Problem Komiwojażera - algorytmy metaheurystyczne

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Problem Komiwojażera - algorytmy metaheurystyczne"

Transkrypt

1 Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved

2 TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman Problem liczba rozwiązań: Dla 5 miast: 12 możliwych permutacji Dla 10 miast: N 1! l= możliwych permutacji Dla 50 miast: możliwych permutacji

3 Algorytm mrówkowy Algorytm wykorzystuje zachowanie mrówek tj. sposób ich zachowania w przemieszczaniu się.

4 Konstrukcja mrówki

5 Sytuacja

6 Sytuacja

7 Sytuacja

8 Algorytm mrówkowy Mrówka porusza się ze stałą szybkością, mrówka generuje po sobie ślad feromonowy, feromon paruje (znika), mrówka idzie po śladzie feromonowym z pewnym prawdopodobieństwem.

9 Po przejściu jednej mrówki

10 Po przejściu wielu mrówek

11 Algorytm mrówkowy Okazuje się, że ścieżka, na której jest najwięcej feromonu, jest ścieżką najkrótszą.

12 Mrówka Każda z mrówek wyposażona jest ponadto w pamięć. dwie listy: odwiedzone punkty (na początku pusta), nieodwiedzone punkty (na początku wypełniana), pamięć ta wykorzystywana jest do odtworzenia śladu mrówki (np. najkrótszej ścieżki dla TSP).

13 Poruszanie się mrówki Mrówka wybiera drogę do nieodwiedzonego jeszcze miasta dla którego wartość równania ij t ij jest największa z prawdopodobieństwem q. Zatem z prawdopodobieństwem 1-q mrówka wybierze miasto nieodwiedzone, które nie spełnia powyższego postulatu.

14 Poruszanie się mrówki ij t ij W równaniu tym: ij oznacza ślad feromonowy związany z umieszczeniem miasta j-tego jako i-tego w ułożeniu, ij oznacza wskaźnik powiązany z wybraną heurystyką, oznacza parametr, który determinuje, jak duży jest wpływ heurystyki na działanie mrówki.

15 Wskaźnik ij Zastosować można trzy metody obliczające wskaźnik : 1.Najwcześniejszy termin zakończenia zadania (EDD): =1/d, ij j 2.Modyfikowany termin zakończenia zadania (MDD): 1 = max {C p, d }, gdzie C oznacza sumę zadań już uporządkowanych, ij j j 3.Określonej ważności (AU): ij = 1 wj max {d j C j, 0} exp pj k p, gdzie p oznacza średni czas wykonania wszystkich nieuszeregowanych zadań a k to dodatkowy parametr regulacyjny.

16 Parowanie feromonu Feromon paruje z podłoża, feromon może parować liniowo (o x jednostek w jednostce czasu), feromon może parować wykładniczo (x < 1) t 1 = t x można zaproponować samodzielnie zaprojektowaną charakterystykę parowania feromonu z podłoża.

17 Parametry regulacyjne Dla przestawionego algorytmu dobierać można w różne sposoby parametry regulacyjne (prawdopodobieństwa, współczynniki), należy zbadać, jaki jest wpływ każdego z parametrów na wyniki dawane przez algorytm, należy zbadać, jaka ilość mrówek daje rozwiązanie zadowalające (kiedy zwiększanie ilości mrówek nieznacznie poprawia wynik dawany przez algorytm), należy zbadać, jaki wpływ ma ilość miast w instancji problemu na czas rozwiązania i ilość potrzebnej pamięci do rozwiązania problemu.

18 Algorytm genetyczny Jeden z algorytmów ewolucyjnych, przypomina zjawisko ewolucji biologicznej.

19 Algorytm genetyczny Dane jest pewne środowisko badań.

20 Algorytm genetyczny Dane jest pewne środowisko badań. W środowisku umieszczane są osobniki.

21 Osobnik Każdy z osobników zawiera w sobie pewne informacje (np. pewną permutację miast dla problemu TSP).

22 Algorytm genetyczny Część z osobników ma cechy lepsze ewolucyjnie (np. są większe, mają dłuższe kły bądź zawierają informację o krótszych drogach (dla TSP)) ta część populacji nadaje się do rozmnażania, pozostała część populacji nie bierze udziału w reprodukcji* (osobniki słabe, małe, z małymi kłami i długimi ścieżkami), * - zasada ta jest zachowana z pewnym prawdopodobieństwem p.

23 Algorytm genetyczny Zatem rozmnażaniu podlegają osobniki najlepsze*.

24 Rozmnażanie permutacji? Tak i to prostsze niż u ludzi. Krzyżowanie osobników: dziecko posiada część informacji od obojga rodziców, kilka możliwości krzyżowania, * - z prawdopodobieństwem p osobniki z puli do rozmnażania biorą udział w rozmnażaniu, zatem z prawdopodobieństwem 1-p udział w rozmnażaniu biorą osobniki spoza puli oznaczonej na zielono.

25 Selekcja osobników do krzyżowania Metoda ruletki (prostsza, biorą w niej udział wszystkie osobniki).

26 Selekcja osobników do krzyżowania Metoda rankingowa, wybierany jest pewien procent całej populacji (najlepsza część całej populacji), który bierze udział w krzyżowaniu i rozmnażaniu,

27 Mutacje Aby zapobiegać przedwczesnej zbieżności algorytmu, stosuje się mutacje, zmiany o małym prawdopodobieństwie zachodzące w pojedynczym osobniku przy tworzeniu (prawdopodobieństwo zajścia mutacji jest na poziomie 1%), dla TSP może to być np. zamiana dwóch losowych miast ze sobą,

28

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,

Bardziej szczegółowo

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy

Bardziej szczegółowo

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Algorytmy mrówkowe (ang. Ant Colony Optimization)

Algorytmy mrówkowe (ang. Ant Colony Optimization) Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011 Algorytmy Mrówkowe Daniel Błaszkiewicz 11 maja 2011 1 Wprowadzenie Popularnym ostatnimi laty podejściem do tworzenia nowych klas algorytmów do szukania rozwiązań problemów nie mających algorytmów rozwiązujących

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy Mrówkowe

Obliczenia Naturalne - Algorytmy Mrówkowe Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe Paweł Paduch Politechnika Świętokrzyska 8 maja 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe 1 z 43 Plan wykładu Plan Literatura

Bardziej szczegółowo

Algorytmy ewolucyjne Część II

Algorytmy ewolucyjne Część II Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia

Bardziej szczegółowo

Algorytmy mrówkowe wprowadzenie.

Algorytmy mrówkowe wprowadzenie. Algorytmy mrówkowe wprowadzenie. Jakub Zajkowski 1 Wstęp i rys historyczny Algorytmy mrówkowe to grupa procesów służących przede wszystkim do poszukiwania dróg w grafie. Z formalnego punktu widzenia algorytmy

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach

Bardziej szczegółowo

Metoda UCT w stochastycznych problemach transportowych

Metoda UCT w stochastycznych problemach transportowych Metoda UCT w stochastycznych problemach transportowych mgr inż. Maciej Świechowski promotor: prof. Jacek Mańdziuk Seminarium Metody Inteligencji Obliczeniowej 25.06.2015 Plan prezentacji Krótkie przypomnienie

Bardziej szczegółowo

W POSZUKIWANIU OPTYMALNEJ TRASY WYBRANE ALGORYTMY W ZASTOSOWANIU DO PROBLEMU KOMIWOJAŻERA

W POSZUKIWANIU OPTYMALNEJ TRASY WYBRANE ALGORYTMY W ZASTOSOWANIU DO PROBLEMU KOMIWOJAŻERA JOURNAL OF TRANSLOGISTICS 2015 7 Agnieszka JAKUBOWSKA, Katarzyna PIECHOCKA W POSZUKIWANIU OPTYMALNEJ TRASY WYBRANE ALGORYTMY W ZASTOSOWANIU DO PROBLEMU KOMIWOJAŻERA Słowa kluczowe: optymalizacja trasy,

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA

ALGORYTMY EWOLUCYJNE. INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 011. Napór selekcyjny (selektywny nacisk. Superosobniki: SELEKCJA INTELIGENTNE TECHNIKI KOMPUTEROWE wykład 0 ALGORYTMY EWOLUCYJNE 2 Dla danego problemu można określić wiele sposobów kodowania i zdefiniować szereg operatorów (np. zadanie komiwojażera). AE to rozwinięcie

Bardziej szczegółowo

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM GRZEGORZ FILO ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM S t r e s z c z e n i e A b s t r a c

Bardziej szczegółowo

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania:

ANALIZA ALGORYTMÓW. Analiza algorytmów polega między innymi na odpowiedzi na pytania: ANALIZA ALGORYTMÓW Analiza algorytmów polega między innymi na odpowiedzi na pytania: 1) Czy problem może być rozwiązany na komputerze w dostępnym czasie i pamięci? 2) Który ze znanych algorytmów należy

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM

Bardziej szczegółowo

Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji

Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji Hybrydowy algorytm mrówkowy wykorzystujący algorytm genetyczny do wyznaczania trasy w systemie nawigacji A hybrid ant algorithm using genetic algorithm to determine the route in navigation system Daniel

Bardziej szczegółowo

Obliczenia z wykorzystaniem sztucznej inteligencji

Obliczenia z wykorzystaniem sztucznej inteligencji Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk marzec 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji marzec 2016 1 / 38

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim

Bardziej szczegółowo

Mrówka Pachycondyla apicalis

Mrówka Pachycondyla apicalis Mrówka Pachycondyla apicalis Mrówki Pachycondyla apicalis wystepują w lasach południowego Meksyku, północnej Argentyny i Kostaryki. Wystepuja zarówno w lasach wilgotnych jak i suchych. Mrówki te polują

Bardziej szczegółowo

Program "FLiNN-GA" wersja 2.10.β

Program FLiNN-GA wersja 2.10.β POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:

Bardziej szczegółowo

Zadania przykładowe do kolokwium z AA2

Zadania przykładowe do kolokwium z AA2 1 Zadania przykładowe do kolokwium z AA2 Zadanie 1 Dla tekstu ALA MA KOTA ALE ON MA ALERGIĘ zilustruj działanie algorytmów: a) LZ77, b) LZ78, c) LZSS. Załóż, że maksymalna długość dopasowania to 4, rozmiar

Bardziej szczegółowo

Biologicznie motywowane metody sztucznej inteligencji

Biologicznie motywowane metody sztucznej inteligencji Biologicznie motywowane metody sztucznej inteligencji Problem marszrutyzacji Paweł Rychlik Jacek Gąsiorowski Informatyka, SSI, sem. 7 Grupa GKiO1 Prowadzący: dr inż. Grzegorz Baron 1. Wstęp Problem marszrutyzacji

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji II. Optymalizacja globalna Idea: generuj i testuj Do tej grupy naleŝą stochastyczne iteracyjne algorytmy przeszukiwania przestrzeni rozwiązań : metody przeszukiwania lokalnego metody przeszukiwania populacyjnego.

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier

Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach Instytut Informatyki Rozprawa doktorska Przemysław Juszczuk Adaptacyjny algorytm ewolucji różnicowej w rozwiązywaniu problemów teorii gier Promotor:

Bardziej szczegółowo

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania

Bardziej szczegółowo

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowa wykład 4: jeszcze o metaheurystykach Genealogia metaheurystyk Genealogia wg [El-Ghazali Talbi, Metaheuristics: From Design to Implementation, 2009] wybór 1940 LS 1947 1950 prof.

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ KATEDRA AUTOMATYKI I INŻYNIERII BIOMEDYCZNEJ Praca dyplomowa magisterska Aplikacja znajdująca najkrótszą drogę w supermarkecie

Bardziej szczegółowo