Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych"

Transkrypt

1 Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Tatiana Jaworska Jaworska@ibspan.waw.pl

2 Istniejące systemy - Google

3 Istniejące systemy - Google

4 Istniejące systemy - Google

5 Istniejące systemy - Google

6 Istniejące systemy CIRES i FIDS

7 Podstawowe pojęcia Content-Based Image Retrieval (CBIR) obrazowa baza danych moduł odpowiedzialny za przetwarzanie obrazu baza danych interfejs użytkownika GUI silnik wyszukiwania

8 Schemat ogólny obrazowej bazy danych

9 Segmentacja obrazu metodą c-środków C = 5 C = 12

10 Idea algorytmu opartego na kolorach

11 Segmentacja obrazu oparta na kolorach

12 Wydzielenie obiektów

13 Tekstury a) tkanina b) kamień c) marmur d) korek Tekstura może być opisywana jako: Dwuwymiarowy proces Markowa Dwuwymiarowy histogram Korelacja transformat Fouriera tekstur z wcześniej przygotowanymi maskami

14 Dwuwymiarowe transformacje falkowe obrazu sprowadzają się do rzutowania obrazu na ustalony ortonormalny układu falek Ze względu na dyskretny charakter obrazów, będziemy się posługiwać falkami dyskretnymi. Dwuwymiarowy separowany układ falek ortonormalnych utworzony konwencjonalnie na podstawie układu jednowymiarowego ma postać: 4 ),,, (,, )} ( ), ( { Z m l k j m l k j y x Falki dwuwymiarowe gdzie j,k (x) jest k-tą falką jednowymiarową na poziomie j-tym analizy wielorozdzielczej. Wykorzystując założenia analizy wielorozdzielczej można pokazać, że wyżej zaproponowany układ jest nadmiarowy i można go zredukować do następującego układu: gdzie: 3 ),, ( 3,, 2,, 1,, )}, ( ),, ( ),, ( { Z m k j m k j m k j m k j y x y x y x ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ), ( y x y x y x y x y x y x

15 Obiekt z fakturą

16 Mapa odległości oparta na transformacji falkowej Przekrój przez detale horyzontalne dla 100-tej kolumny (falka Haara, j=1)

17 Odległości liczone na podstawie dodatnich współczynników falkowych Odległości wyznaczone dla progu odcięcia 1% wartości maksymalnej dla całej macierzy detali horyzontalnych dodatnich. Przekrój przez 100-ną kolumnę.

18 Odległości liczone na podstawie ujemnych współczynników falkowych Odległości wyznaczone dla progu odcięcia 1% wartości minimalnej dla całej macierzy detali horyzontalnych ujemnych. Przekrój przez 100-ną kolumnę

19 Mapa odległości wyznaczonych na podstawie horyzontalnych współczynników dodatnich

20 Mapa odległości wyznaczonych na podstawie horyzontalnych współczynników ujemnych

21 Mapa odległości wyznaczonych na podstawie wertykalnych współczynników dodatnich

22 Mapa odległości wyznaczonych na podstawie wertykalnych współczynników ujemnych

23 Parametry tekstury Na podstawie wykonanych map odległości można oszacować rozmiar pionowy dachówki na falek czyli pikseli, natomiast rozmiar pionowy na and falek czyli pikseli.

24 Różne deskryptory kształtu Definicja Obiekt Sposób kodowania Kod 2 2 ] ) ( [ ] ) ( [ ) ( y y x x r )exp ( 1 N n N n j r N a

25 Wielomiany Zernike a Ciąg wielomianów ortogonalnych nad dyskiem jednostkowym V pq x, y = R pq r e iqθ, r [0,1] V pq (r,) = r x 2 y 2 gdzie: jest długością wektora od środka dysku do punktu (x,y). Wielomiany o wartościach rzeczywistych gdzie p q jest parzyste, 0 q p i p 0. Niech s (p k)/2, wtedy wielomiany mogą być reprezentowane jako

26 Funkcje bazowe Zernike a

27 Momenty Zernike a Wtedy B pqk są współczynnikami tego wielomianu: Dwuwymiarowe momenty Zernike a rzędu p z powtórzeniami q dla obrazu o funkcji intensywności f(x,y) gdzie V * pq ( x, y) Vp, q ( x, y)

28 Właściwości momentów Zernike a 1. Tak zdefiniowane momenty Zernike a są niezmiennicze względem rotacji. 2. Aby uzyskać niezmienniczość względem przesunięcia trzeba centrum obiektu umieścić w środku układu współrzędnych. 3. Natomiast niezmienniczość skali uzyskujemy poprzez skalowanie obiektu.

29 Przykład dopasowania dwóch obiektów na podstawie pierwszych 10 momentów Zernike a

30 Schemat ogólny obrazowej bazy danych

31 Struktura bazy danych - Oracle

32 Schemat ogólny obrazowej bazy danych

33 Biblioteka wzorców Biblioteka wzorców zawiera informację o wzorcowych wektorach cech obiektu graficznego, zakresie wartości i wagach przypisanych tym wartościom. Dla każdego obiektu mamy więc wzorcowy wektor cech P k z wagami ( ) [0,1] P f i k Każdy obiekt jest przyporządkowywany do określonej klasy z biblioteki wzorców poprzez szukanie najmniejszej odległości pomiędzy wektorami O i P k 1 r m m d( FO, Pk ) P ( fi ) FO ( fi ) Pk ( f k i ) i1 Na tej podstawie każdy obiekt otrzymuje etykietę L k

34 Similarity to patterns d Classifiers r m ( O, Pk ) ( f Pk i ) O( fi ) Pk ( fi ) i1 where weights satisfy P ( f ) [0,1] and weights for k i Zernike s complex features satisfy Decision tree. We use the hierarchic method. A more general division is created by k-means clustering of the whole data set into four clusters. The most numerous classes of each cluster (metaclass) are assigned to four decision trees, which results in 8 classes for each one. Naïve Bayes classifier CV x 1 m 2 Re 2 Re x 2 Im 2 Im

35 Klasyfikacja obiektów ID=4 ID=31 ID=9 ID=25 ID=3 ID=24

36 Fuzzy set According to Zadeh, a fuzzy set F in U is uniquely specified by its membership function F : U[0,1]. Thus, the fuzzy set is described as follows: F = {(u, F (u)) uu} For our purpose, we use a trapezoidal membership function which is defined by four parameters a,b,c,d: trap mf u; a, b, c, d = 0, u < a (u a)/(b a), a u b 1, b u c (d u)/(d c), c u d 0, d < u

37 Fuzzy rule-based classifiers 1 Let us consider an M-class classification problem in an n-dimensional normalized hyper-cube [0,1] n. For this problem, we use fuzzy rules of the following type: Rule R q : If x 1 is A q1 and... and x n is A qn then Class C q with CF q, where R q is the label of the q th fuzzy rule, x = (x 1,..., x n ) is an n-dimensional feature vector, A qi is an antecedent fuzzy set (i = 1,...,n), C q is a class label, CF q is a real number in the unit interval [0,1] which represents a rule weight. The rule weight can be specified in a heuristic way. We use the n-dimensional vector A q = (A q1,..., A qn ) to represent the antecedent part of the fuzzy rule R q in the above formula in a concise manner.

38 Fuzzy rule-based classifiers 2 A set of fuzzy rules S of the type shown in the rule R q forms a fuzzy rule-based classifier. When an n-dimensional vector x p = (x p1,..., x pn ) is presented to S, first the compatibility grade of x p with the antecedent part A q of each fuzzy rule R q in S is calculated as the product operator: μ Aq (x p ) = μ Aq1 (x p1 )... μ Aqn (x pn ) for R q S, where μ Aqi (. ) shows the membership function of A qi. Then a single winner rule R w(xp ) is identified for x p as follows: w(x p ) = arg max{cf q μ Aq (x p ) R q S} q where w(x p ) denotes the rule index of the winner rule for x p. The vector x p is classified by the single winner rule R w(xp ) belonging to the respective class. We use the single winnerbased fuzzy reasoning method for pattern classification.

39 Fuzzy rule-based classifier proposed by Ishibuchi An ideal theoretical example of a simple three-class, two-dimensional pattern classification problem with 20 patterns from each class is considered by H. Ishibuchi and Y. Nojima. In this example three linguistic values (small, medium and large) were used as antecedent fuzzy sets for each of the two attributes and 3 3 fuzzy rules were generated. 1.0 x large medium small Class 1 Class 2 Class 3 Ishibuchi H. and Nojima Y. (2011) Toward Quantitative Definition of Explanation Ability of fuzzy rule-based classifiers, IEEE InternationalConference on Fuzzy Systems, June 27-39, 2011,Taipai, Taiwan, small medium large 0.0 x 1 1.0

40 Fuzzy rule-based classifier with 9 fuzzy rules S 1 : R 1 : If x 1 is small and x 2 is small then Class2 with 1.0, R 2 : If x 1 is small and x 2 is medium then Class2 with 1.0, R 3 : If x 1 is small and x 2 is large then Class1 with 1.0, R 4 : If x 1 is medium and x 2 is small then Class2 with 1.0, R 5 : If x 1 is medium and x 2 is medium then Class2 with 1.0, R 6 : If x 1 is medium and x 2 is large then Class1 with 1.0, R 7 : If x 1 is large and x 2 is small then Class3 with 1.0, R 8 : If x 1 is large and x 2 is medium then Class3 with 1.0, R 9 : If x 1 is large and x 2 is large then Class3 with 1.0.

41 Three-class problem for two features

42 Fuzzy rule-based classifier with 9 fuzzy rules For our fuzzy rule-based classifier we have classified data from a training subset according to the fuzzy rule-based classifier S 2 with 9 fuzzy rules constructed automatically as follows: S 2 : fuzzy rule-based classifier with 9 fuzzy rules R 1 : If x 1 is small and x 2 is small then non-defined with 1.0, R 2 : If x 1 is small and x 2 is medium then balkon with 1.0, R 3 : If x 1 is small and x 2 is large then arc with 1.0, R 4 : If x 1 is medium and x 2 is small then non-defined with 1.0, R 5 : If x 1 is medium and x 2 is medium then balkon with 1.0, R 6 : If x 1 is medium and x 2 is large then non-defined with 1.0, R 7 : If x 1 is large and x 2 is small then filar with 1.0, R 8 : If x 1 is large and x 2 is medium then non-defined with 1.0, R 9 : If x 1 is large and x 2 is large then non-defined with 1.0.

43 Three-class problem for two features

44 Fuzzy rule-based classifier with 9 fuzzy rules For our fuzzy rule-based classifier we have classified data from a training subset according to the fuzzy rule-based classifier S 3 with 9 fuzzy rules constructed automatically as follows: S 3 : fuzzy rule-based classifier with 9 fuzzy rules R 1 : If x 1 is small and x 2 is small then non-defined with 1.0, R 2 : If x 1 is small and x 2 is medium then arc with 1.0, R 3 : If x 1 is small and x 2 is large then arc with 1.0, R 4 : If x 1 is medium and x 2 is small then non-defined with 1.0, R 5 : If x 1 is medium and x 2 is medium then vertical lines with 1.0, R 6 : If x 1 is medium and x 2 is large then non-defined with 1.0, R 7 : If x 1 is large and x 2 is small then non-defined with 1.0, R 8 : If x 1 is large and x 2 is medium then balkon with 1.0, R 9 : If x 1 is large and x 2 is large then non-defined with 1.0.

45

46 Fuzzy rule-based classifier with 9 fuzzy rules S 4 : fuzzy rule-based classifier with nine fuzzy rules R 1 : If x 1 is small and x 2 is small then non-defined with 1.0, R 2 : If x 1 is small and x 2 is medium then roof with 1.0, R 3 : If x 1 is small and x 2 is large then horizontal lines with 1.0, R 4 : If x 1 is medium and x 2 is small then non-defined with 1.0, R 5 : If x 1 is medium and x 2 is medium then roof with 1.0, R 6 : If x 1 is medium and x 2 is large then non-defined with 1.0, R 7 : If x 1 is large and x 2 is small then frame with 1.0, R 8 : If x 1 is large and x 2 is medium then frame with 1.0, R 9 : If x 1 is large and x 2 is large then non-defined with 1.0.

47 Precision Total (for 30 classes) Windowpane Classification precision Similarity to pattern Decision trees Naïve Bayes FRBC 21.5% 68.6% 53.8% 88% 16.1% 72% 31.3% 89.7% Window 46.7% 61% 82.2% 57.6% Brick wall 9% 45.5% 32% 90.9% Arc 63.6% 68.2% 65% 58% Roof edge 8.4% 86.7% 61.4% 93.9%

48 Opis rozkładu przestrzennego obiektów graficznych na obrazie z użyciem analizy składowych głównych 1 W bazie danych mamy M klas obiektów oznaczonych etykietami L 1, L 2,, L M. Możemy zatem określić sygnaturę obrazu I i jako następujący wektor: Signature (I i ) = [nobc i1, nobc i2,, nobc im ] gdzie: nobc ik oznacza liczbę obiektów o ij o klasie L k w danym obrazie I i. Poza tą informacją rozpatrujemy też wzajemne położenie obiektów w obrazie w oparciu o analizę składowych głównych (PCA).

49 Opis rozkładu przestrzennego obiektów graficznych na obrazie z użyciem analizy składowych głównych 2 Porównujemy dwa obrazy składające się ze zbioru obiektów I i = {o i1, o i2,, o in } opisanych przez środki ciężkości C ij = (x ij, y ij ) i klasę L ij Formalnie obraz I składa się z n obiektów i k klas gdzie k N, ponieważ kilka obiektów może być tej samej klasy. Jako linię odniesienia do liczenia kąta pomiędzy obiektami wybieramy największą odległość między centroidami obiektów istniejącą na obrazie dist (C p,c q ) = max {dist (C i,c j ) i,j {1,2,,k} and L i L j } Następnie od tej linii liczymy kąty ij pomiędzy kolejnymi środkami ciężkości. W ten sposób metoda jest niezmiennicza względem obrotu.

50 Określenie kąta między obiektami przy wyznaczaniu macierzy do analizy składowych głównych 3 Otrzymujemy więc trójki (L i, L j, ij ), gdzie kąt jest liczony względem linii odniesienia. Dostajemy T = n(n-1)/2 takich trójek dla obrazów o n obiektach. Następnie poszukujemy wektorów własnych PCV i macierzy kowariancji zgodnie z metodą analizy składowych głównych.

51 Determination of angle relative to the reference direction

52 Schemat ogólny obrazowej bazy danych

53 Query types 1. Query by keywords 2. Query by example 3. Query by canvas 4. Query by sketches 5. Query by spatial icons 6. Semantic query 7. Designed query for semantic retrieval.

54 Query types

55 Graficzne zapytanie do bazy poprzez GUI

56 Graficzne zapytanie do bazy poprzez GUI

57 Graficzny interface użytkownika

58 Schemat ogólny obrazowej bazy danych

59 Silnik wyszukiwania I etap Obraz z bazy możemy oznaczyć jako I b = {o b 1, ob 2,, o b m }. Niech zapytaniem będzie obraz I q taki, że I q = {o q 1, oq 2,, oq n }. Aby odpowiedzieć na to zapytanie porównujemy z nim każdy obraz I b z bazy w następujący sposób. Najpierw określamy podobieństwo sim sgn pomiędzy I q i I b licząc odległość między sygnaturami obrazów: Wtedy odległość tych wektorów można traktować jako zmodyfikowaną odległość Hamminga, zakładając, że sim sgn 0 i sim sgn ( I, ) (nob nob ) q I b max (nob i qi tr, gdzie tr jest różnicą obiektów danej klasy, którą dopuszczamy pomiędzy i nob wektorami. Jeśli to podobieństwo jest mniejsze od założonego progu wtedy obraz I b jest odrzucany z dalszych porównań. bi ) qi bi

60 Silnik wyszukiwania II etap Jeśli to podobieństwo jest większe, to przechodzimy do następnego etapu i znajdujemy podobieństwo sim PCV między rozkładem przestrzennym obiektów w obrazach I q i I b licząc odległość euklidesową między wektorami PCV: sim 3 q b b q 2 PCV ( I, I ) 1 ( PCVi PCVi ) i1 Jeśli z kolei to podobieństwo okaże się mniejsze od wartości progowej obraz I b jest odrzucany. W przeciwnym razie, przechodzimy do następnego kroku, w którym liczymy podobieństwo poszczególnych obiektów wchodzących w skład obu obrazów I q i I b. Dla każdego obiektu o q i wchodzącego w skład obrazu Iq, znajdujemy najbardziej podobny obiekt w tej samej klasie na obrazie I b.

61 Dopasowanie parami z eliminacją Dla każdego obiektu o L można obliczyć między obiektami: q b q b simob ( oi, o j ) 1 ( F oil F o jl) b j gdzie: l jest numerem cechy w wektorze cech F O poszczególnych obiektów. Może zajść jednak sytuacja przedstawiona na rysunku: q i l q sim ob ( o i, o 2 b j )

62 Silnik wyszukiwania III etap Z powyższego algorytmu dostajemy wektor podobieństw pomiędzy zapytaniem I q i obrazem I b : sim( I q, I b ) sim sim gdzie: n jest liczbą obiektów reprezentujących obraz I q. Porządkujemy obrazy I b względem zapytania I q, q b na podstawie ( o i, o ) sim ob j ob ob ( o ( o q 1 q n, o, o b 1 b n ) )

63 Graficzny schemat działania silnika wyszukiwania

64 Wyniki

65 Results Wyniki

66 Results Wyniki

67 Results Wyniki

68 Results Wyniki

69 Results Wyniki

70 Results Wyniki

71 Results Wyniki

72 Proponowane zagadnienia Implementacja miękkich metod wyszukiwania Przetestowanie różnych miar podobieństwa Większe uwzględnienie semantyki Dołożenie ontologii Opracowanie obiektywnych metod oceny semantycznego podobieństwa obrazów (the universal similarity index SSIM nie mierzy tego co potrzeba) Połączenie systemu z internetem

73 Literatura Russ J. C.: The Image Processing Handbook, wyd. 2, CRC Press, Artificial intelligence for Maximizing Content Based Image Retrieval, red. Zongmin Ma, Information Science Reference, NY, Deb S.: Multimedia Systems and Content-Based Image retrieval, Idea Group Publishing, Melbourne, Jaworska T., Object extraction as a basic process for content-based image retrieval (CBIR) system, Opto-Electronics Review, Vol. 15, Nr. 4, str , Jaworska T., A Search-Engine Concept Based on Multi-Feature Vectors and Spatial Relationship, LECTURE NOTES IN ARTIFICIAL INTELLIGENCE nr 7022, str , Jaworska T., Query techniques for CBIR, W: ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTERING nr 400, Flexible Query Answering Systems 2015, red. T. Andreasen, H. Christiansen, J. Kacprzyk, H. Larsen, G. Pasi, O. Pivert, G. De Tre, M. A. Vila, A. Yazici, S. Zadrożny, str , Springer, 2015.

Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych

Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Istniejące systemy - Google Istniejące systemy - Google

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH

KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH Tatiana Jaworska e-mail: Tatiana.Jaworska@ibspan.waw.pl Instytut Badań Systemowych, Polska Akademia Nauk, ul.

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv

Bardziej szczegółowo

1. Wprowadzenie. 2. Struktura obrazowej bazy danych

1. Wprowadzenie. 2. Struktura obrazowej bazy danych WYZNACZANIE FAKTUR WE WSTĘPNYM PRZYGOTOWANIU OBRAZÓW DLA CELÓW OBRAZOWEJ BAZY DANYCH Tatiana Jaworska Instytut Badań Systemowych, Polska Akademia Nauk, ul. Newelska 6, 01-447 Warszawa, W artykule przedstawiono

Bardziej szczegółowo

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji

Bardziej szczegółowo

A Zadanie

A Zadanie where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS

THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

Previously on CSCI 4622

Previously on CSCI 4622 More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

tum.de/fall2018/ in2357

tum.de/fall2018/ in2357 https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH

PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH Słowa kluczowe: przetwarzanie obrazu, obrazowe bazy danych, segmentacja obrazu, selekcja obiektów, segmentacja elementów roślinnych Tatiana JAWORSKA * PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III 1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

Interwałowe zbiory rozmyte

Interwałowe zbiory rozmyte Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja

Bardziej szczegółowo

Wyk lad 8: Leniwe metody klasyfikacji

Wyk lad 8: Leniwe metody klasyfikacji Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Wyszukiwanie informacji w internecie. Nguyen Hung Son

Wyszukiwanie informacji w internecie. Nguyen Hung Son Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy

Bardziej szczegółowo

W poszukiwaniu sensu w świecie widzialnym

W poszukiwaniu sensu w świecie widzialnym W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

Klasyfikacja naiwny Bayes

Klasyfikacja naiwny Bayes Klasyfikacja naiwny Bayes LABORKA Piotr Ciskowski NAIWNY KLASYFIKATOR BAYESA wyjaśnienie Naiwny klasyfikator Bayesa żródło: Internetowy Podręcznik Statystyki Statsoft dane uczące 2 klasy - prawdopodobieństwo

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG

Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana

Bardziej szczegółowo

Zarządzanie sieciami komputerowymi - wprowadzenie

Zarządzanie sieciami komputerowymi - wprowadzenie Zarządzanie sieciami komputerowymi - wprowadzenie Model zarządzania SNMP SNMP standardowy protokół zarządzania w sieci Internet stosowany w dużych sieciach IP (alternatywa logowanie i praca zdalna w każdej

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Odkrywanie współzależnych cech w danych silnie wielowymiarowy

Odkrywanie współzależnych cech w danych silnie wielowymiarowy Odkrywanie współzależnych cech w danych silnie wielowymiarowych Praca wspólna z Michałem Dramińskim Poznań, 22 kwietnia 2016 MCFS-ID Algorithm of Draminski et al.: the Monte Carlo Feature Selection (or

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14

Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14 Danych Meteorologicznych Sylwester Arabas (ćwiczenia do wykładu dra Krzysztofa Markowicza) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 18. stycznia 2010 r. Zadanie 14.1 : polecenie znalezienie

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta Wprowadzenie do programu RapidMiner, część 4 Michał Bereta www.michalbereta.pl 1. Wybór atrybutów (ang. attribute selection, feature selection). Jedną z podstawowych metod analizy współoddziaływania /

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Sztuczna inteligencja : Algorytm KNN

Sztuczna inteligencja : Algorytm KNN Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Problem magazynowania i przetwarzania wielkoformatowych map i planów geologicznych. Promotor: dr inż. Adam Piórkowski Autorzy: Jakub Osiadacz

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 74 Nr kol. 1921 Adrian KAPCZYŃSKI Politechnika Śląska Instytut Ekonomii i Informatyki QUANTITATIVE AND QUALITATIVE CHARACTERISTICS

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta

Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta Wprowadzenie do programu RapidMiner Studio 7.6, część 9 Modele liniowe Michał Bereta www.michalbereta.pl Modele liniowe W programie RapidMiner mamy do dyspozycji kilka dyskryminacyjnych modeli liniowych

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech Piotr Porwik Uniwersytet Śląski w Katowicach ?? It is obvious that more does not mean better, especially in the case of classifiers!! *) *)

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

Wyszukiwanie obrazów 1

Wyszukiwanie obrazów 1 Wyszukiwanie obrazów 1 Wyszukiwanie według zawartości Wyszukiwanie wg zawartości jest procesem wyszukiwania w bazach danych (zbiorach dokumentów ) obiektów o treści najbardziej zbliżonej do zadanego wzorca.

Bardziej szczegółowo

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

1. Grupowanie Algorytmy grupowania:

1. Grupowanie Algorytmy grupowania: 1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means

Bardziej szczegółowo

Adaptive wavelet synthesis for improving digital image processing

Adaptive wavelet synthesis for improving digital image processing for improving digital image processing Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej 4 listopada 2010 Plan prezentacji 1 Wstęp 2 Dyskretne przekształcenie falkowe

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN TYP WPB TYPE WPB Wentylatory promieniowe jednostrumieniowe bębnowe (z wirnikiem typu Single-inlet centrifugal fans (with

Bardziej szczegółowo

Detekcja kształtów i wybrane cechy obrazów konturowych

Detekcja kształtów i wybrane cechy obrazów konturowych Informatyka, S2 sem. Letni, 2013/2014, wykład#7 Detekcja kształtów i wybrane cechy obrazów konturowych dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

Rozpoznawanie obiektów z użyciem znaczników

Rozpoznawanie obiektów z użyciem znaczników Rozpoznawanie obiektów z użyciem znaczników Sztuczne znaczniki w lokalizacji obiektów (robotów) Aktywne znaczniki LED do lokalizacji w przestrzeni 2D (do 32): Znaczniki z biblioteki AruCo (do 1024) Id

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2 TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo