Przetwarzanie obrazu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przetwarzanie obrazu"

Transkrypt

1 Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska

2 Umiejscowienie przetwarzania obrazu

3 Plan prezentacji Pojęcia podstawowe Pozyskiwanie obrazów Wstępna korekcja obrazów Operacje poprawiające jakość obrazu Filtracja obrazu Przetwarzanie obrazów binarnych Segmentacja obrazów Stereowizja obrazy 3D Obrazowa baza danych Propozycje tematów

4 Rodzaje obrazów 1. Obrazy analogowe telewizja 2. Obrazy cyfrowe matryce CCD Obrazy binarne Obrazy w odcieniach szarości Obrazy kolorowe Obrazy wektorowe Obrazy rastrowe

5 Definicja obrazu cyfrowego Obraz cyfrowy rozumiemy jako dwuwymiarową funkcję dyskretną g(x,y) taką, Ŝe jej argumentami są dyskretne piksele, a wartościami kolory w przestrzeni RGB, czyli trójki liczb z przedziału [0,255]. Początek układu współrzędnych przyjmujemy w lewym górnym rogu obrazu. Przykładowy zakres kolorów 255 nie oznacza, Ŝe prezentowane dalej algorytmy dotyczące obrazów kolorowych nie będą działać na obrazach o większej liczbie kolorów np. True Color.

6 Akwizycja obrazu cyfrowego Kamera CCD z maską Bayera Kamera 3CCD

7 Poprawianie jakości obrazu Zwiększony kontrast Histogram oryginalny

8 Detekcja krawędzi Laplasjan g(x,y) poziom szarości piksela ), ( ), ( ), ( y x g y y x g x y x g + =

9 Przetwarzanie obrazu w dziedzinie transformat Transformacja Fouriera Transformacja Haara Transformacja falkowa F( u) = H 2 1 x u Wψ g]( s, u) =< ψ su, g >= s ψ g( x) dx s + [ 2 = g( x) e 2πiux 1 1 dx Transformacja cosinusowa e 2πiux = cos(2πux) i sin(2πux) Transformacja Hougha

10 Przetwarzanie obrazu w dziedzinie transformat Transformacja Fouriera Transformacja Haara Transformacja falkowa Transformacja cosinusowa Transformacja Hougha

11 Przetwarzanie obrazów binarnych Progowanie Operacje morfologiczne 1. Erozja 2. Dylatacja 3. Otwarcie 4. Domknięcie Szkieletowanie

12 Segmentacja obrazu A. Progowanie obrazy binarne B. Histogram bimodalny C. C-środków obrazy w odcieniach szarości D. Dla obrazów wielomodalnych obrazy medyczne E. Dla obrazów wielospektralnych - zdjęcia satelitarne F. W oparciu o fakturę obrazy z fakturą np. satelitarne G. Rozrost obszarów H. Metoda oparta na kolorach

13 Segmentacja oparta na histogramie bimodalnym T

14 Segmentacja obrazu metodą c-środków C = 5 C = 12

15 Obrazy wielomodalne Źródło: zespół VisAGeS TEMP tomografia emisyjna pojedynczych fotonów (SPECT ) IRM rezonans magnetyczny MEG - magnetoenclofalogram

16 Obrazy wielospektralne Zakres czerwony widzialny Bliska podczerwień Indeks wegetacji

17 Tekstury a) tkanina b) kamień c) marmur d) korek Tekstura moŝe być opisywana jako: Dwuwymiarowy proces Markowa Dwuwymiarowy histogram Korelacja transformat Fouriera tekstur z wcześniej przygotowanymi maskami

18 Zagadnienie stereo wizji disparity

19 Schemat ogólny obrazowej bazy danych

20 Segmentacja obrazu metodą c-środków C = 5 C = 12

21 Rozkład punktów w przestrzeni RGB

22 Idea algorytmu opartego na kolorach

23 Segmentacja obrazu oparta na kolorach

24 Wydzielenie obiektów

25 Segmentacja obrazu oparta na kolorach

26 Wydzielenie obiektów

27 Wyznaczenie konturów w oparciu o róŝę wiatrów Definicja Obiekt Sposób kodowania Kod

28 Deskryptor kształtu oparty na transformacji Fouriera 2 2 ] ) ( [ ] ) ( [ ) ( y y x x r + = θ θ θ = = )exp ( 1 N n N n j r N a θ θ π θ

29 Struktura bazy danych w Oracle u

30 Wydzielenie warstwy

31 Wydzielenie obiektów z warstwy

32 Parametry poszczególnych obiektów

33 Wypełnianie bazy danych

34 Przepływ informacji wewnątrz obrazowej bazy danych

35 Literatura Russ J. C.: The Image Processing Handbook, wyd. 2, CRC Press, Wojnar L., Kurzydłowki K., Szala J.: Praktyka analizy obrazu, Polskie Towarzystwo Stereologiczne, Kraków, Pratt W. K.: Digital Image Processing, wyd. 2, Wiley, Deb S.: Multimedia Systems and Content-Based Image retrieval, Idea Group Publishing, Melbourne, 2004.

36 Proponowane zagadnienia Opracowanie reguł ułatwiających klasyfikację obiektów Identyfikacja obiektów na podstawie klasy wzorców Indeksowanie obrazowe w zaleŝności od rodzaju obrazów Graficzny interfejs uŝytkownika w zaleŝności od rodzaju analizowanych obrazów w bazie danych Wyszukiwanie sekwencji wideo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

Gimp Grafika rastrowa (konwersatorium)

Gimp Grafika rastrowa (konwersatorium) GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest

Bardziej szczegółowo

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Metody przetwarzania danych graficznych. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek

Bardziej szczegółowo

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

1. Wprowadzenie. 2. Struktura obrazowej bazy danych

1. Wprowadzenie. 2. Struktura obrazowej bazy danych WYZNACZANIE FAKTUR WE WSTĘPNYM PRZYGOTOWANIU OBRAZÓW DLA CELÓW OBRAZOWEJ BAZY DANYCH Tatiana Jaworska Instytut Badań Systemowych, Polska Akademia Nauk, ul. Newelska 6, 01-447 Warszawa, W artykule przedstawiono

Bardziej szczegółowo

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 1 PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 2 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 3

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie czwarte Przekształcenia morfologiczne obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH

KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH KORELACJA MIĘDZY OBIEKTAMI GRAFICZNYMI JAKO ASPEKT WYSZUKIWANIA ICH W OBRAZOWEJ BAZIE DANYCH Tatiana Jaworska e-mail: Tatiana.Jaworska@ibspan.waw.pl Instytut Badań Systemowych, Polska Akademia Nauk, ul.

Bardziej szczegółowo

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka + Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Po co obrabiamy zdjęcia Poprawa jasności, kontrastu, kolorów itp. Zdjęcie wykonano w niesprzyjających warunkach (złe

Bardziej szczegółowo

(metale i ich stopy), oparta głównie na badaniach mikroskopowych.

(metale i ich stopy), oparta głównie na badaniach mikroskopowych. PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 1 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 2 1

Bardziej szczegółowo

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja

Bardziej szczegółowo

Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet

Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet Zbigniew GOMÓŁKA Uniwersytet Rzeszowski, Polska Ewa ŻESŁAWSKA Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie, Polska Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet Transformata

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka +

Plan wykładu. Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie. informatyka + Plan wykładu Wprowadzenie Program graficzny GIMP Edycja i retusz zdjęć Podsumowanie 2 Wprowadzenie Po co obrabiamy zdjęcia Obrazy wektorowe i rastrowe Wielkość i rozdzielczość obrazu Formaty graficzne

Bardziej szczegółowo

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ Ireneusz WYCZAŁEK Zakład Geodezji Politechnika Poznańska CEL Aktualizacja baz danych przestrzennych,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: DIAGNOSTYKA OBRAZOWA Nazwa w języku angielskim: DIAGNOSTIC IMAGING Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Wykrywanie obiektów na obrazach cyfrowych. Marcin Kuczyński

Wykrywanie obiektów na obrazach cyfrowych. Marcin Kuczyński Wykrywanie obiektów na obrazach cyfrowych Marcin Kuczyński Spis treści 1. Wprowadzenie 2. System rozpoznawania obrazów 3. Wykrywanie w oparciu o kolor i tekstury 4. Wykrywanie krawędzi 5. Detekcja rogów

Bardziej szczegółowo

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.

Bardziej szczegółowo

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH

PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH Słowa kluczowe: przetwarzanie obrazu, obrazowe bazy danych, segmentacja obrazu, selekcja obiektów, segmentacja elementów roślinnych Tatiana JAWORSKA * PRZYGOTOWANIE WSTĘPNE OBRAZU DO OBRAZOWEJ BAZY DANYCH

Bardziej szczegółowo

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.

Bardziej szczegółowo

PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY

PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY PROGRAM NAUCZANIA PRZEDMIOTU FAKULTATYWNEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY 1. NAZWA PRZEDMIOTU : ANALIZA I PRZETWARZANIE OBRAZÓW MEDYCZNYCH 2. NAZWA JEDNOSTKI (jednostek

Bardziej szczegółowo

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43

3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43 Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Podstawy przetwarzania obrazów teledetekcyjnych. Format rastrowy

Podstawy przetwarzania obrazów teledetekcyjnych. Format rastrowy Podstawy przetwarzania obrazów teledetekcyjnych Format rastrowy Definicja rastrowego modelu danych - podstawowy element obrazu cyfrowego to piksel, uważany w danym momencie za wewnętrznie jednorodny -

Bardziej szczegółowo

Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI

Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI IMIĘ i NAZWISKO: Zbigniew Winiarski Nr albumu: 237828 KIERUNEK: Informatyka

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

W odniesieniu do wszystkich zajęć: Ocena dopuszczająca: Uczeń:

W odniesieniu do wszystkich zajęć: Ocena dopuszczająca: Uczeń: WYMAGANIA EDUKACYJNE niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych grafika komputerowa. W odniesieniu do wszystkich zajęć: Ocena dopuszczająca: 1. Z

Bardziej szczegółowo

Zobrazowania satelitarne jako źródło danych obrazowych do zarządzania obszarami chronionymi

Zobrazowania satelitarne jako źródło danych obrazowych do zarządzania obszarami chronionymi Zobrazowania satelitarne jako źródło danych obrazowych do zarządzania obszarami chronionymi Łukasz Sławik II WARSZTATY SYSTEMY INFORMACJI GEOGRAFICZNEJ W PARKACH NARODOWYCH I OBSZARACH CHRONIONYCH ZAKOPANE

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Przetwarzanie obrazów cyfrowych

Przetwarzanie obrazów cyfrowych Przetwarzanie obrazów cyfrowych Zadanie do wykonania Należy napisać program pozwalający na przetwarzanie obrazów cyfrowych. Program ma prezentować użytkownikowi menu, pozwalające na: 1. wybór pliku zawierającego

Bardziej szczegółowo

Obraz cyfrowy - podstawy

Obraz cyfrowy - podstawy Inżynieria obrazów w cyfrowych Dr inż.. Jacek Jarnicki Doc. PWr. Instytut Informatyki, Automatyki i Robotyki p. 226 C-C 3, tel. 071-320 20-28-2323 jacek.jarnicki@pwr.wroc.pl www.zsk.ict.pwr.wroc.pl Tematyka

Bardziej szczegółowo

AKWIZYCJA I PRZETWARZANIE WSTĘPNE

AKWIZYCJA I PRZETWARZANIE WSTĘPNE WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających

Bardziej szczegółowo

Joint Photographic Experts Group

Joint Photographic Experts Group Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie

Bardziej szczegółowo

SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A)

SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A) SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A) GRUPA KOMPETENCJI KOMPETENCJE OBJĘTE STANDARDEM ECCC 1. Teoria grafiki komputerowej 1.1. Podstawowe pojęcia

Bardziej szczegółowo

PRZETWARZANIE OBRAZÓW WIT, Studia Dzienne, sem.5, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu

PRZETWARZANIE OBRAZÓW WIT, Studia Dzienne, sem.5, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu PRZETWARZANIE OBRAZÓW WIT, Studia Dzienne, sem.5, 2006/2007, prowadzący: Marek Doros WYKŁAD 1 Schemat procesu przetwarzania obrazu Przetwarzanie obrazów jest to proces składający się z następujących operacji:

Bardziej szczegółowo

Definicja i funkcje Systemów Informacji Geograficznej

Definicja i funkcje Systemów Informacji Geograficznej Definicja i funkcje Systemów Informacji Geograficznej Mateusz Malinowski Anna Krakowiak-Bal Kraków 17 marca 2014 r. Systemy Informacji Geograficznej są traktowane jako zautomatyzowana sieć funkcji, czyli

Bardziej szczegółowo

Formaty obrazów rastrowych biblioteki PBM

Formaty obrazów rastrowych biblioteki PBM Formaty obrazów rastrowych biblioteki PBM Reprezentacja obrazu Obrazy pobierane z kamery, bądź dowolnego innego źródła, mogą być składowane na pliku dyskowym w jednym z wielu istniejących formatów zapisu

Bardziej szczegółowo

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1

Bardziej szczegółowo

oraz kilka uwag o cyfrowej rejestracji obrazów

oraz kilka uwag o cyfrowej rejestracji obrazów oraz kilka uwag o cyfrowej rejestracji obrazów Matryca CCD i filtry Bayera Matryca CCD i filtry Bayera Demozaikowanie Metody demozaikowania Tradycyjne metody interpolacyjne (nienajlepsze efekty) Variable

Bardziej szczegółowo

dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ Instytut Informatyki Stosowanej, PŁ

dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ Instytut Informatyki Stosowanej, PŁ Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Politechnika Łódzka Środowisko pracy grafików dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ Instytut Informatyki Stosowanej, PŁ Formaty

Bardziej szczegółowo

Program przedmiotu,,laboratorium technik multimedialnych

Program przedmiotu,,laboratorium technik multimedialnych Program przedmiotu,,laboratorium technik multimedialnych Opis ogólny: Przedstawiony program jest modyfikacją i unowocześnieniem zajęć prowadzonych obecnie na dziewiątym semestrze kierunku Elektrotechnika.

Bardziej szczegółowo

POBR Kolos 2 + kilka pyt. z egzaminu

POBR Kolos 2 + kilka pyt. z egzaminu POBR Kolos 2 + kilka pyt. z egzaminu 1. Podstawowe metody akwizycji obrazów. Akwizycja obrazów cyfrowych: kiedyś - lampa analizująca: przetwornik optoelektroniczny zapewniający dyskretyzację dziedziny

Bardziej szczegółowo

Biocentrum Ochota infrastruktura informatyczna dla rozwoju strategicznych kierunków biologii i medycyny POIG 02.03.00-00-003/09

Biocentrum Ochota infrastruktura informatyczna dla rozwoju strategicznych kierunków biologii i medycyny POIG 02.03.00-00-003/09 Biocentrum Ochota infrastruktura informatyczna dla rozwoju strategicznych kierunków biologii i medycyny POIG 02.03.00-00-003/09 Zadanie 6. Zastosowanie technologii informatycznych w medycynie Sprawozdanie

Bardziej szczegółowo

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:

Bardziej szczegółowo

Metoda detekcji guzków w obrazach mammograficznych wykorzystująca transformację Rayleigha

Metoda detekcji guzków w obrazach mammograficznych wykorzystująca transformację Rayleigha Metoda detekcji guzków w obrazach mammograficznych wykorzystująca transformację Rayleigha Piotr Boniński, Anna Wróblewska, Artur Przelaskowski 1), 1) Instytut Radioelektroniki Politechniki Warszawskiej

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych camera obscura to pierwowzór aparatu fotograficznego Aparaty cyfrowe to urządzenia optoelektroniczne, które służą

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

Formaty plików graficznych

Formaty plików graficznych Formaty plików graficznych grafika rastowa grafika wektorowa Grafika rastrowa Grafika rastrowa służy do zapisywania zdjęć i realistycznych obrazów Jakość obrazka rastrowego jest określana przez całkowitą

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki PRACA DYPLOMOWA Inżynierska Program do detekcji i śledzenia

Bardziej szczegółowo

SYSTEM WIZYJNY ROBOTA KLASY LINEFOLLOWER

SYSTEM WIZYJNY ROBOTA KLASY LINEFOLLOWER SYSTEM WIZYJNY ROBOTA KLASY LINEFOLLOWER Projekt z cyfrowego przetwarzania obrazów i sygnałów Autor: Grzegorz Biziel Prowadzący: mgr inż. Łukasz Małek Termin: wtorek parzysty 13:15 27 stycznia 2010 1 Problem

Bardziej szczegółowo

10.Architekturyspecjalizowane

10.Architekturyspecjalizowane Materiały do wykładu 10.Architekturyspecjalizowane Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 27maja2014 Architektury do specyficznych zastosowań 10.1 DSP Digital Signal Processing cyfrowe

Bardziej szczegółowo

Interpretacja gestów dłoni w sekwencji obrazów cyfrowych. autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak

Interpretacja gestów dłoni w sekwencji obrazów cyfrowych. autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak Interpretacja gestów dłoni w sekwencji obrazów cyfrowych autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak Plan prezentacji Cel pracy magisterskiej Zastosowanie pracy Założenia projektowe

Bardziej szczegółowo

Przemysław Mazurek Dorota Oszutowska-Mazurek. Analiza jąder komórkowych rozmazów Papanicolaou z wykorzystaniem estymatorów wymiaru fraktalnego

Przemysław Mazurek Dorota Oszutowska-Mazurek. Analiza jąder komórkowych rozmazów Papanicolaou z wykorzystaniem estymatorów wymiaru fraktalnego Przemysław Mazurek Dorota Oszutowska-Mazurek Analiza jąder komórkowych rozmazów Papanicolaou z wykorzystaniem estymatorów wymiaru fraktalnego Seminarium Wybrane problemy inżynierii biomedycznej 16 listopada

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie

Bardziej szczegółowo

ZASTOSOWANIE METOD ANALIZY OBRAZU DO WSPOMAGANIA OSÓB NIEWIDOMYCH NA UCZELNI WYŻSZEJ

ZASTOSOWANIE METOD ANALIZY OBRAZU DO WSPOMAGANIA OSÓB NIEWIDOMYCH NA UCZELNI WYŻSZEJ ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 740 STUDIA INFORMATICA NR 31 2012 MAREK KANNCHEN Państwowa Wyższa Szkoła Zawodowa w Gorzowie Wielkopolskim ZASTOSOWANIE METOD ANALIZY OBRAZU DO WSPOMAGANIA

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Kamera ThermoGear G100MD

Kamera ThermoGear G100MD Kamera ThermoGear G100MD Nowa wersja znanej kamery firmy AVIO posiadająca zawężony zakres pomiarowy: -40...500 o C. Cechy G100MD: zakres pomiarowy: -40...500 o C w standardzie z podzakresami: R1: -40...120

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Technologie numeryczne w kartografii. Paweł J. Kowalski

Technologie numeryczne w kartografii. Paweł J. Kowalski Technologie numeryczne w kartografii Paweł J. Kowalski Tematyka mapy numeryczne bazy danych przestrzennych systemy informacji geograficznej Mapa = obraz powierzchni Ziemi płaski matematycznie określony

Bardziej szczegółowo

Zastosowanie kompresji w kryptografii Piotr Piotrowski

Zastosowanie kompresji w kryptografii Piotr Piotrowski Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D

CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D CYFROWA SYNTEZA FOTOREALISTYCZNYCH OBRAZÓW W ŚRODOWISKU 3D Daniel Jaroszewski Warszawska Wyższa Szkoła Informatyki djaroszewski@poczta.wwsi.edu.pl www.grafika3d.wwsi.edu.pl WPROWADZENIE Przykładowa wizualizacja

Bardziej szczegółowo

Rys. 6.2 Wizualizacja mapy DEM za pomocą palety odcieni szarości (lewa strona) i dodatkowo z wykorzystaniem cieniowania (prawa strona).

Rys. 6.2 Wizualizacja mapy DEM za pomocą palety odcieni szarości (lewa strona) i dodatkowo z wykorzystaniem cieniowania (prawa strona). a b c d e f Rys. 6. Tworzenie mapy EM z danych TE 2 i MPHP: a poziomice otrzymane z TE 2 (na rysunku przedstawiono co dziesiątą poziomicę); b rzeki i jeziora z mapy MPHP; c wynik działania narzędzia TOPO

Bardziej szczegółowo

Analiza i przetwarzanie obrazów

Analiza i przetwarzanie obrazów Analiza i przetwarzanie obrazów Temat projektu: Aplikacja na system Android wyodrębniająca litery(znaki) z tekstu Marcin Nycz 1. Wstęp Tematem projektu była aplikacja na system Android do wyodrębniania

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 3

Analiza obrazów - sprawozdanie nr 3 Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i

Bardziej szczegółowo

PL B1. WOJSKOWY INSTYTUT MEDYCYNY LOTNICZEJ, Warszawa, PL BUP 26/13

PL B1. WOJSKOWY INSTYTUT MEDYCYNY LOTNICZEJ, Warszawa, PL BUP 26/13 PL 222456 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222456 (13) B1 (21) Numer zgłoszenia: 399487 (51) Int.Cl. A61B 3/113 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Cele przetwarzania obrazów biomedycznych. Podstawowe kroki. Przykład: badania przesiewowe płuc. Wprowadzenie do Informatyki Biomedycznej

Cele przetwarzania obrazów biomedycznych. Podstawowe kroki. Przykład: badania przesiewowe płuc. Wprowadzenie do Informatyki Biomedycznej Wprowadzenie do Informatyki Biomedycznej Wykład 6: Przetwarzanie i analiza obrazów biomedycznych (1) Wydział Informatyki PB Cele przetwarzania obrazów biomedycznych Wizualizacja - obrazy uzyskiwane ze

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I ELEKTRONIKI KATEDRA TELEKOMUNIKACJI Praca dyplomowa magisterska Imię i nazwisko Kierunek studiów Temat pracy dyplomowej Opiekun pracy Adam Pyka Elektronika

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37

Spis treści CZĘŚĆ I POZYSKIWANIE ZDJĘĆ, OBRAZÓW I INNYCH DANYCH POCZĄTKOWYCH... 37 Spis treści Przedmowa... 11 1. Przedmiot fotogrametrii i rys historyczny jej rozwoju... 15 1.1. Definicja i przedmiot fotogrametrii... 15 1.2. Rozwój fotogrametrii na świecie... 23 1.3. Rozwój fotogrametrii

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, Spis treści

E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, Spis treści E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, 2014 Spis treści Przewodnik po podręczniku 8 Wstęp 10 1. Hipertekstowe języki znaczników 1.1. Elementy i znaczniki

Bardziej szczegółowo

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16 prof. Paweł Strumiłło dr hab. Michał Strzelecki tel. 631 26 31, p. 216, mstrzel@p.lodz.pl godz. przyj: poniedziałek 12-13, wtorek 15-16 Strumillo, Strzelecki Literatura: 1. Notatki i materiały wykładowe

Bardziej szczegółowo

Podstawy Informatyki Wykład V

Podstawy Informatyki Wykład V Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Przetwarzanie obrazów

Przetwarzanie obrazów Przetwarzanie obrazów Zajęcia 6 Zawansowane wyświetlanie obrazów rastrowych. 2006-11-21 11:07:43 Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze

Bardziej szczegółowo

System wizyjny OMRON Xpectia FZx

System wizyjny OMRON Xpectia FZx Ogólna charakterystyka systemu w wersji FZ3 w zależności od modelu można dołączyć od 1 do 4 kamer z interfejsem CameraLink kamery o rozdzielczościach od 300k do 5M pikseli możliwość integracji oświetlacza

Bardziej szczegółowo

Spis treści. Część 1. Zagadnienia ogólne 1. 1. Matematyczne podstawy obrazowania medycznego

Spis treści. Część 1. Zagadnienia ogólne 1. 1. Matematyczne podstawy obrazowania medycznego Spis treści Część 1. Zagadnienia ogólne 1 1. Matematyczne podstawy obrazowania medycznego (Cudny W.)............................ 3 1.1 Obraz cyfrowy........................ 3 1.2 Przetwarzanie obrazów...................

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Jednostki obliczeniowe w zastosowaniach mechatronicznych Kierunek: Mechatronika Rodzaj przedmiotu: dla specjalności Systemy Sterowania Rodzaj zajęć: Wykład, laboratorium Computational

Bardziej szczegółowo

2012 Bentley Systems, Incorporated. Bentley Pointools V8i Przegląd

2012 Bentley Systems, Incorporated. Bentley Pointools V8i Przegląd 2012 Bentley Systems, Incorporated Bentley Pointools V8i Przegląd Przegląd Dlaczego potrzebujesz Bentley Pointools V8i? Co to jest? Filozofia Funkcje Szczegóły Kto to wykorzystuje? Wykorzystanie w przemyśle

Bardziej szczegółowo

ANALIZA OBRAZU Analiza obrazu poprawy jako ci obrazu, restauracji obrazów kodowania obrazów

ANALIZA OBRAZU Analiza obrazu poprawy jako ci obrazu, restauracji obrazów kodowania obrazów ANALIZA OBRAZU Analiza obrazu (ang. image analysis, scene analysis, image description, image understanding, pattern recognition, machine/computer vision) dotyczy metod wydobywania danych (informacji) z

Bardziej szczegółowo

Rozszerzony konspekt wykładu do przedmiotu Systemy wizyjne w robotyce

Rozszerzony konspekt wykładu do przedmiotu Systemy wizyjne w robotyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt wykładu do przedmiotu Systemy wizyjne w robotyce dr hab. inż. Barbara Putz, prof. PW mgr

Bardziej szczegółowo

Maskowanie i selekcja

Maskowanie i selekcja Maskowanie i selekcja Maska prostokątna Grafika bitmapowa - Corel PHOTO-PAINT Pozwala definiować prostokątne obszary edytowalne. Kiedy chcemy wykonać operacje nie na całym obrazku, lecz na jego części,

Bardziej szczegółowo

Tematy prac dyplomowych magisterskich pracowników Katedry Geoinformatyki i Informatyki Stosowanej 2015/2016

Tematy prac dyplomowych magisterskich pracowników Katedry Geoinformatyki i Informatyki Stosowanej 2015/2016 Tematy prac dyplomowych magisterskich pracowników Katedry Geoinformatyki i Informatyki Stosowanej 2015/2016 Lp. Kierunek studiów stacjonarnych drugiego stopnia 1 Informatyka 2 Informatyka 3 Informatyka

Bardziej szczegółowo

Instrukcja obsługi IE LC-750

Instrukcja obsługi IE LC-750 Instrukcja obsługi IE LC-750 SPIS TREŚCI 1. Komponenty... 3 2. Logowanie... 5 3. Opis Menu... 6 3.1 Strona główna... 7 3.2 Powtórka... 7 3.3 Log... 8 3.4 Parametry... 9 3.4.1 Sieć... 9 3.4.2 Parametry

Bardziej szczegółowo

FORMATY GRAFICZNE. Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW. 1. Rodzaje plików graficznych

FORMATY GRAFICZNE. Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW. 1. Rodzaje plików graficznych FORMATY GRAFICZNE Dobra ilustracja przychodzi w małym pliku. David Siegel, Tworzenie stron WWW 1. Rodzaje plików graficznych 1. Mapy bitowe reprezentują obraz jako prostokątną tablicę pikseli (np. standardy

Bardziej szczegółowo