrów instalacji elektrycznych EUROTEST EASI MI 3100 Dane techniczne 1 Rezystancja izolacji Rezystancja izolacji (znamionowe napięcia stałe: 100 V i 250 V) Zakres pomiaru, zgodny z normą EN61557-2,

Bardziej szczegółowo

P 3.3. Plan wynikowy klasa 6

P 3.3. Plan wynikowy klasa 6 P 3.3. Plan wynikowy klasa 6 W propozycji planu wynikowego uwzględniono 136 lekcyjnych. Do dyspozycji nauczyciela pozostawiono 21. Liczby naturalne 8 h Już za rok w gimnazjum 1 P 4.6 Wykonuje nieskomplikowane

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem Poziomy wymagań edukacyjnych K konieczny ocena dopuszczająca P podstawowy ocena dostateczna R rozszerzający ocena dobra D dopełniający ocena bardzo dobra W wykraczający ocena celująca Wymagania edukacyjne

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4, 5, 6 SZKOŁY PODSTAWOWEJ NR 2 W LIMANOWEJ TREŚCI NAUCZANIA MATEMATYKI I WYMAGANIA SZCZEGÓŁOWE Treści nauczania określone w programie Matematyka wokół nas szkoła

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze

60 minut. Powodzenia! Pracuj samodzielnie. IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Jedlicze, 6.03.2013r...... Szkoła Podstawowa w... imię i nazwisko ucznia klasa IX Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Drogi Uczniu Jesteś

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6

WYMAGANIA EDUKACYJNE - MATEMATYKA klasa 6 Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBY NATURALNE I UŁAMKI zaznaczyć i odczytać na osi liczbowej ułamek dziesiętny (P-R) obliczyć wartość wyrażenia arytmetycznego zawierającego

Bardziej szczegółowo

Scenariusz lekcyjny. Klasa: II c. Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka.

Scenariusz lekcyjny. Klasa: II c. Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Scenariusz lekcyjny Klasa: II c Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: M. Karpiński, M. Braun, J. Lech. Matematyka z plusem. Program nauczania matematyki w liceum

Bardziej szczegółowo

XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011

XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 Etap III Klasa IV Z 24 patyczków jednakowej długości ułożono 9 małych kwadratów tworzących jeden duży kwadrat 3 3. Ile

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI rok szkolny 2015/2016

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI rok szkolny 2015/2016 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI rok szkolny 2015/2016 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka)

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Zestaw standardowy zawierał 23 zadania, w tym 20 zadań zamkniętych i 3 zadania otwarte. Wśród zadań zamkniętych

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Liczba punktów. Czytanie 10 25% 1, 2, 3, 4, 14, 15, 16, 17, 18, 22

Liczba punktów. Czytanie 10 25% 1, 2, 3, 4, 14, 15, 16, 17, 18, 22 Kategoria umiejętności Plan testu Błękitna planeta Liczba punktów Waga y zadań Czytanie 10 25% 1, 2, 3,, 1, 15, 16, 17, 18, 22 Pisanie 10 25% 21, 2, 26, 26, 26, 26V, 26V, 26V, 26V, 26V Rozumowanie 8 20%

Bardziej szczegółowo

UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY. z dnia 29 stycznia 2016 r.

UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY. z dnia 29 stycznia 2016 r. UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY z dnia 29 stycznia 2016 r. w sprawie wysokości i zasad ustalania i rozliczania dotacji celowej dla podmiotów prowadzących żłobki lub kluby dziecięce na terenie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasach IV - VI

Przedmiotowy system oceniania z matematyki w klasach IV - VI Przedmiotowy system oceniania z matematyki w klasach IV - VI 1. Ocenie podlegają: a) wiadomości i umiejętności związane z realizacją podstawy programowej kształcenia ogólnego z matematyki, b) praca na

Bardziej szczegółowo

SPRAWDZIAN 2012. Klucz punktowania zadań. C e n t r a l n a K o m i s j a E g z a m i n a c y j n a. w W a r s z a w i e

SPRAWDZIAN 2012. Klucz punktowania zadań. C e n t r a l n a K o m i s j a E g z a m i n a c y j n a. w W a r s z a w i e e n t r a l n a K o m i s j a E g z a m i n a c y j n a w W a r s z a w i e SPRWDZIN 2012 Klucz punktowania zadań (test dla uczniów z upośledzeniem umysłowym w stopniu lekkim) KWIEIEŃ 2012 Obszar standardów

Bardziej szczegółowo

PSO ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI

PSO ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI PSO ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KL. VI I. OBSZARY AKTYWNOŚCI PODLEGAJĄCE OCENIE Na lekcjach matematyki oceniane są następujące obszary aktywności ucznia: 1.

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

KONSPEKT LEKCJI OTWARTEJ Z MATEMATYKI w klasie II gimnazjum. Temat: Przed nami powtórki materiału działania na potęgach i pierwiastkach

KONSPEKT LEKCJI OTWARTEJ Z MATEMATYKI w klasie II gimnazjum. Temat: Przed nami powtórki materiału działania na potęgach i pierwiastkach Beata Jędrys doradca metodyczny matematyki PCDZN Puławy KONSPEKT LEKCJI OTWARTEJ Z MATEMATYKI w klasie II gimnazjum Temat: Przed nami powtórki materiału działania na potęgach i pierwiastkach Cele ogólne:

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych

KONSPEKT LEKCJI MATEMATYKI. Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum. TEMAT: Działania łączne na liczbach wymiernych KONSPEKT LEKCJI MATEMATYKI Z WYKORZYSTANIEM METOD AKTYWIZUJĄCYCH w klasie I gimnazjum TEMAT: Działania łączne na liczbach wymiernych Cele lekcji: Cel ogólny: - utrwalenie wiadomościiumiejętności z działu

Bardziej szczegółowo

Walne Zgromadzenie Spółki, w oparciu o regulacje art. 431 1 w zw. z 2 pkt 1 KSH postanawia:

Walne Zgromadzenie Spółki, w oparciu o regulacje art. 431 1 w zw. z 2 pkt 1 KSH postanawia: Załącznik nr Raportu bieżącego nr 78/2014 z 10.10.2014 r. UCHWAŁA NR /X/2014 Nadzwyczajnego Walnego Zgromadzenia WIKANA Spółka Akcyjna z siedzibą w Lublinie (dalej: Spółka ) z dnia 31 października 2014

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

Temat: Miary i przedrostki układu SI obliczenia w sklepie i w domu.

Temat: Miary i przedrostki układu SI obliczenia w sklepie i w domu. Spotkanie 5 Temat: Miary i przedrostki układu SI obliczenia w sklepie i w domu. Plan zajęć 1. Miary masy. 1 g najmniej w sklepie 1 dag = 10 g 1 kg = 100 dag = 1000 g 1 t = 1000 kg 1 dag (1 deko Deco piłkarz

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Temat: Liczby. Pojęcia związane z liczbami i zbiorami. Zaokrąglanie i szacowanie wyników.

Temat: Liczby. Pojęcia związane z liczbami i zbiorami. Zaokrąglanie i szacowanie wyników. Spotkanie 6 Temat: Liczby. Pojęcia związane z liczbami i zbiorami. Zaokrąglanie i szacowanie wyników. Plan zajęć. Zbiory liczbowe N, C, W, NW, R. Jak omówić zbiory liczbowe N naturalne palce, nie ujemne

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY VI c w Szkole Podstawowej nr 67 w Łodzi

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY VI c w Szkole Podstawowej nr 67 w Łodzi PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY VI c w Szkole Podstawowej nr 67 w Łodzi Plan nauczania został opracowany na podstawie programu nauczania wydawnictwa pedagogicznego NOWA ERA zgodnego

Bardziej szczegółowo

UCHWAŁA NR podjęta przez Nadzwyczajne Walne Zgromadzenie spółki pod firmą Star Fitness Spółka Akcyjna w Poznaniu w dniu 11 marca 2013 roku

UCHWAŁA NR podjęta przez Nadzwyczajne Walne Zgromadzenie spółki pod firmą Star Fitness Spółka Akcyjna w Poznaniu w dniu 11 marca 2013 roku w sprawie wyboru Przewodniczącego Nadzwyczajnego Walnego Zgromadzenia Działając na podstawie art. 409 Kodeksu spółek handlowych Nadzwyczajne Walne Zgromadzenie uchwala, co następuje: Nadzwyczajne Walne

Bardziej szczegółowo

Projekt uchwały do punktu 4 porządku obrad:

Projekt uchwały do punktu 4 porządku obrad: Projekt uchwały do punktu 4 porządku obrad: Uchwała nr 2 w przedmiocie przyjęcia porządku obrad Na podstawie 10 pkt 1 Regulaminu Walnego Zgromadzenia Orzeł Biały Spółka Akcyjna z siedzibą w Piekarach Śląskich,

Bardziej szczegółowo

Kategoria środka technicznego

Kategoria środka technicznego Nr zlecenia DEKRA: PKOL(W)/LODZ/08423/14/02/14 Nr zlecenia/szkody: Data zlecenia: 14-02-2014 DEKRA Polska - Centrala tel. (22) 577 36 12, faks (22) 577 36 36 Zleceniodawca: Marcin Migdalski PKO Leasing

Bardziej szczegółowo

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016

SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 SPRAWDZIAN W KLASIE VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI I MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: SP-1X, SP-4 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Odbiór wypowiedzi

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r)

BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r) BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA 1 Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r) s) 2 Wykaż, że liczba jest liczbą wymierną 3Wykaż, że liczba jest liczbą całkowitą

Bardziej szczegółowo

MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY KL IV

MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY KL IV 1 MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY KL IV LICZBY I DZIAŁANIA I SEMESTR 1. Ocenę dopuszczającą otrzymuje uczeń, który: - zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy, czynnika i

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

PROJEKTY UCHWAŁ NA NADZWYCZAJNE WALNE ZGROMADZENIE HETAN TECHNOLOGIES SPÓŁKA AKCYJNA W DNIU 25 MAJA 2016 ROKU

PROJEKTY UCHWAŁ NA NADZWYCZAJNE WALNE ZGROMADZENIE HETAN TECHNOLOGIES SPÓŁKA AKCYJNA W DNIU 25 MAJA 2016 ROKU PROJEKTY UCHWAŁ NA NADZWYCZAJNE WALNE ZGROMADZENIE HETAN TECHNOLOGIES SPÓŁKA AKCYJNA W DNIU 25 MAJA 2016 ROKU w sprawie wyboru Przewodniczącego Nadzwyczajnego Walnego Zgromadzenia Działając na podstawie

Bardziej szczegółowo

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste Zakres na egzaminy poprawkowe w r. szk. 2012/13 MATEMATYKA Klasa I /nauczyciel M.Tatar/ ZAKRES PODSTAWOWY Hasła programowe Wymagania szczegółowe. Uczeń: 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite,

Bardziej szczegółowo

KRYTERIA EDUKACYJNE Z MATEMATYKI W KLASIE

KRYTERIA EDUKACYJNE Z MATEMATYKI W KLASIE KRYTERIA EDUKACYJNE Z MATEMATYKI W KLASIE 6 Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,

Bardziej szczegółowo