Dokładność określania pozycji w hiperbolicznych systemach nawigacyjnych na przykładzie systemu Decca i Loran 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dokładność określania pozycji w hiperbolicznych systemach nawigacyjnych na przykładzie systemu Decca i Loran 3"

Transkrypt

1 JERZYŁO Patrycja 1 SOBKOWICZ Paulina 2 Dokładność określania pozycji w hiperbolicznych systemach nawigacyjnych na przykładzie systemu Decca i Loran 3 WSTĘP Dokładność układu nawigacyjnego określa wiarygodność uzyskiwanej informacji nawigacyjnej, w szczególności pozycji. Informacja nawigacyjna jest zmienną losową, wynikającą z działania urządzeń (naziemnych i na obiekcie ruchomym), umiejętności i staranności pracy nawigatora, a w przypadku nawigacji radiowej zależy także od propagacji fal elektromagnetycznych w danych warunkach [5]. Systemy hiperboliczne oparte są o izochrony, czyli linie będące zbiorami punktów o stałej różnicy odległości od dwóch radiolatarni, tworzących hiperbole. Do prowadzenia nawigacji służą specjalne mapy z zaznaczonymi rodzinami hiperbol dla każdej pary radiolatarni. Obiekt ruchomy określa swoją pozycję na przecięciu dwóch hiperbol pozycyjnych, wyznaczonych w oparciu o sygnały z dwóch par radiolatarni. Systemy hiperboliczne były przez długie lata w powszechnym użyciu. Przykładami są Decca i Loran. System Decca został opracowany w Wielkiej Brytanii jako rozwinięcie systemu GEE. Po raz pierwszy został użyty w 1944 roku podczas lądowania wojsk alianckich w Normandii. 31 marca 2000 roku brytyjski Zarząd Latarni Morskich (General Lighthouse Authorities) ogłosił, że wszystkie stacje systemu Decca zostały wycofane z eksploatacji. Nazwa systemu Loran [3] pochodzi od pierwszych liter słów angielskich LOng RAnge Navigation, czyli nawigacja dalekiego zasięgu. Pierwsze próby stworzenia systemu impulsowego o zasięgu co najmniej kilkuset mil morskich miały miejsce podczas drugiej wojny światowej, kiedy do celów wojskowej nawigacji lotniczej wykorzystywano w Wielkiej Brytanii system o nazwie GEE pracujący na częstotliwościach nośnych od 22 do 85 MHz. Jednocześnie w USA skonstruowano system Loran A pracujący na częstotliwościach nośnych 1,7-2.0 MHz, który od 1943 roku wykorzystywany był na północnym Atlantyku do określania porcji początkowo wyłącznie morskich, później i lotniczych. Nad wodą zasięg łańcucha tego systemu dochodził na fali przyziemnej do kilkuset mil morskich ( ), na jonosferycznej do 1500 mil morskich w porze nocnej, a błąd linii pozycyjnej odpowiednio 2-3 µs i 8-10 µs. Przez dalszych kilkanaście lat system Loran A był właściwie jedynym na świecie systemem nawigacyjnym dalekiego zasięgu; kilkadziesiąt stacji rozmieszczonych wyłącznie na półkuli północnej obejmowało swoim zasięgiem praktycznie całość istniejących tam akwenów żeglugowych. Jednocześnie już od 1946 roku prowadzono w USA intensywne prace nad stworzeniem nowego systemu pod nazwą Loran C, o tej samej co system Loran A zasadzie działania, ale pracującego na znacznie mniejszej częstotliwości nośnej. Pozwoliło to zwiększyć zasięg zarówno na fali przyziemnej, jak i jonosferycznej. Obecnie systemy hiperboliczne są wypierane przez systemy inercyjne i satelitarne. 1. DOKŁADNOŚĆ OKREŚLANIA POZYCJI STATKU 1.1. System Decca System Decca [4] pracował na falach krótkich o częstotliwości od 70 do 129 khz. Pierwsze użycie nastąpiło pod koniec II wojny światowej. Głównym jego zadaniem była precyzyjna nawigacja statków 1 Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska, Katedra Geotechniki, Geologii I budownictwa Morskiego, ul G. Narutowicza 11/12, Gdańsk, tel , patjerzy1@pg.gda.pl 2 Akademia Morska w Szczecinie, Wydział Nawigacyjny, Centrum Naukowo Badawcze Analizy Ryzyka Eksploatacji Statku, ul. Wały Chrobrego 1-2, Szczecin, tel , p.sobkowicz@am.szczecin.pl 3 Artykuł recenzowany. 1679

2 morskich na wodach przybrzeżnych. System tworzyły łańcuchy w skład których wchodziły 4 stacje: stacja główna (Master) i 3 stacje podległe (Slave) oddalone od stacji głównej o 100 do 200 km. Łańcuch wytwarzał 3 siatki hiperbol dla poszczególnych par stacji: Master-Slave, które oznaczało się kolorami: Red, Green i Purple. Podział częstotliwości w systemie Decca [4]: stacje główne khz (24 pasy na strefę), stacje Red khz (24 pasy na strefę, numery pasów hiperbolicznych 0 23), stacje Green khz (18 pasy na strefę, numery pasów hiperbolicznych ), stacje Purpurowe khz (30 pasy na strefę, numery pasów hiperbolicznych ). Stacje emitowały niemodulowana falę nośną. Po odebraniu sygnału z poszczególnej stacji podległej był on mnożony (mieszanie częstotliwości) w celu wytworzenia częstotliwości porównawczej identyfikującej siatkę hiperboliczną. Dokładność systemu zależała od warunków propagacji fali elektromagnetycznej i wynosiła od 50m w pobliżu linii bazy do 4 Mm na granicy zasięgu łańcucha. Pozycja była obliczona przy użyciu hiperbolicznego systemu nawigacyjnego, poprzez porównanie różnic fazowych sygnałów radiowych odebranych z kilku stałych stacji. Zasada działania polegała na pomiarze różnicy czasów przebiegu, a więc i różnicy odległości, sygnałów pochodzących z dwóch odległych od siebie naziemnych stacji nadawczych. W systemie tym jest wykorzystana własność hiperboli, która mówi że jest ona miejscem geometrycznym punktów, których różnica odległości od ognisk hiperboli ma wartość stałą. Jeśli wykreślimy hiperbole których ogniskami są dwie stacje nadawcze A i B to każda z gałęzi hiperbol będzie linią pozycyjną statku odbierającego sygnały ze stacji A i B z określoną różnicą w czasie. Jeśli do tego mamy stację nadawczą C to otrzymamy drugi pęk hiperbol. Porównane dane z wiązki hiperbol stacji nadawczych A i B z wiązka hiperbol stacji nadawczych A i C wyznaczy dokładna pozycje statku na specjalnej mapie na której nadrukowane są siatki tych hiperbol [2]. W systemie Decca, jako w jednym z bardzo nielicznych systemów, istnieje możliwość oszacowania błędu określonej pozycji (z jednego łańcucha) za pomocą wydawnictw specjalistycznych. Zakładając normalne funkcjonowanie całego systemu, podane w nich wartości błędów w standardowych warunkach propagacyjnych nie przekraczają w większości przypadków wartości rzeczywistych. Dokładność pozycji waha się od kilkudziesięciu metrów w pobliżu linii bazy podczas dnia letniego do około 3 mil morskich na granicy zasięgu w porze nocy zimowej. Zasięg każdego łańcucha ograniczony jest zasięgiem prawidłowej identyfikacji pasa w obrębie strefy i w zależności od pory doby i roku waha się od 200 do 400 mil morskich. Do niedawna szczegółowe dane dotyczące dokładności pozycji zawarte były w Decca Fixing Accuracy Diagram dołączonych do Admiralty List of Radio Signals, tom V i publikacji Operating Instructions and Marine Data Sheets. W wydawnictwie tym dla wszystkich łańcuchów systemu zamieszczono specjalne diagramy i rysunki umożliwiające oszacowanie błędu określonej pozycji w poszczególnych akwenach leżących w zasięgu danego łańcucha w zależności od pory doby i roku [4] System Loran Jednym z systemów hiperbolicznych stosowanych do określania pozycji jednostki był system Loran (Long Range Navigation). Jak sama nazwa wskazuje, stosowany był do nawigacji dalekiego zasięgu, już podczas drugiej wojny światowej. Przez kilkanaście lat na jego pracy bazowały służby wojskowe. Każde ulepszenie systemu skutkowało powstaniem nowej wersji, począwszy od Loran - A powstały: Loran B, Loran C oraz Loran D. Najszersze zastosowanie w nawigacji znalazły jedynie dwa systemy Loran - A i Loran C. W skład łańcucha systemu Loran wchodziły stacje podrzędne zwane także podległymi (secondary stadion, slave) oraz stacja główna (master stadion). W systemach hiperbolicznych pozycja statku wyznaczana była na podstawie pomiaru różnicy czasu między impulsami pochodzącymi ze stacji nadawczych. W jednym łańcuchu ilość linii pozycyjnych była determinowana przez ilość stacji podrzędnych. Dlatego też każda ze stacji emitowała sygnały z opóźnieniem czasowym t_oc w 1680

3 stosunku do stacji głównej [3]. Linie, które łączyły stacje główne ze stacjami nadrzędnymi zwane były liniami bazy (d_b). Odległość między nimi stanowiła długość bazy, natomiast obszar, jaki wyznaczały to pas hiperboliczny [5]. Stacja podrzędna odbierała sygnał od stacji głównej zawsze jako pierwszy. Sygnał ten docierał do stacji po przebyciu znanej odległości dzielącej obie stacje oraz ustalonym czasie. Stacja podrzędna wysyła odpowiedź dopiero po przyjętym opóźnieniu czasowym (zwanym również opóźnieniem kodowym). W systemie Loran określanie pozycji statku uwarunkowane było rodzajem odbiornika. Dostępne były dwa typy pierwszej generacji (z lampą oscyloskopową) i drugiej (bez lampy oscyloskopowej). Przy korzystaniu z odbiornika pierwszej generacji istotne było posiadanie tablic hiperbolicznych czy map z naniesioną siatką. Tablice hiperboliczne (wydawane przez Defense Mapping Agency Hydrographic/Topographic Center USA) skonstruowane były oddzielnie dla wszystkich par stacji. Dzięki nim można było określić poprawkę uwzględniającą falę jonosferyczną oraz zamienić współrzędne hiperboliczne na geograficzne za pomocą tablic siatki hiperbolicznej. Dla określonych łańcuchów można było również określić poprawkę ASF (uwzględniającą prędkość propagacji fali) [5]. Ze względu na błędy pomiarowe oraz cechy geometryczne linia pozycyjna, określona za pomocą, systemu Loran była przesunięta w odniesieniu do rzeczywistej linii pozycyjnej. Dokładność systemu można było ocenić poprzez znajomość gradientu funkcji (określając jego moduł i kierunek),średniego błędu kwadratowego pozycji, średniej elipsy błędów oraz błędu kierunkowego [4]. Wymienione błędy dotyczyły głównie geometrii przecięcia się linii pozycyjnych. Istotnym był błąd, jakim obarczona była mierzona w odbiorniku różnica czasu. Na wartość błędu związanego z czasem miał wpływ błąd synchronizacji stacji nadawczych wynikający z opóźnienia czasowego podczas emisji sygnału, zniekształcenie kształtu obwiedni impulsu, błąd instrumentalny odbiornika, zmienna prędkość fali przyziemnej oraz dokładność poprawki na falę jonosferyczną. Suma tych błędów składała się na ogólny błąd linii pozycyjnej, który w systemie Loran dla błędu 1µs wynosił ok. 150 m. Błąd ten wzrastał wraz z oddalaniem się od linii bazy. W odbiornikach drugiej generacji całkowity błąd (przy dobrych warunkach propagacyjnych) nie powinien był przekraczać 0,25 µs [3]. Dokładność linii pozycyjnej mieściła się w przedziale od kilkudziesięciu metrów do kilku mil morskich. Uzyskanie największej dokładności było możliwe jeśli warunki propagacyjne były dobre lub bardzo dobre, emitowane sygnały przebiegały nad powierzchnią wody, linie pozycyjne przecinały się pod kątem prostym, a odległość między nimi wynosiła m. Nie było też problemów z działaniem odbiorników systemu. Obniżenie poziomu dokładności mogło nastąpić podczas złych warunków propagacyjnych, złego stanu odbiornika oraz niekorzystnej pozycji użytkownika, przez którą rozumie się pozycję na granicy zasięgu łańcucha. Problem z dokładnością mógł nastąpić również, gdy emitowany sygnał docierał na fali jonosferycznej a nie przyziemnej. Występowały bowiem wtedy problemy z prawidłowym rozpoznaniem cyklów. Tab. 1. Parametry systemu Loranc C [5] Parametry układu LORAN C pozycji 460 m (0,25 Nm) Dokładność powtarzalność m względna - Dostępność 99,7 % Pokrycie Wybrzeże USA, inne obszary Niezawodność 99,7 % Prędkość określania pozycji 1 pozycja/s Wymiarowość pozycji 2D Pojemność systemu nieograniczona Jednoznaczność łatwo rozróżnialne 1681

4 Określanie pozycji w systemie Loran polegało na pomiarze różnicy czasu odbioru sygnału. Dodatkowo należało uwzględnić odpowiednie poprawki interpolacyjne np. dotyczące impulsu przemieszczającego się na fali jonosferycznej czy też pokonującego odcinek trasy nad lądem, zamieszczane w publikacji Radio Signals [3]. Dokładność linii pozycyjnych nanoszonych na mapę za pomocą tego systemu wynosiła do dziesiętnych części mikrosekundy. Na jej wartość miał wpływ również wybór linii pozycyjnych z jakich korzystano do określenia pozycji. W sytuacji gdy odbiornik śledzi kilka linii pozycyjnych, nawigator musiał dokonać wyboru najbardziej korzystnej pary linii pozycyjnych, z których dokładność wyznaczonej pozycji byłaby jak największa. 2. ANALIZA PORÓWNAWCZA DOKŁADNOŚCI OKREŚLANIA POZYCJI STATKU Dokładności pozycji w Systemie Decca [3] rzędu kilkudziesięciu metrów można spodziewać się wówczas, gdy jednocześnie spełnione są następujące warunki: geometria systemu jest bardzo sprzyjająca, co oznacza że szerokość pasa hiperbolicznego każdej z dwu wykorzystywanych siatek jest rzędu kilkuset metrów, zaś linie pozycyjne przecinają się pod kątem bliskim 90º, sygnały ze wszystkich trzech wykorzystywanych stacji (głównej i obu podległych) docierają wyłącznie na fali przyziemnej, aktualne warunki propagacyjne (w tym i meteorologiczne) są na wszystkich trzech (dwóch) trasach są (stacja nadawcza systemu - odbiornik użytkownika) standardowe lub lepsze, pozycja została określona w pełnym świetle dziennym (podział doby przyjęty w systemie Decca Navigator), poprawki propagacyjne obu wykorzystywanych linii pozycyjnych są znane co do wartości i zostały uwzględnione lub są równe zeru, odbiornik jest co najmniej średniej klasy i w pełni sprawny. Dokładności pozycji rzędu kilku mil morskich można natomiast spodziewać się, gdy: użytkownik znajduje się na granicy zasięgu danego łańcucha, co oznacza że geometria systemu nie jest sprzyjająca; szerokości pasów hiperbolicznych są bowiem rzędu kilku mil morskich, zaś linie pozycyjne przecinają się pod kątem ostrym, pozycja została określona podczas nocy zimowej (podział doby przyjęty w systemie Decca Navigator), aktualne warunki propagacyjne (w tym i meteorologiczne) na wszystkich trzech (dwóch) trasach stacja systemu - odbiornik użytkownika są gorsze od standardowych, poprawki propagacyjne są nieznane co do wartości lub nie zostały uwzględnione, odbiornik jest niskiej klasy. Dokładności pozycji w Systemie Loran [3] rzędu kilkudziesięciu metrów można spodziewać się wtedy, gdy jednocześnie spełnione są następujące warunki: geometria systemu jest bardzo sprzyjająca, co oznacza, że odległość między dwoma liniami pozycyjnymi (tej samej pary stacji) różniącymi się o 1 µs jest niewiele większa od m, a linie pozycyjne (dwóch różnych par stacji) przecinają się pod kątem bliskim 90º, aktualne warunki propagacyjne ( w tym i meteorologiczne) są na całości wszystkich tras (stacja nadawcza odbiornik użytkownika) standardowe lub lepsze, sygnały z wszystkich stacji całą trasę przebiegają nad wodą, bądź poprawka ASF jest znana co do wartości i została uwzględniona, w odniesieniu do wszystkich docierających sygnałów identyfikacja trzeciego cyklu fali nośnej w odbiorniku była prawidłowa, odbiornik jest co najmniej średniej klasy i w pełni sprawny. Przez stacje nadawcze należy rozumieć te wszystkie stacje, z których sygnały zostały wykorzystane do określenia pozycji. Dokładność pozycji rzędu kilku mil morskich można spodziewać się, gdy: użytkownik znajduje się na granicy zasięgu danego łańcucha, co oznacza, że geometria systemu nie jest sprzyjająca. Odległości między dwoma liniami (tej samej pary stacji) różniącymi się o 1µs 1682

5 wynosi kilkanaście kabli (2 mile morskie jest to wartość dopuszczalna), zaś linie pozycyjne (dwóch różnych par stacji) przecinają się pod kątem ostrym, pozycja została określona na podstawie sygnałów docierających na fali jonosferycznej i istnieją wątpliwości co do prawidłowości identyfikacji siódmego cyklu fali nośnej oraz wiarygodności uwzględnionych poprawek SWC, aktualne warunki propagacyjne (w tym i meteorologiczne) na wszystkich trasach stacja nadawcza odbiornik użytkownika są gorsze od standardowych, - odbiornik jest niskiej klasy. WNIOSKI Systemy hiperboliczne Decca oraz Loran - stosowane były do określania pozycji jednostek. W miarę rozwoju techniki zmieniały się ich parametry techniczno eksploatacyjne. Zmiany w konstrukcji i działaniu odbiorników miały na celu ulepszenie systemów, między innymi poprzez zwiększenie dokładności pozycji. Przez długi okres czasu systemy hiperboliczne były podstawowymi systemami pozycjonowania zarówno w lotnictwie, jak i w nawigacji morskiej. Dawały pozycję ze satysfakcjonującą (jak na tamte czasy) dokładnością. System Decca został wycofany z użytku ze względu na wysoką cenę kupna i utrzymania odbiorników. System Loran nie pełni już znaczącej roli w nawigacji morskiej ze względu na ograniczenia, spowodowane zakłóceniami fal radiowych. Na które mają wpływ warunki meteorologiczne. Rozwój systemów hiperbolicznych przyczynił się do rozwoju nawigacji morskiej oraz lotniczej. Rozwiązania, które stosowano w systemie Loran i Decca, były bazą to stworzenia nowych, lepszych oraz pracujących z większą dokładnością systemów pozycjonowania. Streszczenie Na przełomie XX i XXI wieku, na skutek rozwoju techniki nawigacji, szczególną uwagę skupiono na dokładności określania pozycji. W artykule dokonano oceny porównawczej standardów opisujących dokładność systemów określania pozycji statku. W pierwszej części przedstawiono charakterystykę dokładności określania pozycji za pomocą systemu Decca i Loran. W drugiej części zaprezentowano zmiany dotyczące modernizacji systemów w celu zwiększenia ich dokładności określania pozycji statku. Artykuł kończą ogólne wnioski dotyczące dokładności systemów hiperbolicznych Decca i Loran. The accuracy of determining the position in hyperbolic navigation systems on the example of systems Decca and Loran Abstract As a result of the development of navigation techniques, at the turn of the century, particular attention has been focused on the accuracy of determining the position. The paper presents a comparative assessment of standards describing the accuracy of the positioning of the ship. The first part of the article shows the characteristics of accuracy in determining a position with Decca and Loran systems. The second part describes outlines to modernize systems to improve the accuracy of determining the position of the vessel. The article ends with general conclusions regarding the accuracy of hyperbolic systems Decca and Loran. BIBLIOGRAFIA 1. Gucma S., Podstawy teorii linii pozycyjna i dokładność w nawigacji morskiej, Szczecin Hetman Placha K., Nawigacja. Zarys historii nawigacji, Kraków Januszewski J., Naziemne systemy radionawigacyjne, Gdynia Januszewski J., Szymoński M., Systemy hiperboliczne w nawigacji morskiej, Gdańsk Narkiewicz J., Podstawy układów nawigacyjnych, Warszawa

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji Naziemne systemy nawigacyjne Wykorzystywane w nawigacji Systemy wykorzystujące radionamiary (CONSOL) Stacja systemu Consol składała się z trzech masztów antenowych umieszczonych w jednej linii w odległości

Bardziej szczegółowo

Dokładność pozycji. dr inż. Stefan Jankowski

Dokładność pozycji. dr inż. Stefan Jankowski Dokładność pozycji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Nawigacja Nawigacja jest gałęzią nauki zajmującą się prowadzeniem statku bezpieczną i optymalną drogą. Znajomość nawigacji umożliwia

Bardziej szczegółowo

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji

Linia pozycyjna. dr inż. Paweł Zalewski. w radionawigacji Linia pozycyjna dr inż. Paweł Zalewski w radionawigacji Wprowadzenie Jednym z zadań nawigacji jest określenie pozycji jednostki ruchomej - człowieka, pojazdu, statku czy samolotu. Pozycję ustala się przez

Bardziej szczegółowo

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS. Planowanie inwestycji drogowych w Małopolsce w latach 2007-2013 Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Bardziej szczegółowo

Differential GPS. Zasada działania. dr inż. Stefan Jankowski

Differential GPS. Zasada działania. dr inż. Stefan Jankowski Differential GPS Zasada działania dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl DGPS koncepcja Podczas testów GPS na początku lat 80-tych wykazano, że błędy pozycji w dwóch blisko odbiornikach były

Bardziej szczegółowo

RADIONAMIARY. zasady, sposoby, kalibracja, błędy i ograniczenia

RADIONAMIARY. zasady, sposoby, kalibracja, błędy i ograniczenia RADIONAMIARY zasady, sposoby, kalibracja, błędy i ograniczenia 1 Radionamierzanie jest to: Określenie kąta, zawartego między północną częścią lokalnego południka geograficznego a kierunkiem na dany obiekt,

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa

Bardziej szczegółowo

POSITION ACCURACY PROJECTING FOR TERRESTRIAL RANGING SYSTEMS

POSITION ACCURACY PROJECTING FOR TERRESTRIAL RANGING SYSTEMS XIII-th International Scientific and Technical Conference THE PART OF NAVIGATION IN SUPPORT OF HUMAN ACTIVITY ON THE SEA Naval University in Poland Institute of Navigation and Hydrography Cezary Specht,

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 6 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Równanie pseudoodległości odległość geometryczna satelity s s

Bardziej szczegółowo

Monitoring hałasu w Porcie Lotniczym Wrocław S.A. Wrocław, 28 września 2011 r.

Monitoring hałasu w Porcie Lotniczym Wrocław S.A. Wrocław, 28 września 2011 r. Monitoring hałasu w Porcie Lotniczym Wrocław S.A. Wrocław, 28 września 2011 r. Podstawa prawna Do 22 lipca 2011 r.: Rozporządzenie Ministra Środowiska z dnia 2 października 2007 r. w sprawie wymagań w

Bardziej szczegółowo

Wyznaczanie natężenia deszczów obliczeniowych w Niemczech na podstawie atlasu KOSTRA.

Wyznaczanie natężenia deszczów obliczeniowych w Niemczech na podstawie atlasu KOSTRA. Wyznaczanie natężenia deszczów obliczeniowych w Niemczech na podstawie atlasu KOSTRA. Dr inż. Roman Edel PLAN PREZENTACJI Wyznaczanie natężenia deszczu w Niemczech w drugiej połowie XX wieku Podstawy i

Bardziej szczegółowo

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI Dr inż. Marcin Szołucha Historia nawigacji satelitarnej 1940 W USA rozpoczęto prace nad systemem nawigacji dalekiego zasięgu- LORAN (Long Range Navigation);

Bardziej szczegółowo

BADANIA DOSTĘPNOŚCI SYSTEMU DGPS NA DOLNEJ ODRZE RESEARCH ON THE AVAILABILITY OF DGPS SYSTEM ON THE LOWER ODRA RIVER

BADANIA DOSTĘPNOŚCI SYSTEMU DGPS NA DOLNEJ ODRZE RESEARCH ON THE AVAILABILITY OF DGPS SYSTEM ON THE LOWER ODRA RIVER ANDRZEJ BANACHOWICZ, RYSZARD BOBER, ADAM WOLSKI **, PIOTR GRODZICKI, ZENON KOZŁOWSKI *** BADANIA DOSTĘPNOŚCI SYSTEMU DGPS NA DOLNEJ ODRZE RESEARCH ON THE AVAILABILITY OF DGPS SYSTEM ON THE LOWER ODRA RIVER

Bardziej szczegółowo

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Artur KRÓL 1 Tadeusz STUPAK 2 system nawigacji zintegrowanej, radar, system automatycznej identyfikacji elektroniczna

Bardziej szczegółowo

Warszawa, dnia 20 września 2012 r. Poz. 1044

Warszawa, dnia 20 września 2012 r. Poz. 1044 Warszawa, dnia 20 września 2012 r. Poz. 1044 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 6 września 2012 r. w sprawie wykazów obszarów pasażerskiej żeglugi krajowej

Bardziej szczegółowo

POZIOM UFNOŚCI PRZY PROJEKTOWANIU DRÓG WODNYCH TERMINALI LNG

POZIOM UFNOŚCI PRZY PROJEKTOWANIU DRÓG WODNYCH TERMINALI LNG Stanisław Gucma Akademia Morska w Szczecinie POZIOM UFNOŚCI PRZY PROJEKTOWANIU DRÓG WODNYCH TERMINALI LNG Streszczenie: W artykule zaprezentowano probabilistyczny model ruchu statku na torze wodnym, który

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Lnie pozycyjne w nawigacji technicznej

Lnie pozycyjne w nawigacji technicznej Lnie pozycyjne w nawigacji technicznej Nawigacja Nawigacja jest gałęzią nauki, zajmującą się prowadzeniem statku bezpieczną i optymalną drogą. Znajomość nawigacji umożliwia określanie pozycji własnej oraz

Bardziej szczegółowo

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016

Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016 Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.

Bardziej szczegółowo

Systemy satelitarne wykorzystywane w nawigacji

Systemy satelitarne wykorzystywane w nawigacji Systemy satelitarne wykorzystywane w nawigacji Transit System TRANSIT był pierwszym systemem satelitarnym o zasięgu globalnym. Navy Navigation Satellite System NNSS, stworzony i rozwijany w latach 1958-1962

Bardziej szczegółowo

WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE

WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE WSPÓŁCZESNE TECHNIKI I DANE OBSERWACYJNE TECHNIKI OBSERWACYJNE Obserwacje: - kierunkowe - odległości - prędkości OBSERWACJE KIERUNKOWE FOTOGRAFIA Metody fotograficzne używane były w 1964 do 1975. Dzięki

Bardziej szczegółowo

z dnia 29 czerwca 2005 r. w sprawie Krajowej Tablicy Przeznaczeń Częstotliwości

z dnia 29 czerwca 2005 r. w sprawie Krajowej Tablicy Przeznaczeń Częstotliwości Dziennik Ustaw Nr 134 z dnia 21. 07. 2005 r., poz. 1127, z 2006 r. Nr 246, poz. 1792, z 2008 r. Nr 97, poz. 629 oraz z 2009 r. Nr 132, poz. 1086 ROZPORZĄDZENIE RADY MINISTRÓW z dnia 29 czerwca 2005 r.

Bardziej szczegółowo

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście KASYK Lech 1 Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście Tor wodny, strumień ruchu, Zmienna losowa, Rozkłady dwunormalne Streszczenie W niniejszym artykule przeanalizowano prędkości

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który

Bardziej szczegółowo

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life UNIWERSYTET WARMIŃSKO-MAZURSKI w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Katedra Geodezji Satelitarnej i Nawigacji Wyższa Szkoła Oficerska Sił Powietrznych w Dęblinie Wykorzystanie systemu

Bardziej szczegółowo

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS Szymon Wajda główny

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 10 Ocena dokładności wskazań odbiornika MLR LRX 22 P systemu LORAN-C Szczecin 2006 Temat: Ocena

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 6(78) AKADEMII MORSKIEJ W SZCZECINIE

ZESZYTY NAUKOWE NR 6(78) AKADEMII MORSKIEJ W SZCZECINIE ISSN 1733-8670 ZESZYTY NAUKOWE NR 6(78) AKADEMII MORSKIEJ W SZCZECINIE Stefan Jankowski I N Ż Y N I E R I A R U C H U M O R S K I E G O 2 00 5 Błąd kursu w pilotowych systemach nawigacyjnych: przenośnym

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Układy współrzędnych stosowane w nawigacji na akwenach ograniczonych

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Układy współrzędnych stosowane w nawigacji na akwenach ograniczonych ISSN 0209-2069 Stanisław Gucma ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE EXPLO-SHIP 2004 Układy współrzędnych stosowane w nawigacji na akwenach ograniczonych Słowa kluczowe: nawigacja pilotażowa,

Bardziej szczegółowo

System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. Rysunek 1. Centrum monitoringu w Komendzie Miejskiej Policji w Gdańsku.

System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. Rysunek 1. Centrum monitoringu w Komendzie Miejskiej Policji w Gdańsku. System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. W Gdańsku tworzony jest obecnie miejski System Informacji Przestrzennej, który będzie stanowił podstawę m.in. Systemu Ratownictwa Miejskiego

Bardziej szczegółowo

Techniki różnicowe o podwyższonej dokładności pomiarów

Techniki różnicowe o podwyższonej dokładności pomiarów Techniki różnicowe o podwyższonej dokładności pomiarów Adam Ciećko, Bartłomiej Oszczak adam.ciecko@uwm.edu.pl bartek@uw.pl Zastosowanie nowoczesnych satelitarnych metod pozycjonowania i nawigacji w rolnictwie

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak Zniekształcenia i zakłócenia Założenia twórców systemu GPS było, żeby pozycja użytkownika była z dokładnością 400-500 m. Tymczasem po uruchomieniu systemu

Bardziej szczegółowo

Nieoczywiste błędy występujące w dokumentacji dotyczącej lokalizacji stacji bazowych telefonii komórkowej

Nieoczywiste błędy występujące w dokumentacji dotyczącej lokalizacji stacji bazowych telefonii komórkowej Nieoczywiste błędy występujące w dokumentacji dotyczącej lokalizacji stacji bazowych telefonii komórkowej Opracowanie: LC Consulting Łukasz Czyleko sierpień 2018 Jednym z podstawowych dokumentów środowiskowych,

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja

Bardziej szczegółowo

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski 01.06.2012 Łukasz Kowalewski 1. Wstęp GPS NAVSTAR (ang. Global Positioning System NAVigation Signal Timing And Ranging) Układ Nawigacji Satelitarnej Określania Czasu i Odległości. Zaprojektowany i stworzony

Bardziej szczegółowo

PRZETWARZANIE CZASOWO-PRZESTRZENNE SYGNAŁÓW PROJEKT -2016

PRZETWARZANIE CZASOWO-PRZESTRZENNE SYGNAŁÓW PROJEKT -2016 Katedra Systemów Elektroniki Morskiej Politechniki Gdańskiej PRZETWARZANIE CZASOWO-PRZESTRZENNE SYGNAŁÓW PROJEKT -2016 Projekt obejmuje napisanie, uruchomienie i sprawdzenie funkcjonowania programu napisanego

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak Systemy nawigacji satelitarnej powinny spełniać następujące wymagania: system umożliwia określenie pozycji naziemnego użytkownika w każdym momencie, w

Bardziej szczegółowo

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. 14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 4 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Można skorzystać z niepełnej analogii do pomiarów naziemnymi

Bardziej szczegółowo

Inżynieria Ruchu Morskiego wykład 01. Dr inż. Maciej Gucma Pok. 343 Tel //wykłady tu//

Inżynieria Ruchu Morskiego wykład 01. Dr inż. Maciej Gucma Pok. 343 Tel //wykłady tu// Inżynieria Ruchu Morskiego wykład 01 Dr inż. Maciej Gucma Pok. 343 Tel. 91 4809 495 www.uais.eu //wykłady tu// m.gucma@am.szczecin.pl Zaliczenie Wykładu / Ćwiczeń Wykład zaliczenie pisemne Ćwiczenia -

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 3 Kontrola poprawności pracy odbiorników systemów nawigacyjnych LABORATORIUM RADIONAWIGACJI Szczecin

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE

WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE Miejsce pomiarów: Pp.1 IOŚ ul. Kolektorska 4, Warszawa Pp.2 Na granicy Lotniska Babice przy zabudowie mieszkalnej

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

BARAŃSKA Marta 1 DEJA Agnieszka 2 BUBKA Jolanta 3

BARAŃSKA Marta 1 DEJA Agnieszka 2 BUBKA Jolanta 3 BARAŃSKA Marta 1 DEJA Agnieszka 2 BUBKA Jolanta 3 Analiza natężenia hałasu generowanego przez transport samochodowy po wdrożeniu projektu ograniczenia ruchu w wybranym punkcie aglomeracji szczecińskiej

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:

Bardziej szczegółowo

Załącznik nr 2 Wyniki obliczeń poziomu hałasu wzdłuż dróg wojewódzkich na terenie Gminy Czarnków

Załącznik nr 2 Wyniki obliczeń poziomu hałasu wzdłuż dróg wojewódzkich na terenie Gminy Czarnków Tab. A Podstawowe dane wykorzystane do przeprowadzenia obliczeń poziomu hałasu wzdłuż dróg wojewódzkich na terenie Gminy Czarnków średnia ilość pojazdów prędkość liczba pojazdów/h nr ciężkich [%] pojazdów

Bardziej szczegółowo

UNIKANIE NIEBEZPIECZNYCH SYTUACJI W ZŁYCH WARUNKACH POGODOWYCH W RUCHU STATKU NA FALI NADĄŻAJĄCEJ

UNIKANIE NIEBEZPIECZNYCH SYTUACJI W ZŁYCH WARUNKACH POGODOWYCH W RUCHU STATKU NA FALI NADĄŻAJĄCEJ MIROSŁAW JURDZIŃSKI Akademia Morska w Gdyni Katedra Nawigacji UNIKANIE NIEBEZPIECZNYCH SYTUACJI W ZŁYCH WARUNKACH POGODOWYCH W RUCHU STATKU NA FALI NADĄŻAJĄCEJ Podstawową zasadą planowania nawigacji jest

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 9 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

PROGRAM SZKOLENIA Jachtowy sternik morski teoria e-learning stan na dzień:

PROGRAM SZKOLENIA Jachtowy sternik morski teoria e-learning stan na dzień: PROGRAM SZKOLENIA Jachtowy sternik morski 1. Wiedza teoretyczna: 1) jachty żaglowe morskie, w tym: a) eksploatacja i budowa instalacji i urządzeń jachtu oraz ocena ich stanu technicznego b) obsługa przyczepnych

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 17 stycznia 2003 r.

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 17 stycznia 2003 r. Dz.U.03.18.164 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 17 stycznia 2003 r. w sprawie rodzajów wyników pomiarów prowadzonych w związku z eksploatacją dróg, linii kolejowych, linii tramwajowych, lotnisk

Bardziej szczegółowo

PLAN KONSPEKT. do przeprowadzenia zajęć z przedmiotu. Wprowadzenie do pomiarów systemów transmisyjnych

PLAN KONSPEKT. do przeprowadzenia zajęć z przedmiotu. Wprowadzenie do pomiarów systemów transmisyjnych PLAN KONSPEKT do przeprowadzenia zajęć z przedmiotu Wprowadzenie do pomiarów systemów transmisyjnych TEMAT: Pomiary systemów transmisyjnych CEL: Zapoznanie uczniów z podstawami pomiarów systemów transmisyjnych.

Bardziej szczegółowo

STANDARYZACJA METODYK POMIARÓW PÓL ELEKTROMAGNETYCZNYCH ZWIĄZANYCH Z EKSPOZYCJĄ CZŁOWIEKA I JEJ WPŁYW NA JAKOŚCI BADAŃ

STANDARYZACJA METODYK POMIARÓW PÓL ELEKTROMAGNETYCZNYCH ZWIĄZANYCH Z EKSPOZYCJĄ CZŁOWIEKA I JEJ WPŁYW NA JAKOŚCI BADAŃ Medyczne, biologiczne, techniczne i prawne aspekty wpływu pola elektromagnetycznego na środowisko (oceny, poglądy, harmonizacja) WARSZAWA, 15.12.2016 STANDARYZACJA METODYK POMIARÓW PÓL ELEKTROMAGNETYCZNYCH

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 22 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 31 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Warszawa, dnia 25 stycznia 2019 r. Poz. 151

Warszawa, dnia 25 stycznia 2019 r. Poz. 151 Warszawa, dnia 25 stycznia 2019 r. Poz. 151 ROZPORZĄDZENIE MINISTRA PRZEDSIĘBIORCZOŚCI I TECHNOLOGII 1) z dnia 10 stycznia 2019 r. zmieniające rozporządzenie w sprawie wymagań, którym powinny odpowiadać

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 22 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 13 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Systemy pozycjonowania i nawigacji Nazwa modułu w języku angielskim Navigation

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 18 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 23 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

PORÓWNYWANIE CZĘSTOTLIWOŚCI WZORCOWYCH W ŚRODOWISKU LABVIEW

PORÓWNYWANIE CZĘSTOTLIWOŚCI WZORCOWYCH W ŚRODOWISKU LABVIEW II Sympozjum Naukowe APM 2013 Gdańsk, 15 września 2013 r. PORÓWNYWANIE CZĘSTOTLIWOŚCI WZORCOWYCH W ŚRODOWISKU LABVIEW Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Plan

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 18 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 13 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 22 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Moduły ultraszybkiego pozycjonowania GNSS

Moduły ultraszybkiego pozycjonowania GNSS BUDOWA MODUŁÓW WSPOMAGANIA SERWISÓW CZASU RZECZYWISTEGO SYSTEMU ASG-EUPOS Projekt rozwojowy MNiSW nr NR09-0010-10/2010 Moduły ultraszybkiego pozycjonowania GNSS Paweł Wielgosz Jacek Paziewski Katarzyna

Bardziej szczegółowo

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 27 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

Precyzyjne pozycjonowanie w oparciu o GNSS

Precyzyjne pozycjonowanie w oparciu o GNSS Precyzyjne pozycjonowanie w oparciu o GNSS Załącznik nr 2 Rozdział 1 Techniki precyzyjnego pozycjonowania w oparciu o GNSS 1. Podczas wykonywania pomiarów geodezyjnych metodą precyzyjnego pozycjonowania

Bardziej szczegółowo

System AIS. Paweł Zalewski Instytut Inżynierii Ruchu Morskiego Akademia Morska w Szczecinie

System AIS. Paweł Zalewski Instytut Inżynierii Ruchu Morskiego Akademia Morska w Szczecinie System AIS Paweł Zalewski Instytut Inżynierii Ruchu Morskiego Akademia Morska w Szczecinie - 2 - Treść prezentacji: AIS AIS i ECDIS AIS i VTS AIS i HELCOM Podsumowanie komentarz - 3 - System AIS (system

Bardziej szczegółowo

Uzasadnienie techniczne zaproponowanych rozwiązań projektowanych zmian w

Uzasadnienie techniczne zaproponowanych rozwiązań projektowanych zmian w Uzasadnienie techniczne zaproponowanych rozwiązań projektowanych zmian w rozporządzeniu Rady Ministrów z dnia 9 listopada 2004 r. w sprawie określenia rodzajów przedsięwzięć mogących znacząco oddziaływać

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

odpowiedź na uwagi Regionalnej Dyrekcji Ochrony Środowiska w Kielcach

odpowiedź na uwagi Regionalnej Dyrekcji Ochrony Środowiska w Kielcach Gdańsk, 28.07.2014 r. Regionalny Dyrektor Ochrony Środowiska w Kielcach ul. Szymanowskiego 6 25-361 Kielce Dotyczy: odpowiedź na uwagi Regionalnej Dyrekcji Ochrony Środowiska w Kielcach (znak. WOOŚ-II.4242.68.2013.PW.7)

Bardziej szczegółowo

CEL PRZEDMIOTU Ogólne zapoznanie z charakterem, istotą, przeznaczeniem i zróżnicowaniem okrętowych urządzeń nawigacyjnych

CEL PRZEDMIOTU Ogólne zapoznanie z charakterem, istotą, przeznaczeniem i zróżnicowaniem okrętowych urządzeń nawigacyjnych I. KARTA PRZEDMIOTU. Nazwa przedmiotu: URZĄDZENIA NAWIGACYJNE. Kod przedmiotu: Vn. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Wszystkie specjalności

Bardziej szczegółowo

GPS Global Positioning System budowa systemu

GPS Global Positioning System budowa systemu GPS Global Positioning System budowa systemu 1 Budowa systemu System GPS tworzą trzy segmenty: Kosmiczny konstelacja sztucznych satelitów Ziemi nadających informacje nawigacyjne, Kontrolny stacje nadzorujące

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA SYSTEMÓW

SYMULACJA KOMPUTEROWA SYSTEMÓW SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 30 października 2003 r.

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 30 października 2003 r. Dz.U.2003.192.1883 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 30 października 2003 r. w sprawie dopuszczalnych poziomów pól elektromagnetycznych w środowisku oraz sposobów sprawdzania dotrzymania tych

Bardziej szczegółowo

ROZPORZĄDZENIE RADY MINISTRÓW. z dnia 29 czerwca 2005 r. w sprawie Krajowej Tablicy Przeznaczeń Częstotliwości. (Dz. U. z dnia 21 lipca 2005 r.

ROZPORZĄDZENIE RADY MINISTRÓW. z dnia 29 czerwca 2005 r. w sprawie Krajowej Tablicy Przeznaczeń Częstotliwości. (Dz. U. z dnia 21 lipca 2005 r. Dz.U.2005.134.1127 2010-06-22 zm. Dz.U.2010.98.627 1 2012-06-01 zm. Dz.U.2012.537 1 ROZPORZĄDZENIE RADY MINISTRÓW z dnia 29 czerwca 2005 r. w sprawie Krajowej Tablicy Przeznaczeń Częstotliwości (Dz. U.

Bardziej szczegółowo

WPŁYW ZMIENNOŚCI DOBOWEJ NATĘŻEŃ RUCHU NA AUTOSTRADACH I DROGACH EKSPRESOWYCH NA POZIOM HAŁASU DROGOWEGO

WPŁYW ZMIENNOŚCI DOBOWEJ NATĘŻEŃ RUCHU NA AUTOSTRADACH I DROGACH EKSPRESOWYCH NA POZIOM HAŁASU DROGOWEGO III Międzynarodowa Konferencja Naukowo Techniczna TRANSEIA WPŁYW ZMIENNOŚCI DOBOWEJ NATĘŻEŃ RUCHU NA AUTOSTRADACH I DROGACH EKSPRESOWYCH NA POZIOM HAŁASU DROGOWEGO Malwina SPŁAWIŃSKA, Piotr BUCZEK Politechnika

Bardziej szczegółowo

Temat pracy dyplomowej Promotor Dyplomant CENTRUM INŻYNIERII RUCHU MORSKIEGO. prof. dr hab. inż. kpt.ż.w. Stanisław Gucma.

Temat pracy dyplomowej Promotor Dyplomant CENTRUM INŻYNIERII RUCHU MORSKIEGO. prof. dr hab. inż. kpt.ż.w. Stanisław Gucma. kierunek: Nawigacja, : Transport morski, w roku akademickim 2012/2013, Temat dyplomowej Promotor Dyplomant otrzymania 1. Nawigacja / TM 2. Nawigacja / TM dokładności pozycji statku określonej przy wykorzystaniu

Bardziej szczegółowo

WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE

WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE WYNIKI CIĄGŁYCH POMIARÓW HAŁASU LOTNICZEGO W ŚRODOWISKU DLA LOTNISKA BABICE W WARSZAWIE Miejsce pomiarów: Pp.1 IOŚ ul. Kolektorska 4, Warszawa Pp.2 Na granicy Lotniska Babice przy zabudowie mieszkalnej

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH

KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH KOREKCJA BŁĘDÓW W REFLEKTOMETRYCZNYCH POMIARACH DŁUGOŚCI ODCINKÓW SPAWANYCH TELEKOMUNIKACYJNYCH ŚWIATŁOWODÓW JEDNOMODOWYCH dr inż. Marek Ratuszek, mgr inż. Zbigniew Zakrzewski, mgr inż. Jacek Majewski,

Bardziej szczegółowo

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł

Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł 1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych

Bardziej szczegółowo

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW

PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PROGRAM WYKŁADÓW PODSTAWY I ALGORYTMY PRZETWARZANIA SYGNAŁÓW Kierunek: Elektronika i Telekomunikacja sem. IV Prowadzący: dr inż. ARKADIUSZ ŁUKJANIUK PROGRAM WYKŁADÓW Pojęcie sygnału, sygnał a informacja, klasyfikacja sygnałów,

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik nawigator morski 314[01]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik nawigator morski 314[01] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik nawigator morski 314[01] Zdający egzamin w zawodzie technik nawigator morski wykonywali zadanie praktyczne wynikające ze standardu

Bardziej szczegółowo

Historia morskich radionawigacyjnych systemów w pozycyjnych wykorzystywanych w Polsce

Historia morskich radionawigacyjnych systemów w pozycyjnych wykorzystywanych w Polsce MIĘDZYNARODOWA KONFERENCJA NAUKOWA HISTORIA TECHNIKI MORSKIEJ 16 18 kwietnia 2015, Gdańsk Histria mrskich radinawigacyjnych systemów w pzycyjnych wykrzystywanych w Plsce Cezary SPECHT, Adam WEINTRIT, Mariusz

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W AKADEMIA MORSKA W MORSKA W SZCZECINIE Szczecin, 25.06.2015 Zapytanie ofertowe ZAMAWIAJĄCY Akademia Morska w Szczecinie ul. Wały Chrobrego 1-2 70-500 Szczecin Wydział Inżynieryjno Ekonomiczny

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby

Bardziej szczegółowo

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej Systemy przyszłościowe Global Navigation Satellite System Globalny System Nawigacji Satelitarnej 1 GNSS Dlaczego GNSS? Istniejące systemy satelitarne przeznaczone są do zastosowań wojskowych. Nie mają

Bardziej szczegółowo

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP:

EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko Kraków, Zamkowa 6/19 tel ; ; mail: NIP: Strona 1 z 35 EQM SYSTEM I ŚRODOWISKO Ewa Nicgórska-Dzierko 30-301 Kraków, Zamkowa 6/19 tel. 604 916 623; 664 789 532; mail: biuro@eqm.com.pl NIP: 677-131-95-53 AKREDYTOWANE BADANIA Środowisko ogólne hałas

Bardziej szczegółowo

przygtowała: Anna Stępniak, II rok DU Geoinformacji

przygtowała: Anna Stępniak, II rok DU Geoinformacji przygtowała: Anna Stępniak, II rok DU Geoinformacji system nawigacji składa się z satelitów umieszczonych na orbitach okołoziemskich, kontrolnych stacji naziemnych oraz odbiorników satelity wysyłają sygnał

Bardziej szczegółowo