Biomechanika Inżynierska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Biomechanika Inżynierska"

Transkrypt

1 wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1

2 Biomechanika Podstawowe pojęcia Biomechaniki Ruchliwość łańcucha biokinematycznego: 5 W =6n P i i i=3 W ruchliwość łańcucha kinematycznego n liczba ruchomych członów (bez podstawy) i klasa pary kinematycznej Pi liczba par i-tej klasy. 2

3 Biomechanika Podstawowe pojęcia Biomechaniki Przykład: Jaka jest ruchliwość palca wskazującego przyjmując rękę jako nieruchomą podstawę? 3

4 Biomechanika Podstawowe pojęcia Biomechaniki Łańcuch kinematyczny otwarty: łańcuch o konfiguracji szeregowej, którego ogniwa nie tworzą struktur zamkniętych. Łańcuch kinematyczny zamknięty: Łańcuch w którym występują połączenia ruchów między wszystkimi członami, co oznacza, że brakuje w nim członu o wolnej końcówce 4

5 Biomechanika Podstawowe pojęcia Biomechaniki Łańcuch kinematyczny otwarty: 5

6 Biomechanika Podstawowe pojęcia Biomechaniki Łańcuch kinematyczny zamknięty: 6

7 Biomechanika Podstawowe pojęcia Biomechaniki Układ ruchu człowieka uznajemy za biomechanizm, ponieważ posiada człony sztywne (kości) oraz Morecki Bionika ruchu połączenia ruchome (stawy). 7

8 Biomechanika Podstawowe pojęcia Biomechaniki Schemat strukturalny biernego układu ruchu człowieka łańcuch biokinematyczny względem nieruchomej podstawy: czaszki. 144 człony ruchome 143 pary kinematyczne: 29 par III klasy (3 st. sw.) 33 pary IV klasy (2 st. sw.) 81 par V klasy (1 st. sw.) Morecki Bionika ruchu 8

9 Biomechanika Podstawowe pojęcia Biomechaniki 9

10 Biomechanika Podstawowe pojęcia Biomechaniki Stawy w układzie ruchu człowieka tworzą obrotowe pary kinematyczne, zatem ich ruchliwość może wynosić najwyżej trzy (stopnie swobody) 10

11 Biomechanika Podstawowe pojęcia Biomechaniki Schemat strukturalny kończyny górnej człowieka: 22 ruchome człony (wzgl. Łopatki) 22 pary kinematyczne: 1 para III klasy 6 par klasy IV 15 par klasy V Morecki Bionika ruchu 11

12 Biomechanika Podstawowe pojęcia Biomechaniki Morecki Bionika ruchu Jaka jest ruchliwość kończyny górnej człowieka? 12

13 Biomechanika Podstawowe pojęcia Biomechaniki Jaka jest ruchliwość kończyny górnej człowieka? 5 W =6n P i i 22 ruchome człony (wzgl. Łopatki) 22 pary kinematyczne: 1 para III klasy 6 par klasy IV 15 par klasy V Morecki Bionika ruchu i=3 13

14 Biomechanika Podstawowe pojęcia Biomechaniki Morecki Bionika ruchu Jaka jest ruchomość całego układu ruchu człowieka (względem czaszki)? 14

15 Biomechanika Podstawowe pojęcia Biomechaniki Jaka jest ruchomość całego układu ruchu człowieka (względem czaszki)? 144 człony ruchome 143 pary kinematyczne: 29 par III klasy (3 st. sw.) 33 pary IV klasy (2 st. sw.) 81 par V klasy (1 st. sw.) 5 W =6n P i i= =240 i =3 Morecki Bionika ruchu 15

16 Dynamika części ciała W stawach: obrotowy W wyniku ruchu innych członów biomechanizmu staw może wykonywać ruch: postępowy W efekcie: ruch dowolny 16

17 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Każdy ruch można przedstawić jako złożenie (superpozycję) ruchów prostych (postępowego i obrotowego). Względność ruchu ruch określamy względem wybranego układu odniesienia (innego ciała) 17

18 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy =m a = m Δ v F Δt =m Δ v Δ t F Popęd siły = przyrost pędu - Twierdzenie o popędzie siły Ruch obrotowy =I ε = I Δ ω M Δt = I ω Δ t M Popęd momentu siły = przyrost momentu pędu - Twierdzenie o momencie pędu 18

19 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy Zasada zachowania pędu Jeżeli w układzie ciał działają tylko siły wewnętrzne, to całkowity pęd układu pozostaje stały. Ruch obrotowy Zasada zachowania momentu pędu Jeżeli w układzie ciał działają tylko siły wewnętrzne, to całkowity moment pędu układu pozostaje stały. 19

20 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy Zasada zachowania pędu =0 F =0 Δ t F 0=mk v k m p v p Ruch obrotowy Zasada zachowania momentu pędu =0 M =0 Δ t M k I p ω p 0= I k ω 20

21 Dynamika części ciała 21

22 Dynamika części ciała Ruch części ciała 22 D3 Rotating Falling Cat,

23 Dynamika części ciała 23 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch części ciała

24 Dynamika części ciała Moment bezwładności Jest wielkością charakteryzującą bezwładność ciał w ruchu obrotowym, względem ustalonej osi obrotu. Jest sumą iloczynów mas skupionych i kwadratów ich odległości od osi obrotu. k I Δ mi r i i=1 k 2 2 Δ mi r i Δ m 0 I = lim i i=1 24

25 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności k I = Δ mi r i 2 i=1 25

26 Dynamika części ciała Zbliżanie ciała do osi obrotu spowoduje zmniejszanie się momentu bezwładności do chwili, gdy środek ciężkości znajdzie się w osi obrotu. Wtedy moment bezwładności przyjmuje wartość najmniejszą z możliwych. Centralny moment bezwładności ciała, jest to moment wyznaczony względem osi przechodzącej przez środek masy ciała. 26

27 Dynamika części ciała Twierdzenie o momencie bezwładności (Steinera) Moment bezwładności bryły A względem osi 0' jest równy sumie jego momentu centralnego Ic (względem osi 0 równoległej do 0') oraz iloczynu masy ciała i kwadratu odległości między tymi osiami. 27

28 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Twierdzenie o momencie bezwładności (Steinera) I 0 ' = I c +md 2 28

29 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Twierdzenie o momencie bezwładności (Steinera) Ic centralny moment bezwładności podudzia, względem osi poprzecznej; I0' moment bezwładności względem osi poprzecznej stawu kolanowego 0' oś poprzeczna stawu kolanowego 0 oś poprzeczna przez środek masy podudzia d odległość między osiami m masa podudzia I 0 ' = I c +md 2 29

30 Dynamika części ciała Moment bezwładności układu brył? 30

31 Dynamika części ciała Moment bezwładności układu brył Układ brył o momentach bezwładności wyznaczonych względem danej osi 0 równych IA, IB i IC posiada wypadkowy moment bezwładności równy sumie momentów bezwładności poszczególnych ciał, wyznaczonych względem tej samej osi 0. 31

32 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U =I A + I B + I C 0' 32

33 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U =? 33

34 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C 34

35 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C I A =I ca +m A d A2 35

36 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C I A =I ca +m A d A2 I B =I cb + mb d B 2 I C =I cc + mc d C 2 36

37 Dynamika części ciała Rodzaje osi obrotu Swobodne: przechodzące przez środek masy, spełniające warunek, że moment bezwładności względem nich jest najmniejszy lub największy. Ustalone: wszystkie inne (muszą zostać ustalone [na siłę] żeby obrót był możliwy) 37

38 Dynamika części ciała Rodzaje osi obrotu Osie swobodne: Stabilna oś dla której centralny moment bezwładności ma maksymalną wartość. Niestabilna - oś dla której centralny moment bezwładności ma minimalną wartość. 38

39 Dynamika części ciała Przykłady wartości momentów bezwładności człowieka Pozycja Oś obrotu Moment bezwładności [kgm2] Strzałkowa 12,0 15,0 Poprzeczna 10,5 13,0 Poprzeczna 4,0 5,0 Długa 1,0 1,2 Długa 2,0 2,5 39

40 Dynamika części ciała Jakiś z życia wzięty przykład na wykorzystanie momentu pędu... 40

41 Dynamika części ciała 41

42 Dynamika części ciała 2V y tl = g Maksymalizacja momentu pędu Iω i prędkości pionowej Vy 42

43 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

44 Dynamika części ciała P=Q+ F i=m g+m a Przesunięcie P wzgl. R moment + moment ruchu ramion Przesunięcie Fix wzgl. R moment Biomechanika Inżynierska+ moment ruchu ramion 44

45 Dynamika części ciała Inne przykłady zastosowania w praktyce zasady zachowania momentu pędu pokazujące jak zamiana momenty bezwładności pozwala modyfikować prędkość obrotową:

46 Model system założeń, pojęć i zależności między nimi, pozwalający opisać (modelować) w przybliżony sposób jakiś aspekt rzeczywistości. Żeby stworzyć model trzeba przyjąć jakieś założenia uprościć rzeczywistość tak, aby dało się ją opisać. 46

47 Model Należy stosować najprostszy możliwy model pozwalający rozwiązać postawiony problem. 47

48 Założenia: Ciało człowieka jest układem brył sztywnych członów. Człony połączone są stawami, w których wykonywane są tylko ruchy obrotowe. Możliwe jest wyznaczenie parametrów bezwładnościowych poszczególnych członów. Powyższe parametry traktuje się jako względnie stałe. 48

49 Modele tworzy się zależnie od potrzeb rodzaju analizowanego ruchu. Chodu Biegu Czynności codziennych Pływania itp. itd. 49

50 Modele: 50

51 Modele:

52 Gait analysis", Michael W. Whittle, 2007 Chodu 52

53 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Jaki model byłby potrzebny w takim przypadku? 53

54 Jaki model byłby potrzebny w takim przypadku? 54

55 14 Segment Początek Koniec Głowa (wraz z szyją) Szczyt głowy (vertex) Wcięcie jarzmowe mostka (suprasternale) Tułów Wcięcie jarzmowe mostka Spojenie łonowe (symphysion) Ramię (x 2) Oś stawu ramiennego: 2,5cm poniżej wyrostka barkowego Oś stawu łokciowego; linia przesunięta o 1 cm w dół od linii łączącej nadkłykcie kości ramiennej (radiale) Przedramię (x 2) Oś stawu łokciowego Oś stawu promieniowo-nadgarstkowego; punkt w połowie odcinka łączącego wyrostki rylcowate kości łokciowej i promieniowej Ręka (x 2) Oś stawu promieniowonadgarstkowego Koniec palca III (dactylion) Udo (x 2) Oś stawu biodrowego (dla ruchu w płaszczyźnie strzałkowej); punkt przesunięty ok. 1 cm do przodu od wierzchołka krętarza większego Oś stawu kolanowego; 2,5 cm powyżej szczeliny stawu kolanowego na granicy środkowej i tylnej części wymiaru strzałkowego kolana dzieląc go na trzy części Podudzie (x 2) Oś stawu kolanowego Oś stawu skokowo-goleniowego; około 0,8 cm powyżej szczytu kostki bocznej Stopa (x 2) Guz piętowy Palec I lub palec II (acropodion) 55

56 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? 56

57 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności Ruchliwości połączeń Zakresy ruchu Napędy 57

58 Wyznaczanie mas części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. 58

59 Wyznaczanie mas części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. Źródło Liczba próbek Harles (1860) Braune i Fischer (1889) Clauser i wsp. (1969) Zatziorsky i wsp. (1981) M% M% M% M% Głowa 7,6 7,0 7,3 6,94 Tułów 44,2 46,1 50,7 43,457 Ramię 3,1 2,9 2,6 2,707 Przedramię 1,7 2,1 1,6 1,625 Ręka 0,9 0,8 0,7 0,614 Udo 11,8 10,7 10,3 14,165 Podudzie 4,6 4,8 4,3 4,33 Stopa 2,0 1,7 1,5 1,371 Jednostka Części ciała: 59

60 Jegomość 80 kg: Źródło Zatziorsky i wsp. (1981) Masa wyznaczona przez analogię Części ciała: Głowa 6,94 Tułów 43,457 Ramię 2,707 Przedramię 1,625 Ręka 0,614 Udo 14,165 Podudzie 4,33 Stopa 1,371 60

61 Jegomość 80 kg: Źródło Części ciała: Zatziorsky i wsp. (1981) Masa wyznaczona przez analogię % kg Głowa 6,94 5,6 Tułów 43,457 34,8 Ramię 2,707 2,2 Przedramię 1,625 1,3 Ręka 0,614 0,5 Udo 14,165 11,3 Podudzie 4,33 3,5 Stopa 1,371 1,1 61

62 Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji wyznaczone doświadczalnie, uwzględniające również wymiary. Według C. F. Clausnera [badania na zwłokach, N = 8] Części ciała: Równanie regresji Głowa 0,104(O) + 0,015(Q) 2,189 Tułów 0,349(Q) + 0,423(D) + 0,229(O) 35,460 Ramię 0,007(Q) + 0,092(Omax) + 0,05(Dmax) 3,101 Przedramię 0,081(Onadg.) + 0,052(Oprzedr) 1,65 Ręka 0,029(Onadg.) + 0,075(Snadg-kostn) + 0,031(Sręki) 0,746 Udo 0,074(Q) + 0,123(O uda) + 0,027(fałd skórny nad grzeb. kości biodrowej) 4,126 Podudzie 0,111(O podudzia) + 0,047(W kłykcia bocznego kości udowej do podłoża) + 0,074(O na wys. kostki bocznej) 4,208 Stopa 0,003(Q) + 0,048(O na wys. kostki bocznej) + 0,027(D stopy) 0,869 D długość, O obwód, S szerokość, Q ciężar ciała, W - wysokość 62

63 Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji wyznaczonych doświadczalnie, uwzględniających również wymiary. Według V.N. Zatziorsky'ego [badania na żywych] Części ciała: Równanie regresji Głowa 1, ,0171 Q + 0,0143 W Górna część tułowia 8, ,1862 Q - 0,0584 W Środkowa część tułowia 7, ,2234 Q - 0,0663 W Dolna część tułowia -7, ,0976 Q + 0,04896 W Ramię 0,25 + 0,03012 Q - 0,0027 W Przedramię 0, ,01445 Q - 0,00114 W Ręka -0, ,0036 Q + 0,00175 W Udo -2, ,1463 Q + 0,0137 W Podudzie -1, ,0362 Q + 0,0121 W Stopa -0, ,0077 Q + 0,0073 W Q ciężar ciała, W wysokość ciała 63

64 Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji vs. Metoda szacunkowa (80 kg, 188 cm) Sz Głowa R.R.Z Tułów Ramię Ręka Udo Przedramię Podudzie Stopa 64

65 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 65

66 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 66

67 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Założenia: Wymiarem dominującym każdej części ciała jest jej długość. Pod względem kształtu części ciała przypominają bryły obrotowe a więc mają oś symetrii. Rozkład materii w każdej części ciała jest symetryczny względem geometrycznej osi symetrii. Zatem środki ciężkości leżą na ich osi symetrii. Wyznaczenie środka ciężkości wymaga tylko określenia jego położenia na osi (jedna współrzędna) 67

68 Wyznaczanie środków ciężkości części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. Źródło Liczba próbek Harles (1860) Braune i Fischer (1889) Clauser i wsp. (1969) Zatziorsky i wsp. (1981) Wymiar r% r% r% r% Głowa 36,2-46,6 50,0 Vertex - SC Tułów 44,8 44,0 38,0 44,5 Suprasternale - SC Ramię - 47,0 51,3 45,0 Oś stawu - SC Przedramię 42,0 42,1 39,0 42,7 Oś stawu - SC Ręka 39,7-48,0 37,0 Oś stawu - SC Udo 48,9 44,0 37,2 45,5 Oś stawu - SC Podudzie 43,3 42,0 37,1 40,5 Oś stawu - SC Stopa 44,4 44,45 44,9 44,1 Pternion - SC OSC 41,4-41,2 - Vertex - SC Jednostka Części ciała: 68

69 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środków ciężkości części ciała: 69

70 Wyznaczanie środków ciężkości części ciała: Metoda wykorzystująca równania regresji (Zatziorsky) Część ciała Wymiar Równanie Vertex - SC 8,357-0,0025 Q + 0,0230 W Suprasternale - SC 3, ,0076 Q + 0,0470 W Tułów środkowa część Xyphoidale - SC 1, ,0058 Q + 0,0450 W Tułów dolna część Umbilicus - SC 1, ,0018 Q + 0,0434 W Ramię Akromion - SC 1, ,0300 Q + 0,0540 W Przedramię Radiale - SC 0,192-0,0280 Q + 0,0930 W Ręka Stylion - SC 4, ,0260 Q + 0,0330 W Udo Iliocristale - SC -2, ,0380 Q + 0,1350 W Tibiale - SC -6,050-0,0390 Q + 0,1420 W Pternion - SC 3, ,0650 Q + 0,0330 W Głowa Tułów górna część Podudzie Stopa Q ciężar ciała, W wysokość ciała 70

71 X E= Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Środek ciężkości układu ciał: q 1 X A +q 2 X B +q 3 X C q 1 +q 2 +q 3 q1 Y A +q 2 Y B +q 3 Y C Y E= q 1 +q 2 +q 3 71

72 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środka ciężkości ciała: Q, q1, q2,... qk ciężary części ciała q1 x 1 +q 2 x q 14 x 14 xosc = Q y OSC = q 1 y1 +q 2 y q 14 y 14 Q 14 qi x 1 xosc = i=1 Q 14 qi y 1 y OSC = i=1 Q 72

73 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środka ciężkości ciała: M Q + M R =0 M Q= M R Q r= R l r= R l Q 73

74 Wyznaczanie środka ciężkości ciała: Znając położenie środka ciężkości segmentu ciała można wyznaczyć jego ciężar (masę). L(S S ' ) X 2 X ' 2 74 Bionika ruchu, Morecki A., Ekiel J., Fidelus K., 1971 Q 2=

75 Wyznaczanie środka ciężkości ciała: Położenie środka ciężkości człowieka stojącego w pozycji wyprostowanej: U młodych kobiet na ok. 55,5% wysokości ciała U młodych mężczyzn na ok. 56,5% wysokości ciała Różnica ta nie jest statystycznie istotna. 75

76 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 76

77 Metody wyznaczania momentów bezwładności części ciała: Segmenty przez zastąpienie prostą bryłą geometryczną (walcem) Moment względem osi symetrii walca: 1 2 I 1= m r 2 Moment względem dowolnej osi leżącej w płaszczyźnie podstawy: 1 2 I 2= m h 3 77

78 Metody wyznaczania momentów bezwładności części ciała: Segment kończyny przez zastąpienie prostą bryłą geometryczną (walcem) Przykład przedramię: m = 1,3 kg Vol = 1,3 dm3 h = 30 cm 78

79 Metody wyznaczania momentów bezwładności części ciała: Segment kończyny przez zastąpienie prostą bryłą geometryczną (walcem) Przykład: m = 1,3 kg r= Vol 3,714 h π Vol = 1,3 dm3 h = 30 cm I 1 = m r =0, kg m I 2= m h =0,0117 kg m 3 79

80 Metody wyznaczania momentów bezwładności części ciała: Pośrednia, na podstawie centralnych momentów bezwładności określonych w oparciu o dane doświadczalne. Równanie regresji I =B 0 + B1 Q + B 2 W Twierdzenie Steinera I 0 = I c +m d 2 80

81 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

82 Metody wyznaczania momentów bezwładności części ciała: Empiryczne? 82

83 Bionika ruchu", Morecki A., 1971 Metody wyznaczania momentów bezwładności części ciała: Empiryczne: Metodą szybkiego odciążania (kończyny) ΔM I= Δϵ Metodą wahadła torsyjnego (całe ciało) D 2 2 (T T 1 ) 4π 83 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 I 2= I I 1 =

84 Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 84

85 Zadanie domowe: Jakie momenty sił wystąpią w stawie barkowym podczas rzucania puszki z piwem na wysokość 2-go piętra? Przyjąć dowolną technikę rzutu Obliczenia można wykonać w arkuszu kalkulacyjnym (dowolnie) 85

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Dynamika części ciała W stawach: obrotowy W wyniku ruchu innych członów biomechanizmu staw może wykonywać ruch: postępowy

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? 2 Modele ciała człowieka

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska Biomechanika Inżynierska wykład 4 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska Biomechanika Inżynierska 1 Modele ciała człowieka Modele: 4 6 10 14 Biomechanika Inżynierska 2 Modele

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 1 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Sprawy organizacyjne Wykład: Wykład i laboratorium: dr inż. Szymon Cygan pok. 40 tel. 22-234-86-64 e-mail: s.cygan@mchtr.pw.edu.pl

Bardziej szczegółowo

KINEMATYKA POŁĄCZEŃ STAWOWYCH

KINEMATYKA POŁĄCZEŃ STAWOWYCH KINEMATYKA POŁĄCZEŃ STAWOWYCH RUCHOMOŚĆ STAWÓW Ruchomość określa zakres ruchów w stawach, jedną z funkcjonalnych właściwości połączeń stawowych. WyróŜniamy ruchomość: czynną zakres ruchu jaki uzyskamy

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

WYPROST staw biodrowy

WYPROST staw biodrowy www.pandm.org ZGIĘCIE staw biodrowy Suplinacyjna Stabilizacja miednicy Krętarz większy kości udowej Głowa strzałki Wzdłuż tułowia, równolegle do podłoża, skierowane do dołu pachowego Zgięcie Norma Między

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

Spis Tabel i rycin. Spis tabel

Spis Tabel i rycin. Spis tabel Spis Tabel i rycin Spis tabel 1. Podział stawów ze względu na ilość osi ruchów i ukształtowanie powierzchni stawowych. 20 2. Nazwy ruchów w stawach człowieka w pozycji anatomicznej..... 21 3. Zestawienie

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 1 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Sprawy organizacyjne Wykład: Wykład i laboratorium: Dr inż. Szymon Cygan pok. 40 tel. 22-234-86-64 e-mail: s.cygan@mchtr.pw.edu.pl

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

POŁĄCZENIA KOŃCZYNY GÓRNEJ

POŁĄCZENIA KOŃCZYNY GÓRNEJ Slajd 1 Slajd 2 Slajd 3 POŁĄCZENIA KOŃCZYNY GÓRNEJ POŁĄCZENIE Z TUŁOWIEM Kończyna górna jest połączona z kośćcem tułowia za pomocą obręczy złożonej z obojczyka i łopatki. W tym połączeniu znajdują się

Bardziej szczegółowo

Materiał pomocniczy dla nauczycieli kształcących w zawodzie:

Materiał pomocniczy dla nauczycieli kształcących w zawodzie: Materiał pomocniczy dla nauczycieli kształcących w zawodzie: ASYSTENT OSOBY NIEPEŁNOSPRAWNEJ przygotowany w ramach projektu Praktyczne kształcenie nauczycieli zawodów branży hotelarsko-turystycznej Priorytet

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 19

INSTRUKCJA DO ĆWICZENIA NR 19 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 19 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA ALIZA PŁASKIEGO DOWOLNEGO UKŁADU SIŁ NA PODSTAWIE OBCIĄŻENIA

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Spis treści. Wstęp... 7

Spis treści. Wstęp... 7 Wstęp.............................................................. 7 I. Plan budowy ciała ludzkiego... 9 Okolice ciała ludzkiego........................................................................

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

SZKIELET KOŃCZYNY DOLNEJ

SZKIELET KOŃCZYNY DOLNEJ Slajd 1 Slajd 2 Slajd 3 SZKIELET KOŃCZYNY DOLNEJ SZKIELET KOŃCZYNY DOLNEJ DZIELI SIĘ NA: kości obręczy kończyny dolnej, który stanowią kości miedniczne, kości części wolnej kończyny dolnej: - kość udowa

Bardziej szczegółowo

ANATOMIA. mgr Małgorzata Wiśniewska Łowigus

ANATOMIA. mgr Małgorzata Wiśniewska Łowigus ANATOMIA mgr Małgorzata Wiśniewska Łowigus Wśród nauk biologicznych, zajmujących się wszelkimi formami życia, wyróżnia się dwa podstawowe działy: morfologię, fizjologię. MORFOLOGIA - zajmuje się poznaniem

Bardziej szczegółowo

Spis treści. Wstęp. I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P. Określenie orientacyjne w przestrzeni

Spis treści. Wstęp. I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P. Określenie orientacyjne w przestrzeni Wstęp 7 I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P Określenie orientacyjne w przestrzeni Płaszczyzny ciała Osie ciała II. Układ bierny i czynny ruchu (osteologia, syndesmołogia,

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

T =2 I Mgd, Md 2, I = I o

T =2 I Mgd, Md 2, I = I o Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna. Obszary kształcenia

Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna. Obszary kształcenia Nazwa przedmiotu Kod przedmiotu Jednostka Kierunek Obszary kształcenia BIOMECHANIKA INŻYNIERSKA I M:03516W0 Katedra Mechaniki i Mechatroniki Inżynieria mechaniczno-medyczna nauki medyczne i nauki o zdrowiu

Bardziej szczegółowo

MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'

MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*' Aktualne Problemy Biomechaniki, nr 1/2007 15 Agnieszka GŁOWACKA, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej, Politechnika Śląska, Gliwice MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY

MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY POŁĄCZENIA KOŃCZYNY GÓRNEJ OBRĘCZ KOŃCZYNY GÓRNEJ Kończyna górna jest połączona ze szkieletem tułowia za pomocą obręczy. W tym połączeniu znajdują się trzy

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Biomechanika Dodawanie wektorów 1.Prostolinijny ruch post powy 2.Ruch wokół osi 3.Ruch zło ony

Biomechanika Dodawanie wektorów 1.Prostolinijny ruch post powy 2.Ruch wokół osi 3.Ruch zło ony Biomechanika- dotyczy układu ruchu żywego układu. Dzielimy ją na działy : -statyka -kinematyka -dynamika Statyka przedmiotem badań będzie oddziaływanie sił na ciało znajdujące się w spoczynku Kinematyka

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

CENNIK BADAŃ RTG. Głowa

CENNIK BADAŃ RTG. Głowa CENNIK BADAŃ RTG Cennik obowiązuje od 01.01.2015 r. RTG czaszki: tylny dół RTG czaszki: AP / boczne (1 projekcja) RTG czaszki: AP + bok i tylny dół RTG czaszki: PA + boczne RTG podstawy czaszki RTG siodełka

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE.

Bardziej szczegółowo

C E N N I K Z A K Ł A D O W Y. na 2014 rok

C E N N I K Z A K Ł A D O W Y. na 2014 rok C E N N I K Z A K Ł A D O W Y na 2014 rok Zespołu Zakładów Opieki Zdrowotnej w Wadowicach Wadowice, dnia 02.12.2013r. Strona 1 z 8 3. DIAGNOSTYCZNE BADANIA RADIOLOGICZNE Lp. ID procedury Nazwa Nazwa długa

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Źródła zagrożeń oraz ergonomiczne czynniki ryzyka na stanowisku wyposażonym w monitor ekranowy

Źródła zagrożeń oraz ergonomiczne czynniki ryzyka na stanowisku wyposażonym w monitor ekranowy Źródła zagrożeń oraz ergonomiczne czynniki ryzyka na stanowisku wyposażonym w monitor ekranowy Wymagania minimalne [Dz.U.1998.148.973] Minimalne wymagania bezpieczeństwa i higieny pracy oraz ergonomii

Bardziej szczegółowo

SPECJALISTYCZNE ZABIEGI LEKARSKIE I PIELĘGNIARSKIE. Dobieranie szkieł kontaktowych. Wstrzyknięcie podspojówkowe. Zabiegi na przewodach łzowych

SPECJALISTYCZNE ZABIEGI LEKARSKIE I PIELĘGNIARSKIE. Dobieranie szkieł kontaktowych. Wstrzyknięcie podspojówkowe. Zabiegi na przewodach łzowych Badanie pola widzenia Badanie refrakcji okulistyczny Gonioskopia Tonografia Dobieranie szkieł kontaktowych Elektroretinografia Badanie GDx Wstrzyknięcie podspojówkowe i na przewodach łzowych Usunięcie

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Układy cząstek i bryła sztywna. Matematyka Stosowana

Układy cząstek i bryła sztywna. Matematyka Stosowana Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne

Bardziej szczegółowo

POŁĄCZENIA KOOCZYNY GÓRNEJ

POŁĄCZENIA KOOCZYNY GÓRNEJ POŁĄCZENIA KOOCZYNY GÓRNEJ POŁĄCZENIE Z TUŁOWIEM Kooczyna górna jest połączona z kośdcem tułowia za pomocą obręczy złożonej z obojczyka i łopatki. W tym połączeniu znajdują się 3 stawy: 1. mostkowo obojczykowy,

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

SZKIELET KOOCZYNY DOLNEJ

SZKIELET KOOCZYNY DOLNEJ SZKIELET KOOCZYNY DOLNEJ SZKIELET KOOCZYNY DOLNEJ DZIELI SIĘ NA: kości obręczy kooczyny dolnej, który stanowią kości miedniczne, kości części wolnej kooczyny dolnej: - kośd udowa, - kości goleni, - kości

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Akademia Wychowania Fizycznego we Wrocławiu Wydział Wychowania Fizycznego Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Dr hab. Krzysztof Maćkała AWF Wrocław 2 Wprowadzenie

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

ZOFIA IGNASIAK WYDANIE II ELSEYIER URBAN&PARTNER

ZOFIA IGNASIAK WYDANIE II ELSEYIER URBAN&PARTNER ZOFIA IGNASIAK ELSEYIER URBAN&PARTNER WYDANIE II Zofia Ignasiak Anatomia układu ruchu Wydanie II Elsevier Urban & Partner Wrocław \ Spis treści J Wstęp... I. Plan budowy ciała ludzkiego... Okolice ciała

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo