Projektowanie systemów wbudowanych: kosynteza metodą programowania genetycznego oraz przydział nieprzewidzianych zadań

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projektowanie systemów wbudowanych: kosynteza metodą programowania genetycznego oraz przydział nieprzewidzianych zadań"

Transkrypt

1 Projektowanie systemów wbudowanych: kosynteza metodą programowania genetycznego oraz przydział nieprzewidzianych zadań

2 System wbudowany Struktura systemu wbudowanego Jednostki obliczeniowe (ang. Processing Elements): uniwersalne (ang. Programable Processors) specjalizowane (ang. Hardware Cores) Kanały komunikacyjne

3 Zastosowanie systemów wbudowanych Technologia kosmiczna Nowoczesne samochody Telefony komórkowe Sprzęt RTV/AGD Rakiety balistyczne

4 Projektowanie systemów wbudowanych (wg. De Micheli, Gupta) Tworzenie modelu Implementacja Walidacja

5 Specyfikacja systemu wbudowanego w postaci grafu zadań v i Є V e i Є E t ij e b ij ij 12 T T1 T T3 T4 T5 T6

6 Przykładowa baza zasobów

7 Kosynteza Optymalizowane parametry: koszt (powierzchnia) czas pobór mocy

8 Algorytmy kosyntezy systemów wbudowanych Konstrukcyjne Rafinacyjne

9 Koszt systemu C o m i1 C PE i n j1 C j p P k k1 l1 C CL, PC k l

10 Programowanie genetyczne Rozróżnienie między genotypem (drzewo) oraz fenotypem (gotowe rozwiązanie) Ewolucji podlega sposób otrzymania rozwiązania

11 Sposób otrzymania genotypu (algorytm konstrukcyjny) T0 Embrion T1 T2 F1 F2 T3 T4 F3 F4 T5 F5

12 Sposób otrzymania genotypu (algorytm rafinacyjny) T0 Embrion T1 T2 3 / 2 1 T3 T / 1 T5 2

13 Węzeł Alokacja zasobu (krok opcjonalny) Przyporządkowanie zasobu dla zadania (krok obowiązkowy) Alokacja kanału komunikacyjnego (krok opcjonalny) Przyporządkowanie kanału komunikacyjnego dla zasobów (krok obowiązkowy) Szeregowanie zadań (listowe) (krok obowiązkowy jeśli do jednego zasobu jest przyporządkowane więcej niż jedno zadanie)

14 Funkcje konstruujące system (zasoby obliczeniowe) 1. Używany zasób (0,6) najtańszy (0,2) najszybszy (0,2) min(k*t) (0,2) najdłużej bezczynny (0,2) taki sam jak dla poprzednika (0,2) 2. Najtańszy zasób (0,1) 3. Najszybszy zasób (0,1) 4. Najmniejszy iloczyn czasu i kosztu (0,1) 5. Najrzadziej używany (0,1)

15 Funkcje konstruujące system (kanały komunikacyjne) 1. Używany kanał komunikacyjny (0,5) najtańszy (0,3) najszybszy (0,3) min(k*t) (0,2) najdłużej bezczynny (0,2) 2. Najtańszy kanał komunikacyjny (0,2) 3. Największa przepustowość (0,2) 4. Najrzadziej używany (0,1)

16 Funkcje rafinujące system (zasoby) 1. Największy zysk kosztu (0,1) 2. Najmniejszy wzrost czasu obliczeń (0,1) 3. Zadanie z największym iloczynem czasu i kosztu przesuń do zasobu, na którym ten iloczyn jest najmniejszy (0,4) 4. Pierwsze zadanie z listy najczęściej używanego PE na najrzadziej używany zasób (0,2) 5. Najdroższa implementacja zadania z najdroższej ścieżki na najtańszą implementaję tego zadania(0,2)

17 Funkcje rafinujące system (kanały komunikacyjne) 1. Największy zysk kosztu (0,4) 2. Największa przepustowość (0,3) 3. Najrzadziej używany (0,3)

18 Wielkość pokolenia Π=α*n*e P r

19 Ewolucja (algorytm konstrukcyjny) Klonowanie Φ=β*Π Krzyżowanie Ψ=γ*Π Mutacja Ω=δ*Π β+γ+δ=1 F(T0) F(T1) F(T2) F(T3) F(T4 F(T5) M(T0) M(T1) F(T2) F(T3) F(T4 F(T5) M(T1) M(T0) M(T5 ) F(T1) M(T3) F(T0) M(T5 ) M(T2) M(T3) M(T4 M(T2) M(T4

20 Ewolucja (algorytm rafinacyjny) Klonowanie Φ=β*Π Krzyżowanie F1 F3 Embrion F4 F2 F5 M1 Embrion M3 M2 M4 F6 Ψ=γ*Π Embrion Embrion M5 Mutacja Ω=δ*Π F1 F3 M4 M5 M1 M(T2) M(T3) F2 F4 F6 F5 β+γ+δ=1

21 Zadania dodatkowe (przypadek szczególny) T0 T T1 T2 T1 T T3 T4 T5 T6 T3 T4 T5 T T7 T8 T9 T10

22 Przykładowa baza danych (zadania dodatkowe)

23 Zadania dodatkowe (przypadek ogólny) T0 T T1 T2 T1 T T3 T4 T7 T6 T3 T4 T5 T T5 T8

24 Algorytm c t V i * z s s p k P l PC CL n j j m i PE o C C C C C k l k i 1 1 1, 1 1

25 Przykład PP1 T4 PP2 T5 T0 T1 PP1 T4, T7, T8 PP2 T5, T9, T10 T0 T1 T2 T3 T6 CL1 T2 T3 T6 CL1

26 Dziękuję za uwagę

Systemy wbudowane. Cel syntezy systemowej. Wykład 12: Przykłady kosyntezy systemów wbudowanych

Systemy wbudowane. Cel syntezy systemowej. Wykład 12: Przykłady kosyntezy systemów wbudowanych Systemy wbudowane Wykład 12: Przykłady kosyntezy systemów wbudowanych Cel syntezy systemowej minimalizacja kosztu: jaka jest najtańsza architektura spełniająca nałożone wymagania (minimalna szybkość, max.

Bardziej szczegółowo

KOSYNTEZA SYSTEMÓW SOC METODĄ ROZWOJOWEGO PROGRAMOWANIA GENETYCZNEGO

KOSYNTEZA SYSTEMÓW SOC METODĄ ROZWOJOWEGO PROGRAMOWANIA GENETYCZNEGO STANISŁAW DENIZIAK, ADAM GÓRSKI KOSYNTEZA SYSTEMÓW SOC METODĄ ROZWOJOWEGO PROGRAMOWANIA GENETYCZNEGO HARDWARE/SOFTWARE CO-SYNTHESIS OF SOC SYSTEMS USING DEVELOPMENTAL GENETIC PROGRAMMING Streszczenie Abstract

Bardziej szczegółowo

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo

Bardziej szczegółowo

1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є

1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є 1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1 3 1є7 1є7 1є7 1є7 1є7

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Spis treści. 1 Wprowadzenie. 1.1 Podstawowe pojęcia. 1 Wprowadzenie Podstawowe pojęcia Sieci komunikacyjne... 3

Spis treści. 1 Wprowadzenie. 1.1 Podstawowe pojęcia. 1 Wprowadzenie Podstawowe pojęcia Sieci komunikacyjne... 3 Spis treści 1 Wprowadzenie 1 1.1 Podstawowe pojęcia............................................ 1 1.2 Sieci komunikacyjne........................................... 3 2 Problemy systemów rozproszonych

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych

Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk

Szeregowanie zadań. Wykład nr 3. dr Hanna Furmańczyk Wykład nr 3 27.10.2014 Procesory identyczne, zadania niezależne, podzielne: P pmtn C max Algorytm McNaughtona 1 Wylicz optymalną długość C max = max{ j=1,...,n p j/m, max j=1,...,n p j }, 2 Szereguj kolejno

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych

Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych Wielokryterialne harmonogramowanie portfela projektów Bogumiła Krzeszowska Katedra Badań Operacyjnych Problem Należy utworzyć harmonogram portfela projektów. Poprzez harmonogram portfela projektów będziemy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy

Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element

Bardziej szczegółowo

Równoważność algorytmów optymalizacji

Równoważność algorytmów optymalizacji Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Wydajność komunikacji grupowej w obliczeniach równoległych. Krzysztof Banaś Obliczenia wysokiej wydajności 1

Wydajność komunikacji grupowej w obliczeniach równoległych. Krzysztof Banaś Obliczenia wysokiej wydajności 1 Wydajność komunikacji grupowej w obliczeniach równoległych Krzysztof Banaś Obliczenia wysokiej wydajności 1 Sieci połączeń Topologie sieci statycznych: Sieć w pełni połączona Gwiazda Kraty: 1D, 2D, 3D

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

Koncepcja techniczna sieci FTTH w Programie POPC1.1. Wsparcie do opracowania wniosku. Wersja GNI FREE na QGIS

Koncepcja techniczna sieci FTTH w Programie POPC1.1. Wsparcie do opracowania wniosku. Wersja GNI FREE na QGIS Koncepcja techniczna sieci FTTH w Programie POPC1.1 Wsparcie do opracowania wniosku. Wersja GNI FREE na QGIS Program POPC1.1 Dane wejściowe: Lista punktów adresowych białe plamy ok. 2,9 mln Obszary inwestycyjne

Bardziej szczegółowo

Izabela Zimoch Zenon Szlęk Biuro Badań i Rozwoju Technologicznego. Katowice, dnia 13.08.2013 r.

Izabela Zimoch Zenon Szlęk Biuro Badań i Rozwoju Technologicznego. Katowice, dnia 13.08.2013 r. System informatyczny wspomagający optymalizację i administrowanie produkcją i dystrybucją wody przeznaczonej do spożycia przez ludzi subregionu centralnego i zachodniego województwa śląskiego Izabela Zimoch

Bardziej szczegółowo

ρroute Scalable Self-Managed Point-to-Point Routing for the Internet of Things Applications Konrad Iwanicki Uniwersytet Warszawski

ρroute Scalable Self-Managed Point-to-Point Routing for the Internet of Things Applications Konrad Iwanicki Uniwersytet Warszawski www.mimuw.edu.pl/~iwanicki/projects/rhoroute ρroute Scalable Self-Managed Point-to-Point Routing for the Internet of Things Applications Konrad Iwanicki Uniwersytet Warszawski Prezentacja projektu dla

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni

Bardziej szczegółowo

Katedra Mikroelektroniki i Technik Informatycznych

Katedra Mikroelektroniki i Technik Informatycznych Katedra Mikroelektroniki i Technik Informatycznych Bloki obieralne na kierunku Mechatronika rok akademicki 2013/2014 ul. Wólczańska 221/223, budynek B18 www.dmcs.p.lodz.pl Nowa siedziba Katedry 2005 2006

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny

Bardziej szczegółowo

Metody selekcji cech

Metody selekcji cech Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną

Bardziej szczegółowo

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2019/2020.

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2019/2020. PLAN STUDIÓ STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA 2019-2023 STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2019/2020 Semestr I stęp do matematyki 20 20 zal z oc. 3 Podstawy programowania* 20 45 65 zal z

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS

Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

15.1. Opis metody projektowania sieci kanalizacyjnej

15.1. Opis metody projektowania sieci kanalizacyjnej sieci kanalizacyjnej 15.1.1. Obliczenie przepływów miarodajnych do wymiarowania kanałów Przepływ ścieków, miarodajny do wymiarowania poszczególnych odcinków sieci kanalizacyjnej, przyjęto równy obliczonemu

Bardziej szczegółowo

Podstawowe zagadnienia

Podstawowe zagadnienia SWB - Systemy operacyjne w systemach wbudowanych - wykład 14 asz 1 Podstawowe zagadnienia System operacyjny System czasu rzeczywistego Systemy wbudowane a system operacyjny Przykłady systemów operacyjnych

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2

INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2 INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2 PC THERM AUTOMATYKA PRZEMYSŁOWA Systemy Kontroli Dostępu i Rejestracji Czasu Pracy Al. Komisji Edukacji Narodowej 21 02-797 Warszawa

Bardziej szczegółowo

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2018/19.

INFORMATYKA. PLAN STUDIÓW STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2018/19. PLAN STUDIÓ STACJONARNYCH INŻYNIERSKICH 1-go STOPNIA 2018-2022 STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2018/19 Semestr I stęp do matematyki 20 20 z oc. 3 Podstawy programowania* 20 45 65 z oc. /E 6

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Jednostki obliczeniowe w zastosowaniach mechatronicznych Kierunek: Mechatronika Rodzaj przedmiotu: dla specjalności Systemy Sterowania Rodzaj zajęć: Wykład, laboratorium Computational

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Sterowniki Programowalne (SP) - Wykład #1 Wykład organizacyjny

Sterowniki Programowalne (SP) - Wykład #1 Wykład organizacyjny Sterowniki Programowalne (SP) - Wykład #1 Wykład organizacyjny WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA INŻYNIERII SYSTEMÓW STEROWANIA Jarosław Tarnawski, dr inż. Październik 2016 SP wykład organizacyjny

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW

POLITECHNIKA RZESZOWSKA PLAN STUDIÓW POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa PLAN STUDIÓW dla kierunku: Mechanika i budowa maszyn studia II stopnia stacjonarne Rzeszów 09. 12. 2015 Plan studiów

Bardziej szczegółowo

System plików. Warstwowy model systemu plików

System plików. Warstwowy model systemu plików System plików System plików struktura danych organizująca i porządkująca zasoby pamięci masowych w SO. Struktura ta ma charakter hierarchiczny: urządzenia fizyczne strefy (partycje) woluminy (w UNIXie:

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

Formacyjne znaczenie programowania w kształceniu menedżerów

Formacyjne znaczenie programowania w kształceniu menedżerów Formacyjne znaczenie programowania w kształceniu menedżerów Wojciech Cellary Katedra Technologii Informacyjnych Uniwersytet Ekonomiczny w Poznaniu al. Niepodległości 10, 61-875 Poznań cellary@kti.ue.poznan.pl

Bardziej szczegółowo

STORA-DRAIN PARKING 05 KANAŁY Z

STORA-DRAIN PARKING 05 KANAŁY Z 05 KANAŁY Z POLImerobetonu z krawędzią ocynkowaną 05 KANAŁY A15 / / Z POLImerobetonu z krawędzią ocynkowaną Dzięki dużej wytrzymałości mechanicznej, odporności chemicznej i zintegrowanemu profilowi zabezpieczającemu

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj

Techniki konstruowania algorytmów. Metoda dziel i zwyciężaj Techniki konstruowania algorytmów Metoda dziel i zwyciężaj Technika dziel i zwyciężaj Aby rozwiązać problem techniką dziel i zwyciężaj musi on wykazywać własność podstruktury rozwiązanie problemu można

Bardziej szczegółowo

Centrum Doskonałości Naukowej Infrastruktury Wytwarzania Aplikacji. Jerzy Proficz jerp@task.gda.pl

Centrum Doskonałości Naukowej Infrastruktury Wytwarzania Aplikacji. Jerzy Proficz jerp@task.gda.pl Centrum Doskonałości Naukowej Infrastruktury Wytwarzania Aplikacji Jerzy Proficz jerp@task.gda.pl Platformy wytwarzania aplikacji Superkomputer TRYTON 2 Superkomputer TRYTON 1,37 PFLOPS ok. 2500 procesorów

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Systemy zabezpieczeń

Systemy zabezpieczeń Systemy zabezpieczeń Definicja System zabezpieczeń (safety-related system) jest to system, który implementuje funkcje bezpieczeństwa konieczne do utrzymania bezpiecznego stanu instalacji oraz jest przeznaczony

Bardziej szczegółowo

Systemy Czasu Rzeczywistego (SCR)

Systemy Czasu Rzeczywistego (SCR) Systemy Czasu Rzeczywistego (SCR) Wykład 1: Organizacja i program przedmiotu SKiTI 2017 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA INŻYNIERII SYSTEMÓW STEROWANIA Kierunek: Automatyka i Robotyka Studia

Bardziej szczegółowo

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym.

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym. Customer Attribution Models czyli o wykorzystaniu machine learning w domu mediowym. Proces decyzyjny MAILING SEO SEM DISPLAY RETARGETING PRZEGRANI??? ZWYCIĘZCA!!! Modelowanie atrybucja > Słowo klucz: wpływ

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r. Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci

Bardziej szczegółowo

Projektowanie rozmieszczenia stanowisk roboczych

Projektowanie rozmieszczenia stanowisk roboczych Projektowanie rozmieszczenia stanowisk roboczych Metoda trójkątów Schmigalli Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych Metoda trójkątów

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

METODY OBLICZENIOWE OPTYMALIZACJI zadania

METODY OBLICZENIOWE OPTYMALIZACJI zadania METODY OBLICZENIOWE OPTYMALIZACJI zadania Przedstawione dalej zadania rozwiąż wykorzystując Excel/Solver. Zadania 8 są zadaniami optymalizacji liniowej, zadania 9, dotyczą optymalizacji nieliniowej. Przed

Bardziej szczegółowo

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH Poznań - Rosnówko, 17-19.06.2015 r. Politechnika Poznańska Wydział Maszyn Roboczych i Transportu Zakład Systemów Transportowych MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH mgr inż. Kamil Musialski

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM ROZSZERZONY MAJ 2011 Egzamin maturalny z informatyki poziom rozszerzony 7 CZĘŚĆ II Uwaga: Wszystkie wyniki muszą być

Bardziej szczegółowo

INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015/16. zajęć w grupach A K L S P

INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015/16. zajęć w grupach A K L S P PLAN STUDIÓ NIESTACJONARNYCH 1-go STOPNIA 2015-20 STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2015/16 Rok I Podstawy programowania 15 30 45 E 7 Systemy operacyjne 15 25 40 zal z oc. 5 Teoretyczne podstawy

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Systemy na Chipie. Robert Czerwiński

Systemy na Chipie. Robert Czerwiński Systemy na Chipie Robert Czerwiński Cel kursu Celem kursu jest zapoznanie słuchaczy ze współczesnymi metodami projektowania cyfrowych układów specjalizowanych, ze szczególnym uwzględnieniem układów logiki

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo