Trochę historii filozofii
|
|
- Dawid Kaczor
- 9 lat temu
- Przeglądów:
Transkrypt
1 Natura, a jej rozumienie we współczesnej nauce Janusz Mączka Centrum Kopernika Badań Interdyscyplinarnych Ośrodek Badań Interdyscyplinarnych Wydział Filozoficzny Papieskiej Akademii Teologicznej w Krakowie
2 1. Trochę historii filozofii 2. Trochę historii nauki 3. Struktura teorii fizycznych 4. Spojrzenie filozofa przyrody 5. Matematyczny opis przyrody 6. Wnioski 2
3 1. Esencjalizm: Trochę historii filozofii Pod powierzchniową warstwą konkretu kryje się istota (esencja), do której trzeba dochodzić rozumowaniem. Platon: istota umieszczona jest w świecie idei; świat cieni (konkretnych rzeczy) jest odbiciem świata idei i dlatego moŝe być swoistym źródłem wiedzy. Aprioryczny wysiłek skonstruowania świata i jego części z idealnych matematycznych struktur stosowanych do zjawisk przyrody. Arystoteles: zrozumieć rzecz to utworzyć jej pojęcie i podać jej definicje. Pojęć pierwotnych powinny dostarczyć tzw. definicje esencjalne, które powstają poprzez intuicyjne uchwycenie istoty rzeczy. Zjawiska przyrody powiązane są metafizycznymi relacjami wyraŝanymi przez przyczyny i skutki lub inne koncepcje metaforyczne. Istota to forma. Materia nie naleŝy do istoty. Archimedes: empiryczny punkt wyjścia, pomijając wyjaśnienia przyczynowe i nie odnosząc się do przyczyn celowych, a takŝe unikając numerologicznych spekulacji daŝył do wiedzy poprzez dyskurs matematyczny o wiązkach zachodzącymi miedzy zjawiskami przyrody. Zjawiska połączone są przez relacje matematyczne o charakterze nie metaforycznym i bez przyczynowych czy teleologicznych uwarunkowań. 3
4 2. Matematyka Trochę historii nauki Od czasów Euklidesa do wieku XIV i XV Europa nie wychodzi poza ten system matematyczny. Matematyka arabska i upadek Konstantynopola (1453). Johannes Mueller-Regimontanus [ ] 1476] (rozwój trygonometrii). Nicolo Fontana-Tartaglia [ ] 1557] (równania algebraiczne). Matematyka XVII w. G.W. Leibniz (teoria rachunku pochodnych) i I. Newton (teoria fluksji), czyli powstanie rachunku róŝniczkowego i całkowego. Kartezjusz (początki geometrii analitycznej). Pierre de Fermat (teoria liczb). 3. Fizyka (mechanika) Galileusz doświadczenie musi być łączone z podejściem matematycznym, arystotelesowskie poszukiwanie przyczyn w naturze jest bezuŝyteczne dla badań zjawisk o ruchach jednostajnie prostoliniowych. Newton Geometria jest o świecie rzeczywistym, a mianowicie o stosunkach przestrzennych zachodzących w świecie i tylko tym róŝni się od doświadczenia, Ŝe skrajnie idealizuje swój przedmiot badawczy. Księga przyrody napisana jest językiem matematyki. Główne zadanie filozofii polega na tym: za pośrednictwem zjawisk ruchu badać siły przyrody, a następnie z tych sił wnioskować o nowych zjawiskach. Rozwój nauk szczegółowych, ich sukcesy w rozkładaniu badanych zjawisk na coraz głębsze zjawiska i widoczny brak jakiejkolwiek granicy w tym procesie wnikania w głąb musiał doprowadzić do zakwestionowania nie tylko istnienia, ale samego pojęcia istoty rzeczy. 4
5 Teoria fizyczna zawiera: Struktura teorii fizycznych 1. matematyczną strukturę 2. domenę teorii aspekt, czy obszar świata, do którego teoria się odnosi. 3. reguły łączące (1) z (2), (definicje koordynujące, interpretacje 1). Nie zawsze mają one charakter liniowy. (1) Jest modelem (2). Zazwyczaj pełna struktura matematyczna teorii znana jest dopiero wtedy, gdy pojawi się ogólniejsza teoria. Komentarz (interpretacja filozoficzna) teorii fizycznej: 1. niespójny, czy nawet sprzeczny z matematyczną strukturą teorii. 2. neutralny do matematycznej struktury (komentarz nie wymusza zmian w strukturze). 3. ściśle odpowiada strukturze matematycznej. Ale: - struktury matematyczne cięgle ewoluują, - nie ma odpowiedniego języka (problemy z wyobraźnią: metafora, wyobraŝenie). 5
6 Spojrzenie filozofa przyrody 1. Cechy istotne (nauki formalne) Definicja matematyczna ustanawia cechy istotne danego bytu formalnego (wiemy co jest potrzebne, aby figurę moŝna nazwać kwadratem). Znajomość definicji daje poznanie istoty bytu. Husserl: istnieją czyste nauki związane z istotą, jak czysta logika i czysta matematyka (Id.34). Kartezjusz: jeśli dziecko nauczone arytmetyki wykona dodawanie przestrzegając prawideł, to moŝe być pewne, Ŝe znalazło odnośnie do badanej sumy wszystko, co tylko umysł ludzki zdolny jest wykryć (R.25). Cechy jednego bytu mogą wchodzić w związki z cechami innego bytu. Mogą być nawet zastąpione przez cechy innego bytu. Potrzebna jest dedukcja. Istoty takich bytów nie są pod powierzchnią bytu. Istota nie rozpływa się w sumie cech, ale wiemy które są istotne, a które nie. ZałoŜenie: definicja matematyczna definiuje byt matematyczny. Nie ma podziału na formę i materię, czy treść i kształt. Cała treść to struktura. 6
7 2. Nauki szczegółowe (identyfikacja cech istotnych) Problem związku ontologii z naukami W. Van O. Quine: Problem jest obecnie wyraźniejszy niŝ dawnej, dysponujemy bowiem ściślejszym kryterium, w oparciu o które moŝna ustalić, jaka ontologia jest konsekwencją danej teorii, mianowicie zakłada istnienie tych i tylko tych bytów, których występowanie wśród wartości zmiennych kwantyfikacji tej teorii jest koniecznym warunkiem prawdziwości jej twierdzeń. ( ) Stojąc wobec kwestii ontologicznych bierzemy pod uwagę zmienne kwantyfikowane nie po to, by dowiedzieć się co istnieje, lecz po to, by dowiedzieć się, co dana wypowiedź lub teoria nasza, czy teŝ sformułowana przez kogoś innego uznaje za istniejące. PROBLEM DOTYCZY TEGO NIE CO ISTNIEJE, ALE JAK DOTRZEĆ DO TEGO CO ISTNIEJ. Twierdzenia ontologiczne uznajemy za prawdziwe na podstawie danych doświadczenia, zinterpretowanych za pomocą aparatury pojęciowej. Ale aparatura pochodzi z ontologii, jaką wyznajemy. Ontologie fundacjonistyczne nie dają odpowiedniej wiedzy. 7
8 Matematyczny opis przyrody Cechy istotowości matematyki przenoszone są na świat materialny. Dla fizyka jest waŝne: JeŜeli świat materialny (fizyczny) istnieje, to naleŝy przypisać mu następujące własności. M Heller: Zbiór wszystkich niezmienników interpretacji stanowi treść danej teorii, jest tym, o czym ona mówi. Mimo, Ŝe nasze matematyczne modele są tylko grubymi przybliŝeniami przyrody, moŝemy łatwo stwierdzić na te samej zasadzie co w naukach formalnych jakie elementy są w nich istotne, a jakie nie. Np. dla umiejscowienia elektronu istotny jest kwadrat modułu jego funkcji falowej, a nie jest istotna, powiedzmy, faza tej funkcji. 8
9 Wnioski 1. Pojęcie istoty rzecz nie zostało wyeliminowane z filozofii przez rozwój zmatematyzowanych nauk przyrodniczych, jak chcieliby neopozytywiści. 2. Istoty rzeczy nie tkwią ukryte pod powierzchnią tego wszystkiego, do czego da się sięgnąć poznaniem zmysłowym. Istota to nie hipostaza czy ukryta jakość. 3. Przyroda, którą próbują chwytać teorie naukowe, jest pewną strukturą formalną. Istotą struktury formalnej jest to, Ŝe składa się ona z całej hierarchii związków istotnych i nieistotnych. 4. Związki istotne nie są traktowane jako podłoŝe dla związków nieistotnych (jak enteleheia dla przypadłości). Związek ten składa z równouprawnionych partnerów. 5. Istotność związku formalnego jest względna. Istotne związki formalne pojawiają się z względu na pewne związki formalne, ale te same związki formalne mogą juŝ nie być istotne ze względu na inne związki formalne. M. Heller: Do istotowego poznania przyrody dochodzi się nie wmyśliwaniem się w naturę bytu, lecz matematycznym modelowaniem tego, co da się zmierzyć. 9
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych 2 Podział dyscyplin filozoficznych Klasyczny podział dyscyplin filozoficznych:
Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk
Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk 10 października 2009 Plan wykładu Czym jest filozofia 1 Czym jest filozofia 2 Filozoficzna geneza nauk szczegółowych - przykłady Znaczenie
Filozofia, Germanistyka, Wykład I - Wprowadzenie.
2010-10-01 Plan wykładu 1 Czym jest filozofia Klasyczna definicja filozofii Inne próby zdefiniowania filozofii 2 Filozoficzna geneza nauk szczegółowych - przykłady 3 Metafizyka Ontologia Epistemologia
Rodzaje argumentów za istnieniem Boga
Rodzaje argumentów za istnieniem Boga Podział argumentów argument ontologiczny - w tym argumencie twierdzi się, że z samego pojęcia bytu doskonałego możemy wywnioskować to, że Bóg musi istnieć. argumenty
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
INFORMATYKA a FILOZOFIA
INFORMATYKA a FILOZOFIA (Pytania i odpowiedzi) Pytanie 1: Czy potrafisz wymienić pięciu filozofów, którzy zajmowali się także matematyką, logiką lub informatyką? Ewentualnie na odwrót: Matematyków, logików
Fizyka a fizykoteologia. Współczesne problemy.
Fizyka a fizykoteologia. Współczesne problemy. Janusz Mączka Ośrodek Badań Interdyscyplinarnych Wydział Filozoficzny Papieskiej Akademii Teologicznej w Krakowie 2 1. Definicje 2. Powstanie fizykoteologii
GWSP GIGI. Filozofia z aksjologią. dr Mieczysław Juda
GWSP Filozofia z aksjologią dr Mieczysław Juda GIGI Filozofia z aksjologią [5] Systemy nowożytne: empiryzm Locke a i sceptycyzm Hume a Filozofia z aksjologią [5] Systemy nowożytne: empiryzm Locke a i sceptycyzm
Nauka & Wiara. DSW Wrocław 27 kwietnia 2013
Nauka & Wiara DSW Wrocław 27 kwietnia 2013 Nauka & Wiara c, TM, All rights (lefts) reserved, etc... DSW Wrocław 27 kwietnia 2013 Bohaterowie dramatu Bohaterowie dramatu Wiara Nauka Bohaterowie dramatu
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z FILOZOFII POZIOM ROZSZERZONY
ZAGADNIENIA NA KOLOKWIA
ZAGADNIENIA NA KOLOKWIA RACJONALIZM XVII WIEKU [COPLESTON] A. KARTEZJUSZ: 1. metoda matematyczna i) cel metody ii) 4 reguły iii) na czym polega matematyczność metody 2. wątpienie metodyczne i) cel wątpienia
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych Metafizyka Ontologia Epistemologia Logika Etyka Estetyka
Obraz nauki i rzeczywistości z perspektywy strukturalizmu Michała Hellera
Obraz nauki i rzeczywistości z perspektywy strukturalizmu Michała Hellera Andrzej Stogowski Poznań 9 V 2009 r. Sposób uprawiania przez Michała Hellera nauki i filozofii (resp. filozofii w nauce ) stawia
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna 2009-09-04 Plan wykładu 1 Jońska filozofia przyrody - wprowadzenie 2 3 Jońska filozofia przyrody - problematyka Centralna problematyka filozofii
Filozofia, ISE, Wykład X - Filozofia średniowieczna.
Filozofia, ISE, Wykład X - Filozofia średniowieczna. 2011-10-01 Plan wykładu 1 Filozofia średniowieczna a starożytna 2 3 Ogólna charakterystyka filozofii średniowiecznej Ogólna charakterystyka filozofii
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z FILOZOFII POZIOM ROZSZERZONY
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się
Filozofia, Historia, Wykład IV - Platońska teoria idei
Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 204/205 FORMUŁA DO 204 ( STARA MATURA ) FILOZOFIA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFI-R MAJ 205 Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie
Filozofia, Germanistyka, Wykład IX - Immanuel Kant
Filozofia, Germanistyka, Wykład IX - Immanuel Kant 2011-10-01 Plan wykładu 1 Immanuel Kant - uwagi biograficzne 2 3 4 5 6 7 Immanuel Kant (1724-1804) Rysunek: Immanuel Kant - niemiecki filozof, całe życie
P L SJ A I W WAM K 2014
P L SJ E W WAM A I K 2014 Spis treści 1. O filozofii w ogóle......................... 13 1.1. O filozofii najogólniej...................... 14 1.2. Filozofia czy historia poglądów................ 16 1.3.
Filozofia, Germanistyka, Wykład I - Wprowadzenie.
2011-10-01 Plan wykładu Program zajęć 1 Program zajęć 2 3 4 5 Klasyczna definicja filozofii Inne próby zdefiniowania filozofii 6 Filozoficzna geneza nauk szczegółowych - przykłady Plan wykładu - informacje
Baruch Spinoza ( )
Baruch Spinoza (1632-1677) Dla jednych: najszlachetniejszy i najbardziej godny miłości z wielkich filozofów (B. Russell). Dla innych: Największy heretyk XVII wieku. Obrońca diabła. Duchowy sabotaŝysta.
Filozofia, Historia, Wykład IX - Filozofia Kartezjusza
Filozofia, Historia, Wykład IX - Filozofia Kartezjusza 2010-10-01 Plan wykładu 1 Krytyka nauk w Rozprawie o metodzie 2 Zasady metody Kryteria prawdziwości 3 Rola argumentów sceptycznych Argumenty sceptyczne
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się Ogół rozmyślań, nie zawsze naukowych, nad naturą człowieka,
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018 Do czego odnoszą się poniższe stwierdzenia? Do tego, czym jest matematyka dla świata, w
Spis treści. Wstęp Wybrane zagadnienia z teorii i metodologii filozofii przyrody... 17
Wstęp... 13 1. Wybrane zagadnienia z teorii i metodologii filozofii przyrody... 17 1.1. Przedmiot, cele i zadania filozofii przyrody... 17 1.2. Współczesne koncepcje filozofii przyrody... 19 1.3. Filozofia
Logika dla socjologów Część 2: Przedmiot logiki
Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Filozofia człowieka. Fakt ludzki i jego filozoficzne interpretacje
Filozofia człowieka Fakt ludzki i jego filozoficzne interpretacje Spotkanie źródłem poznania i nauk POZNAWANIE 2 Jedność doświadczenia filozoficznego Filozofia nauką o zasadach ( principia) Do wiedzy o
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
EGZAMIN MATURALNY 2012 FILOZOFIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 FILOZOFIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z filozofii Część I (20 punktów) Zadanie 1. (0 2) Obszar standardów
EGZAMIN MATURALNY 2011 FILOZOFIA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 FILOZOFIA POZIOM ROZSZERZONY MAJ 2011 2 Egzamin maturalny z filozofii poziom rozszerzony Zadanie 1. (0 1) Obszar standardów B. Opis wymagań
Czym są badania jakościowe? David Silverman : Interpretacja danych jakościowych
Czym są badania jakościowe? David Silverman : Interpretacja danych jakościowych Główne zagadnienia Kiedy porównujemy badania ilościowe i jakościowe, znajdujemy głownie róŝne rozłoŝenie akcentów między
Argument teleologiczny
tekst Argument teleologiczny i piąta droga św. Tomasza z Akwinu Tekst piątej drogi (z celowości): Piąta Droga wywodzi się z faktu kierowania rzeczami. Stwierdzamy bowiem, że pewne rzeczy, które są pozbawione
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI 3 XII 2015 TORUŃ
O DOBRZE ZNANYCH ZASADACH DYNAMIKI NEWTONA JOANNA GONDEK UNIWERSYTET GDAŃSKI INSTYTUT FIZYKI DOŚWIADCZALNEJ ZAKŁAD DYDAKTYKI FIZYKI DOBRZE ZNANE ZASADY DYNAMIKI NEWTONA I. Jeśli na ciało nie działajążadne
Argument teleologiczny
tekst Argument teleologiczny i piąta droga św. Tomasza z Akwinu Argument z celowości 1. W świecie obserwujemy celowe działanie rzeczy, które nie są obdarzone poznaniem (np. działanie zgodnie z prawami
EGZAMIN MATURALNY 2010 FILOZOFIA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2010 FILOZOFIA POZIOM ROZSZERZONY Klucz punktowania odpowiedzi MAJ 2010 2 Zadanie 1. (0 2) problemów i tez z zakresu ontologii, epistemologii,
ROZWAŻANIA O JEZYKU NAUKOWYM I RELIGIJNYM
ROZWAŻANIA O JEZYKU NAUKOWYM I RELIGIJNYM Wiesław M. Macek Wydział Matematyczno-Przyrodniczy, Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie, Dewajtis 5, 01-815 Warszawa; Centrum Badań Kosmicznych,
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019 Funkcje uwagi historyczne Wprowadzenie liczb rzeczywistych i liczb zespolonych
Spis treści: 3. Geometrii innych niż euklidesowa.
Matematyka Geometria Spis treści: 1. Co to jest geometria? 2. Kiedy powstała geometria? 3. Geometrii innych niż euklidesowa. 4. Geometrii różniczkowej. 5. Geometria. 6. Matematyka-konieckoniec Co to jest
FIZYKA A NAUKI SPOŁECZNE KILKA PROBLEMÓW DO WYJAŚNIENIA
Prof. UEK dr hab. Czesław Mesjasz Uniwersytet Ekonomiczny w Krakowie mesjaszc@ae.krakow.pl FIZYKA A NAUKI SPOŁECZNE KILKA PROBLEMÓW DO WYJAŚNIENIA Interdyscyplinarne Seminarium: Matematyka i fizyka w socjologii
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
ARGUMENTY KOSMOLOGICZNE. Sformułowane na gruncie nauk przyrodniczych
ARGUMENTY KOSMOLOGICZNE Sformułowane na gruncie nauk przyrodniczych O CO CHODZI W TYM ARGUMENCIE Argument ten ma pokazać, że istnieje zewnętrzna przyczyna wszechświata o naturze wyższej niż wszystko, co
Spór o poznawalność świata
ROMAN ROŻDŻEŃSKI FILOZOFIA A RZECZYWISTOŚĆ Spór o poznawalność świata Wydawnictwo WAM Kraków 2012 Spis treści Przedmowa 11 Rozdział I Myślenie filozoficzne w cieniu zwątpienia 15 1. Wprowadzenie 15 2.
Analiza wyników badania Kompetencji trzecioklasistów uczniów klasy 3a i 3b w roku szkolnym 2015/16. opracowała Joanna Chachulska
Analiza wyników badania Kompetencji trzecioklasistów uczniów klasy 3a i 3b w roku szkolnym 2015/16 opracowała Joanna Chachulska Test Kompetencji Trzecioklasistów z języka polskiego został przeprowadzony
ZAŁOŻENIA FILOZOFICZNE
ZAŁOŻENIA FILOZOFICZNE Koło Wiedeńskie Karl Popper Thomas Kuhn FILOZOFIA A NAUKA ZAŁOŻENIA W TEORIACH NAUKOWYCH ZAŁOŻENIA ONTOLOGICZNE Jaki jest charakter rzeczywistości językowej? ZAŁOŻENIA EPISTEMOLOGICZNE
EGZAMIN MATURALNY 2013 FILOZOFIA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2013 FILOZOFIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z filozofii Część I (20 punktów) Zadanie 1. (0
INTUICJE. Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998)
PARADYGMAT INTUICJE Zespół norm, wzorców, reguł postępowania, które zna każdy naukowiec zajmujący się daną nauką (Bobrowski 1998) PIERWSZE UŻYCIA językoznawstwo: Zespół form deklinacyjnych lub koniugacyjnych
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wstęp do filozofii przyrody Rok akademicki: 2016/2017 Kod: CIM-1-306-s Punkty ECTS: 2 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów:
Sylabus LICZBA GODZIN. Treści merytoryczne przedmiotu
Sylabus Nazwa Przedmiotu: Teoria bytu (ontologia) Typ przedmiotu: obligatoryjny Poziom przedmiotu: zaawansowany rok studiów, semestr: I rok, semestr II; II rok, semestr I (studia filozoficzne I stopnia)
Metody symulacji komputerowych Modelowanie systemów technicznych
Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje
Zdrowie jako sprawność i jakość u Tomasza z Akwinu
Zdrowie jako sprawność i jakość u Tomasza z Akwinu Wstęp Zdrowie to pozytywny stan samopoczucia fizycznego, psychicznego i społecznego, a nie tylko brak choroby lub niedomaganie (Światowa Organizacja Zdrowia
ORIENTACJE, METODY, PROCEDURY i TECHNIKI BADAWCZE
ORIENTACJE, METODY, PROCEDURY i TECHNIKI BADAWCZE. ORIENTACJA ORIENTACJA = zespół załoŝeń określający sposób ujmowania świata (ontologia) i sposoby jego poznawania (epistemologia) ORIENTACJA TEORETYCZNA:
SPIS TREŚCI I. WPROWADZENIE - FILOZOFIA JAKO TYP POZNANIA. 1. Człowiek poznający Poznanie naukowe... 16
SPIS TREŚCI P r z e d m o w a... 5 P r z e d m o w a do d r u g i e g o w y d a n i a... 7 P r z e d m o w a do t r z e c i e g o w y d a n i a... 9 P r z e d m o w a do c z w a r t e g o w y d a n i a...
FILOZOFOWIE UMYSŁU. Angielskie oświecenie
FILOZOFOWIE UMYSŁU Angielskie oświecenie JOHN LOCKE (1632-1704) NOWY ARYSTOTELES Locke w 1690 roku wydaje swoje podstawowe dzieło filozoficzne: En essay concerning the human understanding (Rozważania dotyczące
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Nazwa. Wstęp do filozofii. Typ przedmiotu. Jednostka prowadząca Jednostka dla której przedmiot jest oferowany
Nazwa Kierunek Poz. kształcenia Jednostka prowadząca Jednostka dla której przedmiot jest oferowany Typ Opis Wstęp do filozofii kognitywistyka studia st. stacjonarne Wydział Filozofii i Socjologii, nstytut
Filozofia, Germanistyka, Wykład VIII - Kartezjusz
2013-10-01 Plan wykładu 1 Krytyka nauk w Rozprawie o metodzie 2 Idea uniwersalnej metody Prawidła metody 3 4 5 6 Krytyka Kartezjusza Podstawą wiedzy jest doświadczenie Krytyka nauk Kartezjusz - krytyka
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej
Modelowanie wybranych pojęć matematycznych semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej Co to jest objętość? Wyniki ankiety Objętość jest to przestrzeń jaką zajmuje dana figura. Ilość
STANDARDY KSZTAŁCENIA DLA KIERUNKU STUDIÓW: ARCHITEKTURA
Dz.U. z 2011 nr 207 poz. 1233 Załącznik nr 2 STANDARDY KSZTAŁCENIA DLA KIERUNKU STUDIÓW: ARCHITEKTURA A. STUDIA PIERWSZEGO STOPNIA I. WYMAGANIA OGÓLNE Studia pierwszego stopnia trwają nie krócej niż 7
"Matematyka jest alfabetem, za pomocą którego Bóg opisał Wszechświat." Galileusz
"Matematyka jest alfabetem, za pomocą którego Bóg opisał Wszechświat." Galileusz Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi, którzy uprawiają matematykę. Dobry Bóg stworzył liczby naturalne,
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA STUDIUM PODYPLOMOWE DLA NAUCZYCIELI ROK AKADEMICKI 2013-2014 Rok I semestr I
Terminarz zjazdów Nr zjazdu Daty zjazdów 1 19-20.10.2013 2 09-10.11.2013 3 16-17.11.2013 4 30.11-01.12 2013 5 14-15.12.2013 6 04-05.01.2014 7 11-12.01.2014 8 25-26.01.2014 Sesja egzaminacyjna 9 01-02.02.
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
1. Dyscypliny filozoficzne. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016
1. Dyscypliny filozoficzne Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Pochodzenie nazwy filozofia Wyraz filozofia pochodzi od dwóch greckich słów:
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grządziel Wykład 1; 1 października 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej
3. Spór o uniwersalia. Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016
3. Spór o uniwersalia Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Nieco semiotyki nazwa napis lub dźwięk pojęcie znaczenie nazwy desygnat nazwy każdy
Filozofia, ISE, Wykład V - Filozofia Eleatów.
2011-10-01 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii
Potencjał społeczności lokalnej-podstawowe informacje
Projekt Podlaska Sieć Partnerstw na rzecz Ekonomii Społecznej nr POKL.07.02.02-20-016/09 Potencjał społeczności lokalnej-podstawowe informacje Praca powstała na bazie informacji pochodzących z publikacji
Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne
Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem
Współczesne koncepcje filozofii i etyki wykład 4: Świat odczarowany. filozofia nowożytna: filozofia współczesna: f. spekulatywna f.
filozofia nowożytna: filozofia współczesna: racjonalizm woluntaryzm idealizm materializm uniwersalizm indywidualizm f. spekulatywna f. pozytywna filozofia nowożytna: filozofia współczesna: racjonalizm
RENÉ DESCARTES (KARTEZJUSZ)
(1596-1650) mal. Frans Hals (1648) RENÉ DESCARTES (KARTEZJUSZ) NAJWAŻNIEJSZE DZIEŁA Discours de la Méthode (Rozprawa o metodzie) 1637 Meditationes de prima philosophia (Medytacje o filozofii pierwszej)
Modelowanie systemów empirycznych
Wprowadzenie do przedmiotu Modelowanie systemów empirycznych Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie 1 System Jest to obiekt fizyczny
SPIS TREŚCI. Część pierwsza KRYTYKA ESTETYCZNEJ WŁADZY SĄDZENIA
SPIS TREŚCI Przedmowa tłumacza................. XI KRYTYKA WŁADZY SĄDZENIA Przedmowa do pierwszego wydania............ 3 Wstęp...................... 11 I. O podziale filozofii............... 11 II. O suwerennej
KLUCZ ODPOWIEDZI KONKURS POLONISTYCZNY. Zadania zamknięte. Zadania otwarte
KLUCZ ODPOWIEDZI KONKURS POLONISTYCZNY /etap wojewódzki/ Zadania zamknięte Zad.2. Zad.4. Zad.14. Zad.15. Zad.16. Zad.17. B D A B C A Zadania otwarte Numer zadania Zad.1. Zad. 3. Zad.5. Odpowiedź poprawna/
Filozofia, Historia, Wykład VIII - Wprowadzenie do filozofii nowożytnej
Filozofia, Historia, Wykład VIII - Wprowadzenie do filozofii nowożytnej 2010-10-01 Plan wykładu Epistemologia centralną dyscypliną filozoficzną W filozofii starożytnej i średniowiecznej dominującą rolę
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
KIERUNEK: FILOZOFIA. Jeżeli wykłady odbywają się równolegle z obowiązkowymi ćwiczeniami, to punkty ECTS umieszczone są tylko przy nazwie wykładu.
KIERUNEK: FILOZOFIA Plan studiów drugiego stopnia Cykl rozpoczynający się w roku akademickim 2018/2019 Zbo zaliczenie bez oceny Z zaliczenie z oceną E egzamin Jeżeli wykłady odbywają się równolegle z obowiązkowymi
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,
Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
KARTA KURSU. Odnowa Biologiczna
KARTA KURSU Odnowa Biologiczna Nazwa Nazwa w j. ang. Metodologia nauk przyrodniczych Methodology of the natural science Kod Punktacja ECTS* 2.0 Koordynator Dr hab. Alicja Walosik Zespół dydaktyczny Dr
Filozofia z elementami logiki Klasyfikacja wnioskowań I część 1
Filozofia z elementami logiki Klasyfikacja wnioskowań I część 1 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan: definicja pojęcia wnioskowania wypowiedzi inferencyjne i wypowiedzi
PEF Copyright by Polskie Towarzystwo Tomasza z Akwinu
KONIECZNOŚĆ (gr. [ananke], [to anankáion], łac. necessitas) stany bytowe oraz pochodne od nich logiczne stany poznawcze wyrażone w sądach. Problematyka k. ujawniła się przy okazji omawiania warunków wartościowego
2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):
OPISU MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1) Nazwa modułu : MATEMATYCZNE PODSTAWY KOGNITYWISTYKI 2) Kod modułu : 08-KODL-MPK 3) Rodzaj modułu : OBOWIĄZKOWY 4) Kierunek studiów: KOGNITYWISTYKA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Proces informacyjny. Janusz Górczyński
Proces informacyjny Janusz Górczyński 1 Proces informacyjny, definicja (1) Pod pojęciem procesu informacyjnego rozumiemy taki proces semiotyczny, ekonomiczny i technologiczny, który realizuje co najmniej
Gotfried Wilhelm LEIBNIZ Ostatni z wielkich, którzy wiedzieli wszystko
Gotfried Wilhelm LEIBNIZ Ostatni z wielkich, którzy wiedzieli wszystko matematyka logika metafizyka historia (1646-1716) inżynieria Dwa cytaty: o matematyce i informatyce Leibniz był przekonany, że świat
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Wstęp Komentarze jako metoda wyjaśniania oraz interpretacji w średniowieczu Komentarz Akwinaty do Etyki nikomachejskiej krótka prezentacja Próba
Izabella Andrzejuk Wstęp Komentarze jako metoda wyjaśniania oraz interpretacji w średniowieczu Komentarz Akwinaty do Etyki nikomachejskiej krótka prezentacja Próba analizy fragmentu Komentarza według reguł
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW MATEMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia pierwszego stopnia ogólnoakademicki licencjat 1. Umiejscowienie
TERMINOLOGIA. Język dyscypliny zbiór terminów wraz z objaśnieniami
Dyscyplina gałąź nauki lub wiedzy TERMINOLOGIA Język dyscypliny zbiór terminów wraz z objaśnieniami Termin wyraz lub połączenie wyrazowe o specjalnym, konwencjonalnie ustalonym znaczeniu naukowym lub technicznym
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników