UKŁADY SCALONE. The Nobel Prize in Physics 2000 "for basic work on information and communication technology" Federal Republic of Germany USA
|
|
- Michał Janik
- 6 lat temu
- Przeglądów:
Transkrypt
1 KŁADY SCALONE S 2016 kłady cyfrowe: przetwarzanie sygnałów o dwóch wartościach napięć (ewentualnie prądów): wysokiej (H-high) i niskiej (L-low). kłady analogowe: przetwarzanie napięć (lub prądów), których wartości zawierają się w pewnym przedziale wartości. układ analogowy H L układ cyfrowy The Nobel Prize in Physics 2000 "for basic work on information and communication technology" "for developing semiconductor heterostructures used in high-speed- and opto-electronics" "for his part in the invention of the integrated circuit" Zhores I. Alferov Herbert Kroemer Jack S. Kilby 1/4 of the prize 1/4 of the prize 1/2 of the prize ussia A.F. Ioffe Physico-Technical Institute St. Petersburg, ussia b b Federal epublic of Germany SA niversity of California Santa Barbara, CA, SA Texas Instruments Dallas, TX, SA b d
2 Jack S. Kilby german, 1957 obert Noyce krzem, technologia planarna, 1957 Pierwszy układ scalony kład cyfrowy posiada: m wejść, n wyjść i q stanów pamięciowych Wektory a, b, czy c =====> słowa logiczne Bit: element podstawowy słowa logicznego Bajt: słowo ośmiobitowe zasilanie c 1, c 2...c q pamięć a 1.. a m. wejście układ cyfrowy GND b 1... b n wyjście Stan słowa wyjściowego zależy od aktualnego stanu słowa wejściowego Stan słowa pamięci zależy zarówno od aktualnego stanu słowa wejściowego oraz od stanu słowa poprzednio zapamiętanego 2
3 kłady cyfrowe wykonują określone funkcje logiczne Działanie układów cyfrowych opisuje dwuwartościowa algebra Boole a (logika matematyczna) Bramki logiczne: elementy elektroniczne realizujące funkcje logiczne (wytwarzane jako monolityczne układy elektroniczne) PODSTAWO FNKTOY LOGICZNE <==> BAMKI LOGICZNE a b O AND NOT Wy a b Wy a b a b Wy Wy a b Wy a b Wy Wy Wy Poziomom elektrycznym H i L układu cyfrowego odpowiadają wartości logiczne: 1, 0 prawda, fałsz Podstawowe twierdzenia i tożsamości algebry Boole a Prawa przemienności x y y x x * y y* x Prawa łączności x ( y z) ( x y) z x y z x *( y* z) ( x* y)* z x* y* z Prawa rozdzielności: x *( y z) x* y x* z ( x y)*( w z) x* w y* w x* z y* z stąd: ( x y)*( x z) x y* z Inne tożsamości: ( x) x x x* y x dowód: x x* y x*(1 y) x* 1 x x x* y x y x* y x* y y ( x y)*( x y) y (przydatne przy minimalizacji funkcji!) 3
4 Prawa de Morgana: a b ab ab a b warto zapamiętać!!! Najbardziej uniwersalne bramki: NAND (NOT-AND) NO NO (NOT-O) a b a b Podstawowe twierdzenie logiczne: Każdą funkcję logiczną można złożyć z kombinacji trzech podstawowych działań logicznych: alternatywy (O), koniunkcji (AND) oraz negacji (NOT). Każdą funkcję logiczną można utworzyć z pewnej kombinacji tylko bramek NAND lub tylko bramek NO kłady logiczne: kombinatoryczne stan wyjść określony jednoznacznie przez stan wejść sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem Exclusive O (różnica symetryczna) Jedna z bardziej użytecznych funkcji (bramek) logicznych a b ab ab EX-O a b a a * b b a a + b b a * b 4
5 TABLICE KANAGH a podstawowe pojęcia Tablice Karnaugh a to sposób przedstawienia funkcji logicznej Przykład: funktor logiczny AND f ( a, b) a b Każdej linii Tabeli Prawdy odpowiada komórka w tablicy Karnaugh a Sekwencję adresów komórek opisuje kod Graya: sąsiednie adresy różnią się pojedynczym bitem Zasada tworzenia tablic Karnaugh a dla funkcji logicznych trzech lub czterech argumentów TABLICE KANAGH a minimalizacja funkcji logicznych Funkcja logiczna określona na podstawie Tabeli Prawdy: Ta sama funkcja logiczna zminimalizowana metodą graficznej analizy Tablicy Karnaugh a (metoda grupowania par) a b a b b 5
6 Inny przykład minimalizacji funkcji 3-wejściowej: eguły (wybrane) minimalizacji funkcji 4-wejściowej 6
7 eguły (wybrane) minimalizacji funkcji 4-wejściowej c.d. Przykład minimalizacji funkcji kład zminimalizowany Przykład: implikacja f(a,b) := a => b 7
8 kład 74F00 cztery dwuwejściowe bramki NAND Vcc 4B 4A 4Y 3B 3A 3Y Y= AB kład elektroniczny realizujący funkcję logiczną: NAND dwóch argumentów A 1B 1Y 2A 2B 2Y GND Dane techniczne: katalog producenta Z bramek cyfrowych (bramek logicznych) tworzymy złożone układy elektroniczne Grupy bramek cyfrowych tworzą tzw. rodziny Przykład: rodzina TTL (Transistor - Transistor Logic), a w niej seria 74 Przedstawiciel: układ scalony typu 74xx00 - cztery bramki NAND (xx oznacza rodzaj bramki: S-szybka, LS-szybka małej mocy, Zasilanie wytłoczenie VCC 74LS00 Zasilanie układu: VCC i GND kład scalony działa (realizuje funkcje logiczne) po podłączeniu zasilania GND - masa Wejścia i wyjścia bramek wyprowadzone na zewnętrzne nóżki układu scalonego Wartości napięć między wejściami i wyjściami a GND określają poziomy logiczne Inne układy: cztery bramki NO, wejściowa bramka NAND itd. Patrz: katalog układów TTL na stronach internetowych Pracowni 8
9 Zasady budowania elektroniki z układami TTL serii 74 : układy zasila się napięciem V; układy pracują w logice dodatniej ( 1 5V[H], 0 0V[L] ) napięcie odpowiadające logicznemu zeru zawiera się między 0 a 0.4 V z dopuszczalnym marginesem błędu 0.4 V; napięcie odpowiadające logicznej jedynce wynosi 3.3 V lecz nie mniej niż 2.4 V z marginesem błędu 0.4 V; wejście bramki niepołączone znajduje się w stanie logicznym 1 ; wyjść bramek nie wolno łączyć równolegle!!! Może to spowodować uszkodzenie; średni czas propagacji sygnału przez bramkę wynosi od 1 do 30 ns (typowo - około 10 ns); średnie zużycie mocy przez bramkę wynosi około 10 mw; Zasilanie VCC 74LS00 wytłoczenie a b GND - masa Bramka AND do sterowania przepływem informacji STEOWANIE JŚCIE JŚCIE Impulsy wejściowe pojawiają się na wyjściu wtedy i tylko wtedy, gdy na wejściu sterującym istnieje stan logiczny 1 9
10 Przerzutniki kłady logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem (dotychczas mówiliśmy o układach logicznych kombinatorycznych - stan wyjść określony jednoznacznie przez stan wejść) Przerzutniki: klasa urządzeń cyfrowych najprostsze układy pamięciowe JŚCIE PZEZTNIK JŚCIE kasuj zapamietanie skasowanie Przerzutnik zapamiętuje zmianę stanu logicznego wejścia Stan zapamiętania sygnalizowany jest zmianą stanu wyjścia Kasowanie stanu zapamiętania: przez podanie sygnału na wejście kasujące - przerzutnik bistabilny samoistnie, po czasie założonym przez konstruktora: przerzutnik monostabilny przerzutnik astabilny Przerzutniki bistabilne: asynchroniczne: stan wyjścia ustalany jest przez stan wejść synchroniczne: ustalanie stanu wyjścia sterowane impulsami zegara Przerzutniki bistabilne A _ S Q C wejścia informacyjne (A i B) określają stan wyjścia wejścia asynchroniczne i S, (lub i S ), B _ Q - wymuszają odpowiednio 0 lub 1 na wyjściu Q (stany przeciwne na Q ) - mają wyższy priorytet : wymuszają stany wyjścia niezależnie od stanów na wejściach informacyjnych Przerzutniki bistabilne synchroniczne: - wejście C synchronizacji sygnałem zegara - stan na wyjściach Q i Q ustala się po podaniu impulsu zegara na C 10
11 Przerzutnik typu D synchroniczny D Q 0 0 wyjście Q wtóruje dokładnie wejściu D jedno wejście informacyjne D wejścia asynchroniczne S S 1 1 C wejście synchronizacji C D C Q _ Q D standardowe wyjścia Q i Q Q podstawowy układ pamięciowy!!! Z definicji (konstrukcji): Wyjście Q przyjmuje wartość logiczną wejścia D w chwili pojawienia się narastającego zbocza impulsu zegara Przerzutnik JK (Master Slave) - przerzutnik bistabilny synchroniczny tabela prawdy: J K Q n Q n Q n Przerzutnik dwutaktowy: - stan wyjściowy wywoływany jest przez opadające zbocze impulsu zegara - stany na wejściach J i K muszą być ustalone przed pojawieniem się impulsu zegara - stany na wejściach J i K w chwili narastania zbocza impulsu zegara określają stan wyjścia wywoływany przez najbliższe zbocze opadające. 11
12 Przerzutniki c. d. Przerzutnik typu T: licznik, dzielnik częstości Definicja przerzutnika typu T: każdy impuls wejściowy (zegara) zmienia stan wyjścia Wykorzystując przerzutnik typu JK można zrealizować inne typy przerzutników ealizacja synchronicznych przerzutników T i D z wykorzystaniem JK T= 1 Liczniki - zliczanie impulsów licznik szeregowy - szeregowo połączone bistabilne przerzutniki synchroniczne JK Q0 Q1 Q2 Q3 każdy przerzutnik zmienia swój stan na przeciwny pod wpływem impulsu na wejściu C 1 Q 0 Q 1 Q 2 Q 3 Dodatkowa funkcja: dzielnik częstości! LICZBA Licznik złożony z n przerzutników może zliczyć do 2 n impulsów Kod stanów licznika czterobitowego = kod heksadecymalny CYFA W KODZIE HEKSADECYMALNYM ZAPIS DWÓJKO A B C D E F Czterobitowy licznik szeregowy: układ
13 Liczniki - zliczanie impulsów licznik binarny szeregowy może być wykonany z przerzutników D skonfigurowanych do przerzutnika T Liczniki dziesiętne - pracujące w kodzie dziesiętnym BCD (Binary Coded Decimal) Zliczanie modulo 10 Q0 Q1 Q2 Q3 1 Najprostszy układ dekodera CYF A BCD W szeregowym liczniku BCD bramka AND wykrywa dziesiątkę (stan 1010) i zeruje licznik za pomocą asynchronicznych wejść kasujących Liczniki BCD w układach
14 Wzmacniacze operacyjne należą do najbardziej uniwersalnych układów elektronicznych istnieją w postaci układów scalonych +V CC Każdy wzmacniacz operacyjny dwa wejścia: (-) - odwracające fazę (sygnał wyjściowy jest przesunięty w fazie o względem sygnału wejściowego), (+) - nieodwracające fazy ealizuje funkcję: = A*( ) gdzie A wzmocnienie układu Zasilanie dwubateryjne Napięcia zasilania +V CC i -V EE (z dwóch niezależnych źródeł) Wartości napięć +, - i oraz V CC i V EE określone względem wspólnego poziomu odniesienia - masy Idealny wzmacniacz operacyjny: wzmocnienie napięciowe A, rezystancje obu wejść względem masy są nieskończone, rezystancja między wejściami (układ nie pobiera prądu z wejść) rezystancja wyjściowa jest pomijalnie mała 0, nieograniczone pasmo przenoszenia (własności częstościowe wzmacniacza nie mają wpływu na jego pracę) + - -V EE Idealny wzmacniacz operacyjny nie istnieje! zeczywiste wzmacniacze operacyjne: ezystancje wejściowe wynoszą : W, wyjściowe : W. Wzmocnienie dla małych częstości może sięgać 10 6 (szybko spada z częstością) Budując wzmacniacz o wzmocnieniu 10 możemy określić jego charakterystykę częstościową i pasmo przenoszenia wzmocnienie 1000 m A 741 A*Dw=const 10 w g =10 Hz 100 khz częstość zeczywiste wzmacniacze operacyjne wystarczająco dobrze spełniają założenia dla wzmacniaczy idealnych, by model na nich oparty był stosowalny np. LM 318: A > , =10 10 W, =100 W niestety ograniczone pasmo przenoszenia (A*Dw = const) 14
15 Wzmacniacz operacyjny µa741 - schemat Parametry wzmacniacza µa 741: wzmocnienie przy otwartej pętli sprzężenia k= rezystancja wejściowa i = 2 MW maksymalne różnicowe napięcie wejściowe = ± 30 V napięcie zasilania ± 15 V pobór mocy 45 mw Wzmacniacz odwracający fazę - podstawowy układ ze wzmacniaczem operacyjnym I f I 2 Wzmocnienie? 1 3 napięcie wyjściowe układu jest skończone, lecz wzmocnienie idealne A, z równania =A*( ) wynika, że + = -, czyli, że - = 0 nieskończona rezystancja wejściowa prądy wpływające do wejść pomijalne równanie prądów w układzie: Stąd efektywne wzmocnienie układu: I = A 2 I Ponieważ potencjał - =0, rezystancja wejściowa układu wynosi 1 f Konwerter prąd-napięcie gdy w układzie rezystor 1 nie istnieje ( 1 0) => = I * 2 Zastosowanie: do współpracy ze źródłami prądowymi, np. fotodiody, fotopowielacze itp. I I f 15
16 Wzmacniacz sumujący w układzie wzmacniacza odwracającego fazę: I n Suma prądów, które dopływają do wejścia odwracającego fazę jest równa prądowi sprzężenia zwrotnego: wei I i I f i i stąd: napięcie wyjściowe jest proporcjonalne do sumy napięć wejściowych z wagami / i. i wy I3 I2 I1 n 1 I f Jeśli wszystkie oporniki będą miały wartość oporu, to = -( N ) Wzmacniacz nieodwracający fazy: I f napięcie wejściowe podawane jest na wejście nieodwracające (+) wzmacniacza operacyjnego 1 I 3 2 óżnica napięć między wejściami wzmacniacza + i - jest infinitezymalna we prąd płynący w pętli sprzężenia zwrotnego: I f I 2 1 wzmocnienie układu: 1 2 =A 1 ezystor 3 określa rezystancję wejściową układu Zastosowanie: współpraca z wysokooporowymi źródłami sygnału jak np. termopary Wtórnik napięciowy: gdy w układzie wzmacniacza 1, A=1, lecz prąd wyjściowy może być znacznie większy niż prąd wejściowy 2 1 Wzmacniacz różnicowy napięcie wyjściowe:
17 Inne operacje matematyczne na sygnałach Wzmacniacz całkujący C ównanie prądów w układzie ma postać: I I f dq dt C d dt 1 stąd: 1 C dt Dla wejściowych sygnałów harmonicznych (sinusoida) charakterystyka częstościowa układu: 1 wc Inne operacje matematyczne na sygnałach c.d. Wzmacniacz różniczkujący: Zamiana kondensatora i opornika miejscami! I dq dt d C dt I f C czyli: C d dt Charakterystyka częstościowa tego układu dla wejściowych sygnałów harmonicznych: wc Zastosowanie wzmacniaczy całkujących i różniczkujących: => formowanie sygnałów analogowych 17
18 Inne operacje matematyczne na sygnałach c.d. Wzmacniacz logarytmujący: I I 0 exp( X ) element o charakterystyce wykładniczej w pętli sprzężenia zwrotnego I I f 1 ln X I I exp( X 0 element nieliniowy: dioda, tranzystor bipolarny 0 ) + Wzmacniacze logarytmujące: przetwarzanie sygnałów o dużej dynamice zmian Wzmacniacz antylogarytmujący: zamiana miejscami rezystora i elementu nieliniowego I I0 exp( X ) I f I exp( X 0 ) + kłady mnożące: kombinacja wzmacniaczy sumujących, odejmujących, logarytmujących i antylogarytmujących ejestracja i analiza sygnałów analogowych Komparator analogowy Przetwornik analogowo-cyfrowy (ADC) Komparator analogowy: układ pośredniczący między elektroniką analogową i cyfrową Komparator analogowy służy do porównywania napięć analogowych JŚCIE V + E V - 1 gdy > E Komparator - specyficzny rodzaj wzmacniacza porównującego dwa napięcia: V + (na wejściu nieodwracającym fazy) i V - (na wejściu odwracającym fazę). Jeśli zachodzi relacja: V + > V -, to stan wyjściu jest jedynką logiczną 18
19 Przetworniki analogowo-cyfrowe typu flash E E(n - 1)/n E(n - 2)/n KŁAD LOGI - CZNY JŚCIE CYFO - JŚCIE ANALOGO - E/n Dokładność przetworników 10 bitów przy częstości próbkowania 1 GHz (Hewlett-Packard, Tektronix, National Instruments, Aqiris) Możliwe tworzenie układów przetworników pracujących sekwencyjnie częstość próbkowania sięga 10 GHz Przetworniki typu flash o większej liczbie bitów są wolniejsze: 12 bitów MHz, 14 bitów - 50 MHz ( firma Ga-Ge). Przetwornik analogowo cyfrowy podstawowy element układów pomiarowych Przykład: oscyloskop cyfrowy POSZCZONY SCHEMAT OSCYLOSKOP CYFOGO Wzmacniacz dobór czułości A D pamięć i procesor układ graficzny monitor sygnał wynik pomiaru Szybkie przetworniki analogowo-cyfrowe i cyfrowo-analogowe: podstawowe urządzenia do cyfrowego zapisu, przetwarzania i odtwarzania obrazu i dźwięku 19
Eksperyment elektroniczny sterowany komputerowo
Eksperyment elektroniczny sterowany komputerowo 2011 Czujniki (detektory) elektroniczne Analiza informacji (sygnałów) analogowych wzmacniacze, filtry, zakłócenia i szumy Pomiar: przetwarzanie informacji
Eksperyment elektroniczny sterowany komputerowo
Eksperyment elektroniczny sterowany komputerowo 2013 Czujniki (detektory) elektroniczne Analiza informacji (sygnałów) analogowych wzmacniacze, filtry, zakłócenia i szumy Pomiar: przetwarzanie informacji
H L. The Nobel Prize in Physics 2000 "for basic work on information and communication technology"
2013 CYFOWE UKŁADY SCALONE Układy analogowe: przetwarzanie napięć (lub prądów), których wartości zawierają się w pewnym przedziale wartości. WE układ analogowy WY Układy cyfrowe: przetwarzanie sygnałów
Eksperyment elektroniczny sterowany komputerowo
Eksperyment elektroniczny sterowany komputerowo 2010 Czujniki (detektory) elektroniczne Analiza informacji (sygnałów) analogowych wzmacniacze, filtry, zakłócenia i szumy Pomiar: przetwarzanie informacji
Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem
2-3-29 Przerzutniki Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem (dotychczas mówiliśmy o układach logicznych kombinatorycznych - stan wyjść określony jednoznacznie przez
Bramki logiczne o specjalnych cechach. τ ~ R*C. Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem
24-4-2 Bramki logiczne o specjalnych cechach U WY Bramka chmitta (7432): niestandardowa bramka cyfrowa charakterystyka zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie do elektroniki cyfrowej
Bramki logiczne o specjalnych cechach. τ ~ R*C. Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem
22-5-9 Bramki logiczne o specjalnych cechach U WY Bramka chmitta (7432): niestandardowa bramka cyfrowa charakterystyka zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie do elektroniki cyfrowej
5/11/2011. Układy CMOS. Bramki logiczne o specjalnych cechach. τ ~ R*C
5//2 yfrowe układy scalone 2 PA 2 Bramki logiczne o specjalnych cechach U WY Bramka chmitta (7432): niestandardowa bramka cyfrowa charakterystyka zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie
WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.
72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.
TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym
CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z
Układy CMOS. inwerter CMOS. Prąd pobierany tylko przy przełączaniu! bramka NAND. Zestawienie podstawowych parametrów rodzin TTL i CMOS.
łady CMOS inwerter CMOS Prąd pobierany tylo przy przełączaniu! brama NAND Zestawienie podstawowych parametrów rodzin TTL i CMOS. Parametry uładów CMOS i TTL zasilanych napięciem CC 5V Charaterystyi przejściowe
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
Temat: Wzmacniacze operacyjne wprowadzenie
Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym
Wzmacniacz operacyjny
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania
Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem
Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Układy arytmetyczne (układy iteracyjne) X 4 X 2 X 1 P 2. P n
Układy arytmetyczne (układy iteracyjne) X 4 X n X 2 X n=3 P 5 P n+ P n P 2 P Y 4 Y n Y 2 Y Słowo logiczne: liczba zapisana w danym kodzie binarnym. Na przykład: słowo () = liczba = 2 3 + 2 2 + 2 + 2 Układy
U 2 B 1 C 1 =10nF. C 2 =10nF
Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28
Spis treści CZE ŚĆ ANALOGOWA 1. Wstęp do układów elektronicznych............................. 10 1.1. Filtr dolnoprzepustowy RC.............................. 13 1.2. Filtr górnoprzepustowy RC..............................
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO
Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz
Podstawy elektroniki cz. 2 Wykład 2
Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole
dwójkę liczącą Licznikiem Podział liczników:
1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.
Wzmacniacze operacyjne.
Wzmacniacze operacyjne Jacek.Szczytko@fuw.edu.pl Polecam dla początkujących! Piotr Górecki Wzmacniacze operacyjne Jak to działa? Powtórzenie: dzielnik napięcia R 2 Jeśli pominiemy prąd płynący przez wyjście:
Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55
Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )
Tranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
WSTĘP DO ELEKTRONIKI
WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane
Podstawowe układy cyfrowe
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,
Bramki logiczne Podstawowe składniki wszystkich układów logicznych
Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości
Wzmacniacze, wzmacniacze operacyjne
Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie
PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE
PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera
Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również
Wzmacniacze operacyjne
Temat i plan wykładu Wzmacniacze operacyjne. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Wzmacniacz odwracający i nieodwracający 4. kład całkujący, różniczkujący, różnicowy 5. Konwerter prąd-napięcie
Automatyzacja i robotyzacja procesów produkcyjnych
Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach
PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE
PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja
LEKCJA. TEMAT: Funktory logiczne.
TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość
WZMACNIACZE OPERACYJNE
WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą
Wykład 3. Obwody cyfrowe. 22 maja 2018
Wykład 3 Obwody cyfrowe 22 maja 2018 Wstęp 1. Zapis cyfrowy 2. Rachunek zdań 2.1 Algebra Boole'a 2.2 Tożsamości logiczne 3. Bramki logiczne 3.1 Standard TTL 3.2 Oznaczenia i tabelki prawdy bramek 4. Przerzutniki
Badanie działania bramki NAND wykonanej w technologii TTL oraz układów zbudowanych w oparciu o tę bramkę.
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Badanie działania
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
P-1a. Dyskryminator progowy z histerezą
wersja 03 2017 1. Zakres i cel ćwiczenia Celem ćwiczenia jest zaprojektowanie dyskryminatora progowego z histerezą wykorzystując komparatora napięcia A710, a następnie zmontowanie i przebadanie funkcjonalne
LICZNIKI Liczniki scalone serii 749x
LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
2 Dana jest funkcja logiczna w następującej postaci: f(a,b,c,d) = Σ(0,2,5,8,10,13): a) zminimalizuj tę funkcję korzystając z tablic Karnaugh,
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2010/2011 Zadania dla grupy elektronicznej na zawody II. stopnia (okręgowe) 1 Na rysunku przedstawiono przebieg prądu
Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).
WFiIS LABOATOIM Z ELEKTONIKI Imię i nazwisko:.. TEMAT: OK GPA ZESPÓŁ N ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Zaprojektowanie i zbadanie
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:
Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.
Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie
A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a
Lp. Pytania 1. Jaką liczbę otrzymamy w wyniku konwersji z systemu szesnastkowego liczby 81AF (16) na system binarny? 2. Zapisz tabelę działania opisującą bramkę logiczną, której symbol graficzny przedstawia
UKŁADY CYFROWE. Układ kombinacyjny
UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje
Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.
Instrukcja nr 6 Wzmacniacz operacyjny i jego aplikacje AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.1 Wzmacniacz operacyjny Wzmacniaczem operacyjnym nazywamy różnicowy
Ćwiczenie D1 Bramki. Wydział Fizyki UW
Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (1100-1INZ7) oraz Energetyki i Chemii Jądrowej (1100-1ENPRFIZELEK) Ćwiczenie D1 Bramki Streszczenie
2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.
1. Parametr Vpp zawarty w dokumentacji technicznej wzmacniacza mocy małej częstotliwości oznacza wartość: A. średnią sygnału, B. skuteczną sygnału, C. maksymalną sygnału, D. międzyszczytową sygnału. 2.
Układy akwizycji danych. Komparatory napięcia Przykłady układów
Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy
Krótkie przypomnienie
Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole
dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL
Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Liniowe układy scalone w technice cyfrowej
Liniowe układy scalone w technice cyfrowej Dr inż. Adam Klimowicz konsultacje: wtorek, 9:15 12:00 czwartek, 9:15 10:00 pok. 132 aklim@wi.pb.edu.pl Literatura Łakomy M. Zabrodzki J. : Liniowe układy scalone
Wstęp do Techniki Cyfrowej... Układy kombinacyjne
Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.
Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2
tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 07/10. ZDZISŁAW NAWROCKI, Wrocław, PL DANIEL DUSZA, Inowrocław, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213448 (13) B1 (21) Numer zgłoszenia: 386136 (51) Int.Cl. H03H 11/16 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 23.09.2008
Liniowe układy scalone. Elementy miernictwa cyfrowego
Liniowe układy scalone Elementy miernictwa cyfrowego Wielkości mierzone Czas Częstotliwość Napięcie Prąd Rezystancja, pojemność Przesunięcie fazowe Czasomierz cyfrowy f w f GW g N D L start stop SB GW
WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie
Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.
Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych
Proste układy sekwencyjne
Proste układy sekwencyjne Układy sekwencyjne to takie w których niektóre wejścia są sterowany przez wyjściaukładu( zawierają sprzężenie zwrotne ). Układy sekwencyjne muszą zawierać elementy pamiętające
Wyjścia analogowe w sterownikach, regulatorach
Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)
Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny
Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax
Wzmacniacz operacyjny
parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze
Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe
Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu
Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.
Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego
Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:
Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy
1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych
.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić
UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.
UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy
Cyfrowe układy scalone
Ryszard J. Barczyński, 2 25 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy cyfrowe stosowane są do przetwarzania informacji zakodowanej
1. Definicja i przeznaczenie przerzutnika monostabilnego.
1. Definicja i przeznaczenie przerzutnika monostabilnego. Przerzutniki monostabline w odróżnieniu od przerzutników bistabilnych zapamiętują stan na z góry założony, ustalony przez konstruktora układu,
Ujemne sprzężenie zwrotne, WO przypomnienie
Ujemne sprzężenie zwrotne, WO przypomnienie Stabilna praca układu. Przykład: wzmacniacz nie odw. fazy: v o P kt pracy =( v 1+ R ) 2 0 R 1 w.12, p.1 v v o = A OL ( v ) ( ) v v o ( ) Jeśli z jakiegoś powodu
C-3. Liczniki asynchroniczne w technologii TTL, dwójkowe i dziesiętne
C-3. Liczniki asynchroniczne w technologii TTL, dwójkowe i dziesiętne Moduły te są wykonane przez firmę Texas Instruments (oznaczenie SN) w technologii TTL (Transistor-Transistor Logic), bazującej na krzemie
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa
Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL
a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat
LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW
POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:
Demonstracja: konwerter prąd napięcie
Demonstracja: konwerter prąd napięcie i WE =i i WE i v = i WE R R=1 M Ω i WE = [V ] 10 6 [Ω] v + Zasilanie: +12, 12 V wy( ) 1) Oświetlanie o stałym natężeniu: =? (tryb DC) 2) Oświetlanie przez lampę wstrząsoodporną:
Wejścia analogowe w sterownikach, regulatorach, układach automatyki
Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia
Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń
Opis przedmiotu 3 części zamówienia Zestawy ćwiczeń Załącznik 4c do SIWZ Lp. NAZWA OPIS GŁÓWNYCH PARAMETRÓW TECHNICZNYCH ILOŚĆ (szt.) Zestaw powinien składać się min. z modułu bazowego oraz modułów ćwiczeniowych
ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.
ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. Wykonanie ćwiczenia 1. Zapoznać się ze schematem ideowym układu ze wzmacniaczem operacyjnym. 2. Zmontować wzmacniacz odwracający fazę o
Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu
Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego
WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2
WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną
Układy kombinacyjne 1
Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych
Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1.
Ćwiczenie 8 Liczniki zliczające, kody BCD, 8421, 2421 Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i 2421. Wstęp teoretyczny. Przerzutniki
PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ
z 0 0-0-5 :56 PODSTAWY ELEKTONIKI I TECHNIKI CYFOWEJ opracowanie zagadnieo dwiczenie Badanie wzmacniaczy operacyjnych POLITECHNIKA KAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej Kierunek informatyka
Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące
Liniowe układy scalone Wykład 2 Wzmacniacze różnicowe i sumujące Wzmacniacze o wejściu symetrycznym Do wzmacniania małych sygnałów z różnych czujników, występujących na tle dużej składowej sumacyjnej (tłumionej