BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:"

Transkrypt

1 BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie odpowiadający przyrostowi argumentu. a) f() = 4, =, = ; b) f() =, =, = ; f() = +, =, =, ; d) f() = log, = 5, = 9 4 ; f() = +, =, =.. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: a) f() = +, = ; b) f() = +, = ; f() = 6 +, = 4; d) f() =, = Korzystając z definicji obliczyć pochodne podanych funkcji: a) f() = + 4 ; b)f() = + ; ; d)f() =.

2 5. Korzystając z odpowiednich wzorów, wyznaczyć pochodną funkcji f(): a) f() = +5 ; b) f() = 4 +; f() = ( )( +); d) f() = ; f() = + g) f() = ( )( + + ; f) f() = ; 4 ; h) f() = cos. 6. Korzystając z reguł obliczania pochodnych, policzyć pochodne podanych funkcji: ( ) a) f() = ( + + 4) + + ; b) f() = ; f() = ; d) f() = sin 5 ; f() = cos ; f) f() = ctg(cos); g) f() = 7. Obliczyć pochodną funkcji: a) f() = e sin ; b) f() = ln( cos); f() = arcsin ; d) f() = ln(tg ); f() = + ln ; f) f() = (ln ) ; g) f() = cos. tg ( 8. Napisać równania stycznych do wykresów podanych funkcji we wskazanych punktach: a) f() =, = ; b) f() = + 5, = ; f() = ln +, =. 9. Wykorzystując różniczkę funkcji obliczyć przybliżoną wartość wyrażenia sin.. Wyznaczyć przedziały monotoniczności funkcji: a) f() = + + ; b) f() = ; f() =. Wyznaczyć ekstrema lokalne funkcji: 6 ; d) f() = e ; f() = ln. a) f() = ( ) ; b) f() = ; f() = e ; d) f() = ; f() = ln +. ).

3 . Jakie wymiary powinna mieć puszka na konserwy w kształcie walca o objętości V = 5πcm, aby na jej wykonanie zużyć jak najmniej materiału?. Powierzchnia zadrukowanej części afisza ogłoszeniowego ma wynosić 56cm, marginesy boczne mają mieć po 4cm, marginesy górny i dolny po 6cm. Jakie powinny być wymiary afisza, aby jego nakład wymagał minimum papieru? 4. Zależność między kosztem K, a wielkością produkcji pewnego dobra określa wzór K() = +. Czy istnieje taka wielkość, przy której koszt K jest najmniejszy? Jeśli tak, to obliczyć jej wielkość. 5. Wydajność pracy pewnego robotnika zmienia się w ciągu ośmiogodzinnego dnia pracy i po upływie t godzin ma wartość W(t) = 5 + 9t t 9 t. Robotnik rozpoczyna pracę o godzinie 7 : i pracuje bez przerwy do godziny 5 :. O której godzinie wydajność pracy jest największa? 6. Droga wyrażona w metrach, przebyta przez ciało będące w ruchu jednostajnie przyspieszonym zależy od czasu zgodnie ze wzorem s = f(t) = t +4t+ (jednostką czasu jest sekunda). Jaka będzie prędkość ciała w piątej sekundzie ruchu? 7. Punkt porusza się po linii prostej tak, że jego odległość s od punktu początkowego po t sekundach wynosi s = f(t) = t t +. Znaleźć prędkość punktu po dziesięciu sekundach. 8. Bieguny ogniwa o sile elektromotorycznej E i oporności wewnętrznej ρ (rysunek) połączono przewodnikiem o oporności R. Zbadać, dla jakiej wartości R moc na tej oporności jest największa, - jak wiadomo z fizyki - moc M na oporności R wyraża się wzorem: M = R 9. Obliczyć całki nieoznaczone: a) ( )d; b) ( E ρ + R ). d; ( cos + + )d; d) 4 + d; ( 5 d; f) + ) + d. 4. Korzystając z twierdzenia o całkowaniu przez części obliczyć całki nieoznaczone: a) cos d; b) ln d; e d; d) arcsin d.

4 . Stosując odpowiednie podstawienia obliczyć podane całki nieoznaczone: 4 a) ( + ) 7 ( )d; b) d; 6 d; d) d; f) cos ( + ) e d; d; g) sin cos 5 d.. Obliczyć całki stosując rozkład na ułamki proste: d a) ( + )( + ) ; b) d; d; d) 4 + d ; f). Obliczyć całki oznaczone: + + ( + )( + + ) d; d. 4 6 a) d; b) + π sin d; d; d) e arctg ln d; e d; f) 4. Wykorzystując całki oznaczone obliczyć pole obszaru 4 + 5d. P = {(, y) : y ln }. 5. Obliczyć pole figury ograniczonej łukiem krzywej y = oraz prostą y = Obliczyć pole obszaru ograniczonego parabolą y =, y = i prostą + y =. 7. Obliczyć pole obszaru ograniczonego krzywymi y = e, y = e i prostą =. 8. Obliczyć pole zawarte pomiędzy parabolami y =, = y. 9. Obliczyć pole figury ograniczonej przez krzywe + y = 8 i y =. 4

5 Literatura. L.M. Drużkowski, Analiza matematyczna dla fizyków, cz.i. Podstawy, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, (995).. M.Gewert,Z.Skoczylas, Analiza matematyczna, Oficyna Wydawnicza GiS, Wrocław, ().. W.Górniewicz, R.IngardenAnaliza matematyczna dla fizyków. T.-, Wydawnictwo Uniwersytetu Toruńskiego, Toruń, (995). 4. W.Krysicki, L.Włodarski, Analiza matematyczna w zadaniach, cz.i-ii., PWN Warszawa, (99). 5. J.Laszuk, Repetytorium z matematyki, Warszawa, (997). 6. R.Leitner, Zarys matematyki wyższej dla studiów technicznych, cz.i-ii., WNT, Warszawa, (994). 7. A. Sołtysiak, Analiza matematyczna, cz. I, II i III, Wydawnictwo UAM, Poznań, (). 8. T.Supady, Matematyka Nowe Vademecum, Wydawnictwo Tukan Remy, (999). 5

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

PLANIMETRIA. Poziom podstawowy

PLANIMETRIA. Poziom podstawowy LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,

Bardziej szczegółowo

Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 8 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Ruch drgający. Drgania harmoniczne opisuje równanie: ( ω + φ) x = Asin t gdzie: A amplituda ruchu ω prędkość

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Mathematical analysis I

Z-LOG-476I Analiza matematyczna I Mathematical analysis I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-476I Analiza matematyczna I Mathematical analysis I A. USYTUOWANIE

Bardziej szczegółowo

Segment B.XII Opór elektryczny Przygotował: Michał Zawada

Segment B.XII Opór elektryczny Przygotował: Michał Zawada Segment B.XII Opór elektryczny Przygotował: Michał Zawada Zad. 1 Człowiek może zostać porażony nawet przez tak słaby prąd, jak prąd o natężeniu 50 ma, jeżeli przepływa on blisko serca. Elektryk, pracując

Bardziej szczegółowo

Matematyka:Matematyka I - ćwiczenia/granice funkcji

Matematyka:Matematyka I - ćwiczenia/granice funkcji Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 4

Trenuj przed sprawdzianem! Matematyka Test 4 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Analiza pojedynczego zdjęcia lotniczego ZAGADNIENIA 1. Podstawowe elementy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy. Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Zakres pomiaru (Ω) Rozdzielczość (Ω) Dokładność pomiaru

Zakres pomiaru (Ω) Rozdzielczość (Ω) Dokładność pomiaru Miernik parametrów instalacji elektrycznych EUROTEST EASI MI 3100 Dane techniczne 1 Rezystancja izolacji Rezystancja izolacji (znamionowe napięcia stałe: 100 V i 250 V) Zakres pomiaru, zgodny z normą EN61557-2,

Bardziej szczegółowo

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem

Bardziej szczegółowo

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny.

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny. Szeregi liczbowe Definicja Szeregiem liczbowym nazywamy wyrażenie a n = a + a 2 + a 3 + () Liczby a n, n =, 2,... nazywamy wyrazami szeregu. Natomiast sumę n s n = a k (2) nazywamy n-tą sumą częściową

Bardziej szczegółowo

22 PRĄD STAŁY. CZĘŚĆ 1

22 PRĄD STAŁY. CZĘŚĆ 1 Włodzimierz Wolczyński 22 PĄD STAŁY. CZĘŚĆ 1 Natężenie prądu = 1 = Prawo Ohma I I dla 2 = Natężenie prądu jest wprost proporcjonalne do napięcia. Dla części obwodu 1 > 2 dla 1 = 1 = 1 I = + E SEM (siła

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały

Bardziej szczegółowo

STA T T A YSTYKA Korelacja

STA T T A YSTYKA Korelacja STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz

Bardziej szczegółowo

FIZYKA Kolokwium nr 3 (e-test), część II

FIZYKA Kolokwium nr 3 (e-test), część II FIZYKA Kolokwium nr 3 (e-test), część II Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Ciało o masie 0.8kg wyrzucono ukośnie z prędkością początkową równą

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016

REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016 Miasto Piła REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016 Wydział Oświaty w Pile przy współpracy Zespołu Szkół nr 2 w Pile ogłasza

Bardziej szczegółowo

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Rachunek prawdopodobieństwa. Uczeń: Uczeń: 1-2 Permutacje. - zna symbol n!; - stosuje

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Kwantowa natura promieniowania elektromagnetycznego Zjawisko fotoelektryczne. Zadanie 1. Jaką prędkość posiada fotoelektron wytworzony przez kwant γ o energii E γ=1,27mev? W porównaniu z pracą wyjścia

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody. Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6 XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka)

Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Analiza wyników egzaminu gimnazjalnego 2014 r. Test matematyczno-przyrodniczy (matematyka) Zestaw standardowy zawierał 23 zadania, w tym 20 zadań zamkniętych i 3 zadania otwarte. Wśród zadań zamkniętych

Bardziej szczegółowo

DRGANIA I FALE 0 0,5 1 1,5

DRGANIA I FALE 0 0,5 1 1,5 Włodzimierz Wolczyński 48 POWTÓRKA 1 DRGANIA I FALE Zadanie 1 Wykres wykonany w Excelu poniżej przedstawia zależność siły sprężystości w niutonach od wydłużenia sprężyny w metrach dla dwóch sprężyn. 25

Bardziej szczegółowo

Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ

Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ Test F- nedecora W praktyce często mamy do czynienia z kilkoma niezaleŝnymi testami, słuŝącymi do weryfikacji tej samej hipotezy, prowadzącymi do odrzucenia lub przyjęcia hipotezy zerowej na róŝnych poziomach

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

Analiza Matematyczna MAT1317

Analiza Matematyczna MAT1317 Analiza Matematyczna MAT37 Wydziaª Informatyki i Zarz dzania Listy zada«nr -0 cz ±ciowo na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykªady i zadania, GiS, Wrocªaw 008 M.Gewert,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Projekt konstrukcji jazu dokowego

Projekt konstrukcji jazu dokowego 8. Obliczenia statyczne Projekt konstrukcji jazu dokowego Ryc. Xx. Schemat układu sił działających na konstrukcję jazu (przypadek eksploatacyjny) skala: 100 Zestawienie sił: G D ciężar doku [kn] G F ciężar

Bardziej szczegółowo

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

Właściwości materii - powtórzenie

Właściwości materii - powtórzenie Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czy zjawisko

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

Pomiary geofizyczne w otworach

Pomiary geofizyczne w otworach Pomiary geofizyczne w otworach Profilowanie w geofizyce otworowej oznacza rejestrację zmian fizycznego parametru z głębokością. Badania geofizyki otworowej, wykonywane dla potrzeb geologicznego rozpoznania

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy

Bardziej szczegółowo

Pomiar prędkości dźwięku w metalach

Pomiar prędkości dźwięku w metalach Pomiar prędkości dźwięku w metalach Ćwiczenie studenckie dla I Pracowni Fizycznej Barbara Pukowska Andrzej Kaczmarski Krzysztof Sokalski Instytut Fizyki UJ Eksperymenty z dziedziny akustyki są ciekawe,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM

Standardowe tolerancje wymiarowe WWW.ALBATROS-ALUMINIUM.COM Standardowe tolerancje wymiarowe WWW.ALBATROSALUMINIUM.COM Tolerancje standardowe gwarantowane przez Albatros Aluminium obowiązują dla wymiarów co do których nie dokonano innych uzgodnień podczas potwierdzania

Bardziej szczegółowo

Ćwiczenie nr 6 BADANIE WYDAJNOŚCI KOMPRESOROWEJ POMPY CIEPŁA

Ćwiczenie nr 6 BADANIE WYDAJNOŚCI KOMPRESOROWEJ POMPY CIEPŁA Ćwiczenie nr 6 BADAIE WYDAJOŚCI KOMPRESOROWEJ POMPY CIEPŁA CEL I ZAKRES ĆWICZEIA Celem ćwiczenia jest badanie efektywności omy cieła. Ćwiczenie olega na dokonaniu omiarów temeratur i ciśnień odczas racy

Bardziej szczegółowo

OZNACZANIE CZASU POŁOWICZNEGO ROZPADU DLA NATURALNEGO NUKLIDU 40 K

OZNACZANIE CZASU POŁOWICZNEGO ROZPADU DLA NATURALNEGO NUKLIDU 40 K OZNACZANIE CZASU POŁOWICZNEGO ROZPADU DLA NATURALNEGO NUKLIDU 40 K Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 2004. s.1/6 WSTĘP Naturalny potas stanowi mieszaninę trzech nuklidów:

Bardziej szczegółowo

KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych

KASA EDUKACYJNA INSTRUKCJA. WARIANT I - dla dzieci młodszych INSTRUKCJA KASA EDUKACYJNA WARIANT I - dla dzieci młodszych rekwizyty: 1) plansza (żółta) 2) pionki - 4 szt. 3) kostka do gry 4) żetony (50 szt.) 6) kaseta z monetami i banknotami rys. 1 Przygotowanie

Bardziej szczegółowo

Projekt z dnia 2 listopada 2015 r. z dnia.. 2015 r.

Projekt z dnia 2 listopada 2015 r. z dnia.. 2015 r. Projekt z dnia 2 listopada 2015 r. R O Z P O R Z Ą D Z E N I E M I N I S T R A P R A C Y I P O L I T Y K I S P O Ł E C Z N E J 1) z dnia.. 2015 r. w sprawie treści, formy oraz sposobu zamieszczenia informacji

Bardziej szczegółowo

REGULAMIN KONKURSU 1 Postanowienia ogólne : www.gminastezyca.pl 2 Cel Konkursu 3 Założenia ogólne

REGULAMIN KONKURSU 1 Postanowienia ogólne : www.gminastezyca.pl 2 Cel Konkursu 3 Założenia ogólne REGULAMIN KONKURSU 1 Postanowienia ogólne 1. Organizatorem Konkursu jest Wójt Gminy Stężyca zwany dalej Organizatorem. 2. Regulamin Konkursu jest dostępny w siedzibie organizatora - na tablicy ogłoszeń

Bardziej szczegółowo

Liczby zespolone C := R 2.

Liczby zespolone C := R 2. C := R 2. R 2 (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1). R C, R x (x, 0) C. i := (0, 1), 1 = (1, 0) (a, b) = a(1, 0) + b(0, 1) = a + bi. R 2 (a, b) = z = a + bi C. a- część rzeczywista liczby zespolonej

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia

Bardziej szczegółowo

Świat fizyki powtórzenie

Świat fizyki powtórzenie Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Masz

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY. z dnia 29 stycznia 2016 r.

UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY. z dnia 29 stycznia 2016 r. UCHWAŁA NR XVII/132/2016 RADY MIASTA OLEŚNICY z dnia 29 stycznia 2016 r. w sprawie wysokości i zasad ustalania i rozliczania dotacji celowej dla podmiotów prowadzących żłobki lub kluby dziecięce na terenie

Bardziej szczegółowo

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste Zakres na egzaminy poprawkowe w r. szk. 2012/13 MATEMATYKA Klasa I /nauczyciel M.Tatar/ ZAKRES PODSTAWOWY Hasła programowe Wymagania szczegółowe. Uczeń: 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite,

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Przykład implementacji przeciażeń operatorów problem kolizji

Przykład implementacji przeciażeń operatorów problem kolizji Przykład implementacji przeciażeń operatorów problem kolizji Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Copyright c 2005 2008 Bogdan Kreczmer Niniejszy dokument zawiera

Bardziej szczegółowo

GŁOWICE DO WYTŁACZANIA MGR INŻ. SZYMON ZIĘBA

GŁOWICE DO WYTŁACZANIA MGR INŻ. SZYMON ZIĘBA GŁOWICE DO WYTŁACZANIA MGR INŻ. SZYMON ZIĘBA GŁOWICE WYTŁACZARSKIE Zadaniem głowic wytłaczarskich jest nadanie przetwarzanemu w procesie wytłaczania materiałowi żądanego kształtu i wymiarów, przy zapewnieniu

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju

Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju Regulamin Zarządu Pogórzańskiego Stowarzyszenia Rozwoju Art.1. 1. Zarząd Pogórzańskiego Stowarzyszenia Rozwoju, zwanego dalej Stowarzyszeniem, składa się z Prezesa, dwóch Wiceprezesów, Skarbnika, Sekretarza

Bardziej szczegółowo

WZORU UŻYTKOWEGO PL 67097 Y1. HYBRYD SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pyskowice, PL 02.04.2013 BUP 07/13 30.04.

WZORU UŻYTKOWEGO PL 67097 Y1. HYBRYD SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pyskowice, PL 02.04.2013 BUP 07/13 30.04. PL 67097 Y1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 120377 (22) Data zgłoszenia: 30.09.2011 (19) PL (11) 67097 (13) Y1

Bardziej szczegółowo

EGZEMPLARZ ARCHIWALNY

EGZEMPLARZ ARCHIWALNY RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej d2)opis OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 112384 (22) Data zgłoszenia: 18.07.2001 EGZEMPLARZ ARCHIWALNY (19) PL (n)63122 (13)

Bardziej szczegółowo

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 dopuszczaj ący 1 rozumie wykres jako sposób prezentacji informacji umie odczytać z wykresu zna pojęcie funkcji zna pojęcia: dziedzina, argument,

Bardziej szczegółowo

PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM

PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM PRZETWORNIK NAPIĘCIE - CZĘSTOTLIWOŚĆ W UKŁADZIE ILORAZOWYM dr inż. Eligiusz Pawłowski Politechnika Lubelska, Wydział Elektryczny, ul. Nadbystrzycka 38 A, 20-618 LUBLIN E-mail: elekp@elektron.pol.lublin.pl

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania

Bardziej szczegółowo