CZYTADŁO. "Matematyka jest to królowa wszystkich nauk, jej ulubieńcem jest prawda,a prostość i oczywistość jej strojem." Jan Śniadecki.
|
|
- Grzegorz Grzelak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Pismo młodzieży i nauczycieli CZYTADŁO "Matematyka jest to królowa wszystkich nauk, jej ulubieńcem jest prawda,a prostość i oczywistość jej strojem." Jan Śniadecki W numerze: - sławni matematycy - Pitagoras - dowcipy matematyczne - sudoku - zagadki matematyczne - krzyżówka - figle z zapałkami - rebusy - wiersz o liczbie Π - zadania logiczne - zadania przed egzaminem gimnazjalnym
2 Sławni matematycy PITAGORAS Pitagoras z Samos (572 p.n.e. 497 p. n. e.) żył w czasach, gdy w Indiach nauczał Budda, a w Chinach Konfucjusz. Założył związek Pitagorejski bractwo religijnopolityczne, które prowadziło także działalność naukową. Pitagorejczycy uważali, że świat można opisać za pomocą liczb. Ich celem życia było poszukiwanie harmonii w świecie. Odkryli na przykład, jakie długości powinny mieć dwie struny, aby razem pięknie (harmonijnie) brzmiały. Twierdzenie Pitagorasa, używane było przez Babilończyków, Egipcjan Hindusów. Od pitagorejczyków pochodzi prawdopodobnie dowód i nazwa twierdzenia. Legenda głosi, że po udowodnieniu twierdzenia Pitagoras złożył bogom hekatombę, czyli ofiarę ze stu wołów. b c Jeśli trójkąt jest prostokątny, to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. a 2 +b 2 = c 2 a,b długości przyprostokątnych a c długość przeciwprostokątnej Tam za murem dziewczyna, a pod ręką drabina, co pięć metrów długości ma. W fosie krążą rekiny. Żal przecudnej dziewczyny, co za murem z rozpaczy łka. Czy zwykłemu chłopczynie, na wspomnianej drabinie, te przeszkody pokonać się da? Dane wierszyk pominie. Znajdziesz je przy rycinie. Policz sprytnie. Odpowiedz raz dwa! 2
3 DOWCIPY MATEMATYCZNE 1.Prawdziwy matematyk myśli A, mówi B, pisze C, które wygląda jak D, jest przekonany, że powiedział E, a powinno być F. 2. Mama pyta Anię, która chodzi do zerówki - Ile jest 3+4? - 7 odpowiada Ania. - A 7+4? - Nie wiem. Do 11 jeszcze nie liczyliśmy. 3. Ile jest cztery dodać pięć? - Osiem! - No pomyśl jeszcze! - Siedem! - Policz na palcach, to przekonasz się, że to dziewięć! - Chyba nie, bo dziewięć, to trzy plus sześć! 4. - Ile to jest dwa plus dwa? - Cztery! - Nie, pięć. Bo cztery plus VAT 5. Nauczycielka pyta uczennicę: - Masz dziewięć cukierków. Trzy dałaś Ani i trzy Zosi. Ile cukierków zostanie dla ciebie? - Za mało. 6. Pani w szkole pyta Jasia: - Powiedz mi kto to był: Pitagoras, Tales i Euklides? - Nie wiem. A czy pani, wie kto to był Zyga, Chudy i Kazek? - Nie wiem - odpowiada zdziwiona nauczycielka. - To co mnie pani swoją bandą straszy? 7. Rozmawiają dwaj uczniowie: - Potrafię liczyć szybciej niż nasza pani od matematyki - przechwala się jeden z nich - To powiedz, ile to jest 5 x 5-77! - Przecież to zły wynik! - Ale zobacz, jak szybko go podałem! 8. Nauczycielka pyta Jasia na lekcji matematyki: - Mama na urodziny upiekła ci tort i podzieliła na cztery części. Dla taty, dla siebie, twojej siostry i ciebie. A tu niespodziewanie przychodzi sąsiadka. Jak mama teraz podzieli tort? Mama schowa go do lodówki 3
4 Sudoku Gra polega na wypełnieniu planszy cyframi od 1 do 9 w ten sposób, aby w tym samym wierszu, w tej samej kolumnie, oraz w każdym sektorze 3x3 oznaczonym pogrubiona linią, znajdowała się tylko jedna taka sama cyfra. Innymi słowy w żadnej kolumnie, wierszu, lub oznaczonym sektorze nie można powtórzyć się dwa razy ta sama cyfra. POWODZENIA! 4
5 Zagadki matematyczne! 1.Posługując się tylko dodawaniem napisz liczbę 28 przy pomocy pięciu dwójek, a liczbę 1000 przy pomocy ośmiu ósemek. 2.W pewnej jamie żyły smoki czerwone i smoki zielone. Każdy czerwony smok miał 6 głów,8 nóg i 2 ogony. Każdy zielony smok miał 8 głów, 6 nóg i 4 ogony. Wszystkich ogonów było 44, a zielonych nóg było o 6 mniej niż czerwonych głów. Ile czerwonych smoków żyło w tej jamie? 3.Jest sto piłek koszykowych: czerwonych i pomarańczowych. Jeśli wezmę trzy dowolne piłki to tylko jedna z nich może być pomarańczowa. Ile jest czerwonych piłek? 4.Znajdź trzy liczby całkowite dodatnie, takie że ich iloczyn jest kwadratem liczby całkowitej, a także suma dowolnych dwóch jest kwadratem liczby całkowitej. 5.Pewien człowiek, dzieląc cały swój majątek, zostawił swoim synom testament tej treści :"Najstarszy syn otrzyma 1000 rubli i 1/8 reszty, drugi z kolei 2000 rubli i 1/8 nowej reszty, trzeci 3000 rubli i 1/8 nowej reszty, itd." Wszyscy synowie otrzymali w wyniku podziału po równo. Ilu synów miał ów człowiek? 5
6 Na pewno sobie poradzisz KRZYŻÓWKA Nauka o liczbach i figurach geometrycznych. 2. Czworokąt posiadający wszystkie boki równe. 3. Wynik odejmowania. 4. Inaczej 10zł. 5. Funkcja zachowująca odległość między punktami. 6. Dział matematyki badający własności figur geometrycznych. 7. Spłaszczony okrąg. 8. Czworokąt przypominający wyglądem latawiec. 9. Słynny szwajcarski matematyk. 10. Wynik działania ( ). HASŁO 6
7 FIGLE Z ZAPAŁKAMI Przełóż odpowiednią zapałkę tak, aby powstał prawidłowy wynik. Odpowiedzi do zagadek matematycznych = = W jamie żyło 8 czerwonych smoków , 81, Ten człowiek miał 7 synów. 7
8 REBUSY 8
9 Liczba Pi Podziwu godna liczba Pi trzy koma jeden cztery jeden. Wszystkie jej dalsze cyfry też są początkowe, pięć dziewięć dwa ponieważ nigdy się nie kończy. Nie pozwala się objąć sześć pięć trzy pięć spojrzeniem osiem dziewięć obliczeniem siedem dziewięć wyobraźnią, a nawet trzy dwa trzy osiem żartem, czyli porównaniem cztery sześć do czegokolwiek dwa sześć cztery trzy na świecie. Najdłuższy ziemski wąż po kilkunastu metrach się urywa podobnie, choć trochę później, czynią węże bajeczne. Korowód cyfr składających się na liczbę Pi nie zatrzymuje się na brzegu kartki, potrafi ciągnąc się po stole, przez powietrze, przez mur, liść, gniazdo ptasie, chmury, prosto w niebo, przez całą nieba wzdętość i bezdenność. O, jak krótki, wprost mysi, jest warkocz komety! Jak wątły promień gwiazdy, że zakrzywia się w lada przestrzeni! A tu dwa trzy piętnaście trzysta dziewiętnaście mój numer telefonu twój numer koszuli rok tysiąc dziewięćset siedemdziesiąty trzeci szóste piętro ilość mieszkańców sześćdziesiąt pięć groszy obwód w biodrach dwa palce szarada i szyfr, w którym słowiczku mój a leć, a piej oraz uprasza się zachować spokój, a także ziemia i niebo przeminą, ale nie liczba Pi, co to to nie, ona wciąż swoje niezłe jeszcze pięć, nie byle jakie osiem, nieostatnie siedem, przynaglając, ach, przynaglając gnuśną wieczność do trwania. Wisława Szymborska 9
10 Zadania logiczne Zadanie 1 Jeżeli a to b - to b to a? Mamy sześć zmiennych: a, b, c, d, e i f. Każda z nich przyjmuje inną, całkowitą wartość z przedziału od 1 do 6. Jeżeli prawdą jest, że: nartach. Jakiej grze towarzyskiej i jakiemu sportowi poświęca swój czas pan Dabacki? Rozwiązanie: Pan Dabacki gra w domino i jeździ na nartach. a 5 a 6 b < a b > d e = 4 c > f to ile równa jest każda z nich? Rozwiązanie: a = 3 b =2 c = 6 d =1 e = 4 f = 5 Zadanie 2 Gracze - sportowcy Panowie Abacki, Babacki, Cabacki i Dabacki są zapalonymi graczami i mistrzami, każdy w swojej specjalności. Jeden z nich znakomicie gra w brydża, drugi jest wybitnym szachistą, trzeci opanował wszystkie tajniki gry w warcaby, czwarty zaś zawsze wygrywa w domino. Co ciekawe, wszyscy czterej panowie nie tylko poświęcają czas na towarzyskie gry umysłowe, lecz również z pasją uprawiają różne rodzaje sportu. Jeden z nich jeździ na rowerze, drugi grywa w tenisa, trzeci uprawia pływanie, czwarty zaś jeździ na nartach. Pan Abacki jest szachistą. Rowerzysta świetnie gra w warcaby. Pan Dabacki nie grywa w brydża. Pływakiem nie jest pan Cabacki. Pan Abacki nie jeździ na nartach. Pan Babacki nie zna gry w warcaby i nie grywa w tenisa. Pan Dabacki nie umie jeździć na rowerze, a pan Cabacki nie gra w domino. Brydżysta nie umie jeździć na Zadanie 3 W rozmowie trzech pań, Anny, Barbary i Celiny, pani Anna stwierdziła: "Barbara jest dwa lata starsza ode mnie, ja jestem o rok starsza od Celiny, mam 29 lat." Pani Barbara powiedziała: "Różnica wieku między Celiną i mną wynosi trzy lata; albo Anna, albo Celina jest młodsza ode mnie; Celina ma 32 lata. "Pani Celina stwierdziła: "Anna jest starsza ode mnie; Anna ma 30 lat; Anna jest o trzy lata młodsza od Barbary. "Każda z pań dwukrotnie powiedziała prawdę, ale raz - niestety - skłamała. Ile lat mają panie Anna, Barbara i Celina? Rozwiązanie: Anna 30 lat Barbara 32 lata Celina 29 lat 10
11 Zadania przed egzaminem gimnazjalnym Zadania zamknięte: Zadanie 1. (0-1) Ilu kilometrom w terenie odpowiada 1 cm na mapie w skali 1: ? A. 0,2 km, B. 2 km, C. 20 km, D. 200 km. Zadanie 2. (0-1) Dwóch piechurów wychodzi jednocześnie z tego samego miejsca. Pierwszy przebywa w ciągu jednej godziny 4 km i idzie w kierunku południowym, drugi przebywa w ciągu jednej godziny 3 km i idzie na wschód. Jaka będzie odległość między nimi po upływie godziny? A. 7 km, B. 12 km, C. 1 km, D. 5 km. Zadanie 3. (0-1) Podróżnik, pokonując dziennie taką samą długość trasy, przebył w ciągu dwudziestu czterech dni 2400 km. O ile dni dłużej trwałaby podróż, gdyby przebywał dziennie o 20 km mniej? A. o 6 dni, B. o 30 dni, C. o 4 dni, D. o 20 dni. Zadanie 4. (0-1) Jeżeli dwie komórki jajowe zostały zapłodnione przez plemniki - jedna przez plemnik z chromosomem X, druga przez plemnik z chromosomem Y, to po dziewięciu miesiącach urodzi się: A. chłopiec, B. chłopiec i dziewczynka, C. dziewczynka, D. dwóch chłopców. Zadanie 5. (0-1) W jaki sposób można pozbyć się niepożądanej twardości wody? A. wystarczy ją przez dłuższy czas gotować, B. obniżyć temperaturę (ochłodzić), C. dodać szczyptę soli kuchennej, D. wymieszać wodę Znajdź 7 różnic 11
12 Zadania otwarte: Zadanie 6. (0-3) Kierowca, ruszając z miejsca samochodem, rozpędza się i porusza się ze stałym przyspieszeniem. Przebywa drogę 100 m w czasie 10 sekund. Jaka jest prędkość tego samochodu pod koniec ruchu? Zapisz obliczenia. Zadanie 7. (0-3) Na lekcji wychowania fizycznego nauczyciel poprosił uczniów, aby zmierzyli sobie tętno przed i po biegu i zapamiętali wyniki pomiarów. Wartości pomiarów Jurka wynosiły 80 i 120 uderzeń na minutę. Która z tych wartości dotyczyła sytuacji przed, a która - sytuacji po biegu? Uzasadnij odpowiedź. Zadanie 8. (0-3) Za 120 zł kupiono 15 paczek herbaty. Ile paczek herbaty można by kupić za tę samą sumę, gdyby każda z nich kosztowała o 3 zł mniej? Zapisz obliczenia. Zadanie 9. (0-4) Harcerze zmierzyli długość szlaku z Leszna do Palmir na mapie Puszczy Kampinoskiej w skali 1: Otrzymali wynik 42 cm. Ile czasu będzie trwał marsz na trasie z Leszna do Palmir, jeżeli harcerze będą szli ze średnią prędkością 5 km/h? Zapisz obliczenia. Zadanie 10. (0-3) Wymień dwa źródła zanieczyszczeń powietrza i podaj jeden ze sposobów zmniejszenia zanieczyszczenia atmosfery. Zadanie 11. (0-6) Do pewnego gimnazjum uczęszcza 600 uczniów. Gdyby liczba chłopców w tym gimnazjum zwiększyła się o 20%, a liczba dziewcząt zmniejszyłaby się o 40%, to liczba dziewcząt i chłopców byłaby taka sama. Ile dziewcząt uczęszcza do tej szkoły? Zapisz obliczenia. Redakcja: Monika Przybyło, Sylwia Skiba, Marcin Kornak, Marcin Długosz, Sławomir Kocur, Kamil Jakubek Opiekun: mgr Agnieszka Szumilas 12
Dlaczego liczba Π ma swoje święto?
Dlaczego liczba Π ma swoje święto? 14 marca 2016 Szkolne Święto Matematyki w Gimnazjum nr 2 w Skawinie Liczba Pi jest wykorzystywana prawie w każdej sytuacji, w której musimy dokonać pomiarów przy pomocy
PROJEKT EDUKACYJNY MATEMATYCZNY EXPERT
PROJEKT EDUKACYJNY MATEMATYCZNY EXPERT Dla uczniów klas I- VI Szkoły Podstawowej Nr 3 im. Henryka Brodatego w Złotoryi. Czas realizacji: rok szkolny 2013/2014 ( wrzesień - marzec) Złotoryja, wrzesień 2013
Liczba. Prezentacje przygotowała: Agata Charkiewicz IIIa
Liczba Prezentacje przygotowała: Agata Charkiewicz IIIa Czym jest π? Liczba Pi jest jedną z pierwszych odkrytych przez człowieka liczb niewymiernych. Jej skrócona wartość wynosi 3,14 i oznacza stosunek
GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1
GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem
35 WIECZÓR KAWALERSKI
SPIS TREŚCI Wstęp... 6 Abacki, Babacki...... Układanki... 63 Odtwarzanie działań... 8 Szyfry... 8 Własności liczb... 105 Odpowiedzi... 11 Zadania do wykorzystania na lekcjach matematyki... 182 Autorzy
Dookoła koła. Zastosowania koła i okręgu w różnych dziedzinach życia. Karol Duszczyk
Dookoła koła Zastosowania koła i okręgu w różnych dziedzinach życia. Karol Duszczyk Prezentacja stworzona na potrzeby projektu stypendialnego,,mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych
Uczę się kopiować, wycinać i wklejać określone fragmenty tekstu
EDYTOR TEKSTU WORD FORMATOWANIE TEKSTU Ćwiczenie 1 Napisz poniższy tekst, a następnie skopiuj go i zmień kolejność wierszy. Sformatuj kolejne dwa akapity w wybrany przez siebie sposób (inaczej niż pierwszy
Tajemnicza liczba π. d d d
Tajemnicza liczba π Każdy z Was na pewno już słyszał o liczbie π. Występuje ona w wielu wzorach matematycznych, np. na pole koła, objętość walca, jest przykładem liczby niewymiernej. Większość osób pamięta,
Badanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie. (0-) Po podniesieniu liczby -2 2 do kwadratu otrzymamy liczbę: 25 A) B) C) 6 D) Zadanie 2. (0-) Wynikiem
Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I
Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja
3 zawartości szklanki obliczył, że w pozostałej
Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.
Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Gazetka matematyczna Szkoły Podstawowej Nr 4 im. Jana Twardowskiego. Witajcie! My jako uczniowie Szkoły Podstawowej przygotowujemy gazetkę by
Gazetka matematyczna Szkoły Podstawowej Nr 4 im. Jana Twardowskiego Nr 1/2016 październik Witajcie! Ta gazetka jest przeznaczona właśnie dla Was! My jako uczniowie Szkoły Podstawowej przygotowujemy gazetkę
Zadania z ułamkami. Obliczenia czasowe
Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały
Egzamin ósmoklasisty od roku szkolnego 2018 / Matematyka. Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut
Egzamin ósmoklasisty od roku szkolnego 2018 / 2019 Matematyka Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut Zadanie 1. (0-1) Z okazji Światowego Dnia Książki uczniowie klasy VII zorganizowali
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
Matematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca
d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100
Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2
Egzamin w klasie III gimnazjum Część matematyczna
Egzamin w klasie III gimnazjum Część matematyczna Szkice rozwiązań zadań Zadanie 1. Ponieważ harcerze zaczęli marsz o 13:00, a skończyli o 15:30 więc rzeczywiście maszerowali 2,5 godziny Z autobusu do
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 8 KWIETNIA 2017 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Ola odwiedziła koleżankę, a następnie wracała
Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:
Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów
Akademia Zaruskiego III edycja r.szk.2016/2017 ODZNAKA MATEMATYK KLASY II-III
Akademia Zaruskiego III edycja r.szk.2016/2017 ODZNAKA MATEMATYK KLASY II-III Uczeń starający się o odznakę matematyk powinien systematycznie wywiązywać się z prac i zadań matematycznych w ramach lekcji
1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.
lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_5) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;
MATEMATYCZNEJ LIGI ZADANIOWEJ
ZAPRASZAMY DO ROZWIĄZANIA ZADAŃ V ETAPU MATEMATYCZNEJ LIGI ZADANIOWEJ TERMIN ODDAWANIA PRAC UPŁYWA 5 KWIETNIA 2013 R. POWODZENIA! KLASA IV Na kolonie wyjechało 131 osób trzema autobusami. W pierwszym i
SZKOLNY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH 2004/2005
SZKOLNY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH 2004/2005 M A T E M A T Y C Y N A S T A R T CELE ZAJĘĆ : - popularyzacja matematyki wśród uczniów, - zachęcenie nie tylko zdolnych uczniów do przedmiotu,
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)
Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny brak
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa III PŁOCK 2014
MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA EDUKACJA MATEMATYCZNA klasa III PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW
W sklepie Fajne ciuszki cenę spodni obniżono o 15%, czyli o 18 zł. Ile kosztowały te spodnie przed obniżką? Wybierz odpowiedź spośród podanych.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ Matematyczno-PRZYRODNICZA TEST 1 Zadanie 1 Na fasadzie budynku umieszczono rok jego wybudowania, zapisany cyframi rzymskimi: MCMVIII Który rok oznacza
Scenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7
MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_1) Czas pracy: 100 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:
KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona
Jak dobrze znacie Ludolfinę?
Jak dobrze znacie Ludolfinę? Mikołaj Bobruk, Małgorzata Piątkowska, Barbara Boczoń kl. V Opiekun pracy: mgr Katarzyna Jabcoń Kraków, 22 lutego 2018 roku Spis treści Wstęp... 3 Rozdział 1... 4 Co to Ludolfnaa...
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_4) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 13 KWIETNIA 2013 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) 16 8 16 = 16 2 P F 3 2700 = 90 P F ZADANIE 2 (1 PKT.)
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich
Określ zbiór wartości i przedziały monotoniczności funkcji.
Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej
Małopolski Konkurs Matematyczny r. etap szkolny
Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap szkolny rok szkolny 2014/2015 1. Przed Tobą zestaw 17
Skrypt 9. Układy równań. 1. Zapisywanie związków między nieznanymi wielkościami za pomocą układu dwóch równań
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 9 Układy równań 1. Zapisywanie związków między
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby
Etap wojewódzki Klasa II
MISTRZ MATEMATYKI Etap wojewódzki Klasa II KOD: Zadanie 1 Oblicz. - 16 +36 +28-15 +25-61 -37 +17-5 -18 + 49 +5 +6-48 24 +59 +54-17 - 25 +39-16 -37 1 Zadanie 2 - Oblicz. Żabki z wynikami nieparzystymi pokoloruj
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj
COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów.
COMENIUS PROJEKT ROZWOJU SZKOŁY Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. GIMNAZJUM 20 GDAŃSK POLSKA Maj 2006 SCENARIUSZ LEKCJI MATEMATYKI Z WYKORZYSTANIEM METODY STACJI UCZENIA
KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr?
KLASA IV Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? Anna, Beata i Cecylia rozmawiają między sobą. Anna: Jestem o 5 lat starsza od Beaty. Beata: Jestem młodsza od Cecylii
KWIECIEŃ klasa 2 MATEMATYKA
26. tydzień nauki Jak dzielimy? Jak mnożymy? Temat: Jak dzielimy? Jak mnożymy? Mnożenie i dzielenie liczb w zakresie 50. 7.6 Zagadki matematyczne zapisywanie działań. 7.8 Rozwiązywanie zadań tekstowych
TERMIN ODDAWANIA PRAC 22 GRUDNIA
KLASA IV Pojemnik zawierał 70 litrów płynu. Po pewnym czasie w pojemniku zostało 5 razy mniej płynu niż było na początku. Ile litrów płynu zużyto? Jak zmieni się suma trzech liczb, jeżeli pierwszą zwiększymy
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
Sprawdzian kompetencji trzecioklasisty
Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa B Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych
pięćdziesiąt trzy czterdzieści siedem dwadzieścia dziewięć osiemdziesiąt dwa siedemdziesiąt dziewięć siedemdziesiąt
MATEMATYKA DLA 3 KLASY SZKOŁY PODSTAWOWEJ / ODPOWIEDZI 1. liczba dziesiątki jedności słownie 53... 5... 3... pięćdziesiąt trzy 47 9 8 79 70... 4... 7...... 9... 8...... 7... 9... 7... 0... czterdzieści
SZKOLNA LIGA ZADANIOWA
KLASA 4 - ZESTAW 1 W następujących działaniach wstaw w miejsce gwiazdek brakujące cyfry. Pewna liczba dwucyfrowa ma w rzędzie jedności 5. Jeżeli między jej cyfry wstawimy 0, to liczba ta zwiększy się o
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14
Razem Kod ucznia Nr zadania 2 3 4 5 6 7 8 9 0 2 3 4 5 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 5 4 4 4 4 5 35 XIV Powiatowy Konkurs z Matematyki dla uczniów gimnazjum w roku szkolnym
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.
III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut
/Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych
ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej
XVI MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2010 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej
SPRAWDZIAN WIADOMOŚCI CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Kod ucznia SPOŁECZNE GIMNAZJUM NR 27 IM. KARDYNAŁA STEFANA WYSZYŃSKIEGO SPOŁECZNEGO TOWARZYSTWA OŚWIATOWEGO W WARSZAWIE dysleksja SPRAWDZIAN WIADOMOŚCI CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA 16 maja 2011 czas
Grecki matematyk, filozof, mistyk PITAGORAS
Grecki matematyk, filozof, mistyk PITAGORAS FAKTY I MITY Dotarcie do prawdy związanej z życiem Pitagorasa jest bardzo trudne, ponieważ nie zostawił on po sobie żadnego pisma. Wywarł jednak ogromny wpływ
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
Trójkąty i ich własności klasa V
Trójkąty i ich własności klasa V Opracowała Barbara Wichowska Nauczycielka matematyki Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 9 w Sopocie Listopad 2007 rok SPIS TREŚCI 1. Temat: Z jakich odcinków
ZADANIA DO ROZWIĄZANIA. MAJ 2016 r.
MAJ 2016 r. 1. W turnieju szachowym, rozgrywanym w systemie każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. O ile zmniejszyła się liczba zaplanowanych rozgrywek?
Treści nauczania wymagania szczegółowe
Treści nauczania wymagania szczegółowe 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje, odejmuje, mnoży i dzieli
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
A co oznacza samo słowo geometria? W dosłownym znaczeniu to "mierzyć Ziemię", ponieważ "GEO-ZIEMIA", a "METRIA-MIERZYĆ".
Podstawowe figury geometryczne i ich własności WSTĘP Geometria... na pewno spotkałeś/łaś się już z takim określeniem. Jest to jeden z działów matematyki, który dotyczy różnych figur (takich jak odcinek,
SCENARIUSZ LEKCJI. Temat: Powtórzenie wiadomości z działu: Wyrażenia algebraiczne
Scenariusz lekcji matematyki : Wyrażenia algebraiczne kl. I gimnazjum Autor: mgr Beata Senka Nauczycielka matematyki w Zespole Szkół nr 1 w Pile SCENARIUSZ LEKCJI Temat: Powtórzenie wiadomości z działu:
Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
PREZENTACJA LICZBA π (Pi) Kacper Dąbrowski III a
PREZENTACJA LICZBA π (Pi) Kacper Dąbrowski III a Czym jest liczba π? Jest to stosunek długości okręgu do długości jego średnicy. Jej stosunek dziesiętny nigdy si ę nie kończy. Jest liczb ą niewymiern ą
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP
Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.
ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ
ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 11 LUTEGO 2012R. KLASA IV Do sklepu sprowadzono zeszyty w kratkę po 10 sztuk w paczce i zeszyty w linie po 15 sztuk w paczce.
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
3. Pani Ewa pisze na komputerze kolejne liczby naturalne dodatnie bez odstępów. Jaka cyfra przypadnie na setne uderzenie w klawisz?
DROGI UCZNIU! Przed Tobą 20 zadań różnego typu. Rozwiąż zadania samodzielnie w domu, w zadaniach otwartych zapisz wszystkie obliczenia. Oddaj rozwiązany i podpisany test swojemu nauczycielowi matematyki
i na matematycznej wyspie materiały dla ucznia, pakiet 124, s. 1 KARTA:... Z KLASY:...
Ad@ i J@ś na matematycznej wyspie materiały dla ucznia, pakiet 124, s. 1 Wymyślamy zagadki 1 2 Czy wiesz, kim jest osoba przedstawiona na ilustracji? To najsłynniejszy detektyw na świecie, Sherlock Holmes
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2015 r. 120 minut Informacje dla
a 2019 a = 2018 Kryteria oceniania = a
Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2018/2019 Etap III - wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków
ZADANIA PRZYGOTOWAWCZE
Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs
Badanie wyników nauczania z matematyki klasa II
Badanie wyników nauczania z matematyki klasa II Potęgi i pierwiastki - zadania zamknięte Zadanie 1. (0-1) Po podniesieniu liczby -2 2 1 do kwadratu otrzymamy liczbę: 1 25 1 A) B) C) 6 D) 1 Zadanie 2. (0-1)
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Matematyka podstawowa I. Liczby rzeczywiste, zbiory
Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz
P o w o d z e n i a!
Powiatowy Konkurs Matematyczny Dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 17 zadań masz 75 minut.
Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2015/2016 III stopień - wojewódzki Liczba punktów 25.
Gimnazjum nr 26 w Gdańsku im. Jana III Sobieskiego ul. R. Traugutta 92 sekretariat@gim26.gda.pl 80-226 Gdańsk www.gim26.gda.pl tel. 58-341-02-33 fax 58-344-05-02 Konkurs matematyczny dla uczniów szkół
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery