Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz"

Transkrypt

1 Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t = x t i y t j z t k Złożenie ruchu wzdłuż każdej osi układu współrzędnych. Wektor przesunięcia: Po upływie chwili czasu Δt wektor położenia będzie miał współrzędne: r t t =[ x t t, y t t, z t t ], co oznacza że poruszające się ciało przesunęło się o wektor r= r t t r t nazywany wektorem przesunięcia. Często rozważa się tzw. infinitezymalne przesunięcie, czyli przesunięcie przy Δt 0. Stosujemy wtedy zapis: d r=[dx, dy, dz] a elementarną chwilę czasu oznaczamy dt. Prędkość: d r t v t = dt Przyspieszenie: d v t a t = dt Zadania.

2 1. Dane są wektory: r 1 t =2t i 3t 2 1 j 5 k i r 2 t = t 2 3 i 4t 1 j t 2 t k. Oblicz: a) współrzędne i długość tych wektorów w chwili początkowej t = 0, b) sumę tych wektorów, c) różnicę tych wektorów, d) wartość (długość) tych wektorów w chwili t 1 = 1 s oraz t 2 = 10 s, e) iloczyn skalarny tych wektorów w chwili t 1 = 1 s oraz t 2 = 2 s, f) zależność kąta między tymi wektorami od czasu, g) kąt między tymi wektorami w 5 s ruchu, h) iloczyn skalarny r 1 t i, i) iloczyn skalarny r 2 t k. 2. Dane są wektory: r 1 t =2ln t 1 i 2t 2 t 3 j 5 e 2t k i r 2 t =ln t 2 3 i t 4 j e t 2 1 k. Oblicz: a) współrzędne i długość tych wektorów w chwili początkowej t = 0, b) sumę tych wektorów, c) różnicę tych wektorów, d) wartość (długość) tych wektorów w chwili t 1 = 1 s oraz t 2 = 10 s, e) iloczyn skalarny tych wektorów w chwili t 1 = 1 s oraz t 2 = 2 s, f) zależność kąta między tymi wektorami od czasu, g) kąt między tymi wektorami w 5 s ruchu, h) iloczyn skalarny r 1 t i, i) iloczyn skalarny r 2 t k.

3 Zadanie 1A. Położenie pewnego ciała opisane jest wektorem: r t =3t i t 2 1 j k. Oblicz: Zadanie 2A.

4 Zadanie 1B. Położenie pewnego ciała opisane jest wektorem: r t = t 2 2 i 2t j 4 k. Oblicz: Zadanie 2B.

5 Zadanie 1C. Położenie pewnego ciała opisane jest wektorem: r t = 3 t i t 2 3 j 6 k. Oblicz: Zadanie 2C.

6 Zadanie 1D. Położenie pewnego ciała opisane jest wektorem: r t =3 i 2t 2 t j t k. Oblicz: Zadanie 2D.

7 Zadanie 1E. Położenie pewnego ciała opisane jest wektorem: r t = 3t 2 i t 2 2t 1 j 3 k. Oblicz: Zadanie 2E.

8 Zadanie 1F. Położenie pewnego ciała opisane jest wektorem: r t = t i t 2 t 1 j 10 k. Oblicz: Zadanie 2F.

9 Zadanie 3. Zilustruj na odpowiednich wykresach i podaj interpretację fizyczną dla: a) ruchu jednostajnego prostoliniowego, b) ruchu jednostajnie zmiennego, c) ruchu niejednostajnie zmiennego.

10 3. Kula o masie 1 kg porusza się w przestrzeni z prędkością opisaną równaniem: v t = 2 t i t 2 3 j 5t k. Znajdź moment pędu kuli dla ramienia opisanego wektorem r= i 3 j 2 k. 4. Na krążek o promieniu 10 cm działa para sił. Znajdź moment siły. 5. Elektron poruszający się z prędkością v t = 2 t i t 2 3 j 5t k wpadł w pole magnetyczne o indukcji v t = 2 t i t 2 3 j 5t k. Znajdź zależność siły Lorenza od czasu i zależność kąta pomiędzy siłą Lorenza a kierunkiem prędkości. Znajdź zależność kąta pomiędzy prędkością a indukcją pola magnetycznego od czasu. Pod jakim kątem względem wektora indukcji jest skierowana prędkość elektronu? 6. Piłka o masie 1 kg porusza się w przestrzeni zgodnie z równaniami ruchu: x t =2t 4 y t =3t 3 z t =2t 6 a) zapisz wektor położenia tej piłki, b) znajdź wektor prędkości tej piłki, c) znajdź pęd piłki, d) znajdź moment pędu piłki obracającej się wokół nieruchomej osi opisanej położeniem r o =2 i 3 j 4 k, e) znajdź moment pędu piłki obracającej się wokół ruchomej osi opisanej położeniem r o t =t i 2t j 6t 1 k, f) znajdź wektor przyspieszenia piłki, g) znajdź siłę działającą na piłkę, h) znajdź moment siły powodujący ruch obrotowy piłki wokół nieruchomej osi opisanej położeniem r o =2 i 3 j 4 k, i) znajdź moment siły powodujący ruch obrotowy piłki wokół ruchomej osi opisanej położeniem r o t =t i 2t j 6t 1 k.

11 Zajęcia uzupełniające. Zadanie 1. Grupy 3-4 osobowe, max.10 grup. Materiały (dla 1 grupy): patyki drewniane (szaszłykowe) 3 szt. patyczki drewniane (wykałaczki) 4 szt. plastelina 2 cm a) Zbudować prawoskrętny prostokątny układ współrzędnych (układ kartezjański). b) Nanieść jednostkę na osie układu współrzędnych (co najmniej 6 jednostek). c) Pokazać wersory osi. d) Zademonstrować położenie wektorów o współrzędnych: e) A = [1,2,3], B = [1,1,1], C = [0,3,4], D = [1,0,5], E = [3,2,0], F = [5,3,4]. f) Zapisać te wektory przy pomocy wersorów osi. g) Pokazać rzuty prostokątne wybranego wektora na każdą z osi. h) Pokazać wynik dodawania dowolnych dwóch wektorów, dowolnych trzech wektorów oraz wszystkich wektorów. i) Pokazać wynik odejmowania dowolnych dwóch wektorów, dowolnych trzech wektorów oraz wszystkich wektorów. j) Obliczyć iloczyn skalarny dowolnej pary wektorów. k) Pokazać iloczyn wektorowy dowolnej pary wektorów. l) Pokazać wynik iloczynu: A B F. m) Pokazać wynik iloczynu: A B F. n) Pokazać wynik iloczynu: C D E. o) Obliczyć kąt między dwoma dowolnymi wektorami. p) Obliczyć kąt między wektorami z punktu l) i m).

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Podstawy fizyki sezon 1

Podstawy fizyki sezon 1 Podstawy fizyki sezon 1 dr inż. Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka na IMIR MBM rok 2013/14 Moduł

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ SZKOLNY 12. 11. 2013 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum Fizyka 1 Zadania dla wszystkich zbiór zadań do gimnazjum Zbiór zawiera zadania z działów: siły, ruch, siły i ruch oraz energia, omówionych w podręcznikach Fizyki z plusem. Jest praktyczną pomocą również

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Materiał powtórzeniowy dla klas pierwszych

Materiał powtórzeniowy dla klas pierwszych Materiał powtórzeniowy dla klas pierwszych 1. Paweł trzyma w ręku teczkę siłą 20N zwróconą do góry. Ciężar teczki ma wartośd: a) 0N b) 10N c) 20N d) 40N 2. Wypadkowa sił działających na teczkę trzymaną

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania

Bardziej szczegółowo

Ruch ładunków w polu magnetycznym

Ruch ładunków w polu magnetycznym Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor (na podstawie J.Giergiel, L.Głuch, A.Łopata: Zbiór zadań z mechaniki.wydawnictwo AGH, Kraków 2011r.) Temat

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

1. K 5 Ruch postępowy i obrotowy ciała sztywnego

1. K 5 Ruch postępowy i obrotowy ciała sztywnego 1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII (Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

PRZED KONKURSEM CZĘŚĆ 13

PRZED KONKURSEM CZĘŚĆ 13 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Wymagania edukacyjne z fizyki poziom rozszerzony część 1

Wymagania edukacyjne z fizyki poziom rozszerzony część 1 1 Wymagania edukacyjne z fizyki poziom rozszerzony część 1 Kinematyka podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych

Bardziej szczegółowo

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1 KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

Mechanika bryły sztywnej

Mechanika bryły sztywnej WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów. PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która

Bardziej szczegółowo

Zajęcia pozalekcyjne z fizyki

Zajęcia pozalekcyjne z fizyki 189 - Fizyka - zajęcia wyrównawcze. Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_189 Osoby Uczestnicy Certificates Fora dyskusyjne Głosowania Quizy Zadania Szukaj w forum Zaawansowane

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1 Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. COACH 08 Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej. Program: Coach 6 Projekt: PTSN Coach6\PTSN - Ruch Ćwiczenia:

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Czym jest Fizyka? Podstawowa nauka przyrodnicza badanie fundamentalnych i uniwersalnych właściwości materii oraz zjawisk w przyrodzie gr. physis - prz

Czym jest Fizyka? Podstawowa nauka przyrodnicza badanie fundamentalnych i uniwersalnych właściwości materii oraz zjawisk w przyrodzie gr. physis - prz FIZYKA 1 Czym jest fizyka jako nauka? Fizyka i technika Wielkości fizyczne skalarne, wektorowe, tensorowe operacje na wektorach Pomiar i jednostki fizyczne Prawa i zasady fizyki Czym jest Fizyka? Podstawowa

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

III Powiatowy konkurs gimnazjalny z fizyki finał

III Powiatowy konkurs gimnazjalny z fizyki finał 1 Zduńska Wola, 2012.03.28 III Powiatowy konkurs gimnazjalny z fizyki finał Kod ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy składa się dwóch części: zadań testowych i otwartych

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1

Bardziej szczegółowo

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143 Przyrząd do badania ruchu jednostajnego i jednostajnie zmiennego V 5-43 PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-43 Oprac. FzA, IF US, 2007 Rys. Przyrząd stanowi równia pochyła,

Bardziej szczegółowo

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk. 3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku

Bardziej szczegółowo

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km.

A) 14 km i 14 km. B) 2 km i 14 km. C) 14 km i 2 km. D) 1 km i 3 km. ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Komisji Wojewódzkiego Konkursu Przedmiotowego z Fizyki Imię i nazwisko ucznia... Szkoła...

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

ZADANIA KOŁO FIZYCZNE 1

ZADANIA KOŁO FIZYCZNE 1 ZADANIA KOŁO FIZYCZNE 1 EWA LUTKIEWICZ IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Na specjalnie przygotowanym torze testowano nowy samochód. Na wykresie przedstawiono zależność prędkości tego samochodu od czasu

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo