Układy akwizycji danych. Komparatory napięcia Przykłady układów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układy akwizycji danych. Komparatory napięcia Przykłady układów"

Transkrypt

1 Układy akwizycji danych Komparatory napięcia Przykłady układów

2 Komparatory napięcia 2

3 Po co komparator napięcia? 3

4 Po co komparator napięcia? Układy pomiarowe, automatyki 3

5 Po co komparator napięcia? Układy pomiarowe, automatyki Przetworniki analogowo-cyfrowe 3

6 Po co komparator napięcia? Układy pomiarowe, automatyki Przetworniki analogowo-cyfrowe Regeneracja sygnałów cyfrowych 3

7 Po co komparator napięcia? Układy pomiarowe, automatyki Przetworniki analogowo-cyfrowe Regeneracja sygnałów cyfrowych Wymagania 3

8 Po co komparator napięcia? Układy pomiarowe, automatyki Przetworniki analogowo-cyfrowe Regeneracja sygnałów cyfrowych Wymagania Szybkość (czas, jaki upływa od zmiany stanu na wejściu do zmiany wartości logicznej na wyjściu 3

9 Po co komparator napięcia? Układy pomiarowe, automatyki Przetworniki analogowo-cyfrowe Regeneracja sygnałów cyfrowych Wymagania Szybkość (czas, jaki upływa od zmiany stanu na wejściu do zmiany wartości logicznej na wyjściu Dokładność (rzędu mv lub lepsza w wielu zastosowaniach) 3

10 Rodzaje komparatorów Komparator działający w sposób ciągły: reaguje na każdą zmianę stanu (znaku różnicy napięć) na wejściu. Podobny w budowie do wzmacniacza operacyjnego, ale: 4

11 Rodzaje komparatorów Komparator działający w sposób ciągły: reaguje na każdą zmianę stanu (znaku różnicy napięć) na wejściu. Podobny w budowie do wzmacniacza operacyjnego, ale: poziomy max. i min. napięcia wyjściowego muszą odpowiadać poziomom zera i jedynki logicznej 4

12 Rodzaje komparatorów Komparator działający w sposób ciągły: reaguje na każdą zmianę stanu (znaku różnicy napięć) na wejściu. Podobny w budowie do wzmacniacza operacyjnego, ale: poziomy max. i min. napięcia wyjściowego muszą odpowiadać poziomom zera i jedynki logicznej pracuje bez pętli sprzężenia zwrotnego, może mieć dowolną liczbę stopni 4

13 Rodzaje komparatorów Komparator działający w sposób ciągły: reaguje na każdą zmianę stanu (znaku różnicy napięć) na wejściu. Podobny w budowie do wzmacniacza operacyjnego, ale: poziomy max. i min. napięcia wyjściowego muszą odpowiadać poziomom zera i jedynki logicznej pracuje bez pętli sprzężenia zwrotnego, może mieć dowolną liczbę stopni kształt charakterystyki przejściowej jest nieistotny, nie jest wymagana liniowość 4

14 Rodzaje komparatorów Komparator działający w sposób ciągły: reaguje na każdą zmianę stanu (znaku różnicy napięć) na wejściu. Podobny w budowie do wzmacniacza operacyjnego, ale: poziomy max. i min. napięcia wyjściowego muszą odpowiadać poziomom zera i jedynki logicznej pracuje bez pętli sprzężenia zwrotnego, może mieć dowolną liczbę stopni kształt charakterystyki przejściowej jest nieistotny, nie jest wymagana liniowość poważnym problemem jest niezrównoważenie 4

15 Rodzaje komparatorów Komparator próbkujący: dokonuje porównania napięć wejściowych w ściśle określonych chwilach czasowych i pamięta wynik. Zwykle zbudowany ze stopnia wzmacniającego (może być ich więcej) oraz zatrzasku (latch). wymaga taktowania zegarem możliwa jest autokompensacja niezrównoważenia Uodn 2 Uwe S/H wzm. + zatrzask Wyjście 5

16 Parametry komparatorów 6

17 Parametry komparatorów Czas opóźnienia: czas potrzebny na ustalenie się stanu wyjścia przy minimalnej wartości napięcia różnicowego na wejściu. 6

18 Parametry komparatorów Czas opóźnienia: czas potrzebny na ustalenie się stanu wyjścia przy minimalnej wartości napięcia różnicowego na wejściu. Czułość: minimalna różnica napięć na wejściu, która daje prawidłową odpowiedź na wyjściu w ustalonym czasie 6

19 Parametry komparatorów Czas opóźnienia: czas potrzebny na ustalenie się stanu wyjścia przy minimalnej wartości napięcia różnicowego na wejściu. Czułość: minimalna różnica napięć na wejściu, która daje prawidłową odpowiedź na wyjściu w ustalonym czasie Błąd niezrównoważenia: różnicowe napięcie wejściowe, przy którym następuje zmiana stanu wyjścia (powinno być równe zeru) 6

20 Parametry komparatorów Czas opóźnienia: czas potrzebny na ustalenie się stanu wyjścia przy minimalnej wartości napięcia różnicowego na wejściu. Czułość: minimalna różnica napięć na wejściu, która daje prawidłową odpowiedź na wyjściu w ustalonym czasie Błąd niezrównoważenia: różnicowe napięcie wejściowe, przy którym następuje zmiana stanu wyjścia (powinno być równe zeru) Histereza: napięcie przełączania 0 -> może różnić się od napięcia przełączania -> 0. Histereza może być szkodliwa lub korzystna zależnie od zastosowania 6

21 Parametry komparatorów Czas opóźnienia: czas potrzebny na ustalenie się stanu wyjścia przy minimalnej wartości napięcia różnicowego na wejściu. Czułość: minimalna różnica napięć na wejściu, która daje prawidłową odpowiedź na wyjściu w ustalonym czasie Błąd niezrównoważenia: różnicowe napięcie wejściowe, przy którym następuje zmiana stanu wyjścia (powinno być równe zeru) Histereza: napięcie przełączania 0 -> może różnić się od napięcia przełączania -> 0. Histereza może być szkodliwa lub korzystna zależnie od zastosowania Inne podobne jak dla wzmacniacza operacyjnego 6

22 Minimalizacja czasu opóźnienia Idea: zaprojektować wzmacniacz tak, by osiągnięcie stanu zera lub jedynki na wyjściu następowało już na początku narastania (lub opadania) napięcia na wyjściu wzmacniacza. 7

23 Minimalizacja czasu opóźnienia Idea: zaprojektować wzmacniacz tak, by osiągnięcie stanu zera lub jedynki na wyjściu następowało już na początku narastania (lub opadania) napięcia na wyjściu wzmacniacza. Dla komparatora pracującego w trybie ciągłym: dobór optymalnej liczby stopni wzmacniających. 7

24 Minimalizacja czasu opóźnienia Idea: zaprojektować wzmacniacz tak, by osiągnięcie stanu zera lub jedynki na wyjściu następowało już na początku narastania (lub opadania) napięcia na wyjściu wzmacniacza. Dla komparatora pracującego w trybie ciągłym: dobór optymalnej liczby stopni wzmacniających. Dla komparatora z zatrzaskiem: podobnie, do tego projekt zatrzasku wymagającego możliwie małej zmiany napięcia wejściowego do wywołania przełączenia 7

25 Optymalna liczba stopni gm R C... gm n jednakowych stopni Traktujemy układ jako liniowy u wy = u we g m R e t RC i chcemy wykorzystywać tylko początek odpowiedzi czasowej: t<<rc u wy2 u we g m C t 8

26 Optymalna liczba stopni gm R C... gm n jednakowych stopni 9

27 Optymalna liczba stopni gm R C... gm n jednakowych stopni Dla dwóch stopni u wy2 u we g m C 2 t 2 2 9

28 Optymalna liczba stopni gm R C... gm n jednakowych stopni Dla dwóch stopni u wy2 u we g m C 2 t 2 2 i ogólnie dla n stopni u wy n u we g m C t n n! 9

29 Optymalna liczba stopni gm R C... gm n jednakowych stopni Dla dwóch stopni u wy2 u we g m C 2 t 2 2 i ogólnie dla n stopni u wy n u we g m C t n n! u wy n u we n= C g m t 9

30 Optymalna liczba stopni gm R C... gm n jednakowych stopni Dla dwóch stopni u wy2 u we g m C 2 t 2 2 i ogólnie dla n stopni u wy n u we g m C t n n! u wy n u we zakres optymalnego wzmocnienia dla n=3 n= C g m t 9

31 Zatrzask - przykład UDD UP A B Uwy Uwy2 Uwe Uwe2 CLK Dla CLK= różnica napięć wejściowych powoduje różnicę napięć w węzłach A i B, co powoduje przełączenie zatrzasku do jednego z dwóch możliwych stanów stabilnych. 0

32 Komparator z zatrzaskiem Wzmacniacz Zatrzask

33 Komparator z zatrzaskiem UDD UP Uwe Uwe2 CLK Wzmacniacz Zatrzask

34 Komparator z zatrzaskiem UDD UP UP2 Uwe Uwy Uwe2 Uwy2 CLK Wzmacniacz Zatrzask

35 Komparator z zatrzaskiem UDD UP UP2 Uwe Uwy Uwe2 Uwy2 CLK Wzmacniacz Zatrzask

36 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. zatrzask Problemy: 2

37 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f 2

38 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC 2

39 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. CC zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC 2

40 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. CC zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC - ale ona wprowadza opóźnienie 2

41 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC - ale ona wprowadza opóźnienie 2

42 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. CC zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC - ale ona wprowadza opóźnienie Odłączamy pojemność na czas fazy 2 2

43 Redukcja niezrównoważenia Idea: 2, 2 ( opóźniona) wzm. CC zatrzask Problemy: Podczas fazy wzmacniacz pracuje z głębokim sprzężeniem zwrotnym - potrzebna kompensacja charakterystyki a/f Dodajemy pojemność CC - ale ona wprowadza opóźnienie Odłączamy pojemność na czas fazy 2 Ponadto redukcję psuje zjawisko przenikania sygnału zegara 2

44 Przenikanie zegara 2 Cwe, 2 ( opóźniona) 2 Cp - + wzm. zatrzask Niezrównoważenie resztkowe: ΔU n = ΔQ ( C we + C ) p 3

45 Redukcja w kilku stopniach 2, (faza wydłużona w stosunku do ) - wzm. + - wzm. + - wzm. +, Dzięki wydłużeniu fazy redukowane jest niezrównoważenie resztkowe pierwszego stopnia pochodzące od przenikania sygnału zegara 4

46 Redukcja symetryczna 2 Cwe 2 Cwe wzm. 5

47 Akwizycja sygnałów biologicznych 6

48 Specyfika sygnałów 7

49 Specyfika sygnałów Sygnały napięciowe 7

50 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv 7

51 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów 7

52 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów Pasmo częstotliwości od ułamków Hz do kilku khz 7

53 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów Pasmo częstotliwości od ułamków Hz do kilku khz -> problem szumów /f 7

54 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów Pasmo częstotliwości od ułamków Hz do kilku khz -> problem szumów /f Duża nieprzewidywalna zakłócająca składowa stała 7

55 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów Pasmo częstotliwości od ułamków Hz do kilku khz -> problem szumów /f Duża nieprzewidywalna zakłócająca składowa stała -> problem separacji składowej stałej od wolnozmiennego sygnału użytecznego 7

56 Specyfika sygnałów Sygnały napięciowe Amplituda od kilkudziesięciu μv do kilku mv -> wymagany mały poziom szumów Pasmo częstotliwości od ułamków Hz do kilku khz -> problem szumów /f Duża nieprzewidywalna zakłócająca składowa stała -> problem separacji składowej stałej od wolnozmiennego sygnału użytecznego Dla układów wielokanałowych krytyczna jest powierzchnia układu i pobór mocy 7

57 Układ odczytu z siatkówki oka Napięcie odniesienia Wejścia Kanał testowy Kanał Kanał 2 Kanał 3 Kanał 62 Kanał 63 Kanał 64 Kanał testowy Multiplekser analogowy Wyjście Sterowanie Napięcie wejściowe μv, pasmo 20 Hz... 2 khz, wzmocnienie napięciowe min. 000 V/V, wejście różnicowe, pobór mocy max. 2 mw/kanał P. Gryboś, Low Noise Multichannel Integrated Circuits in CMOS Technology for Physics and Biology Applications, Rozprawy, Monografie AGH nr 7, Kraków 2002 (układ uproszczony w stosunku do oryginału) 8

58 Pojedynczy kanał przedwzmacniacz filtr pasmowy wzm. końcowy Mały poziom szumów Pasmo 20 Hz - 20 khz Min. amplituda na wyjściu V Niewrażliwość na składową stałą 9

59 Przedwzmacniacz UDD UP Uwe Uwe2 T 20

60 Przedwzmacniacz UDD UP Uwe UP3 Umożliwia przepływ prądu stałego; można go wyłączyć Uwe2 T 20

61 Przedwzmacniacz UDD UP Uwe UP3 Umożliwia przepływ prądu stałego; można go wyłączyć Uwe2 T R 20

62 Przedwzmacniacz UDD UP UP2 T3 Uwe Uwy UP3 Umożliwia przepływ prądu stałego; można go wyłączyć Uwe2 T R T2 R2 k u = 2 g m R g m2 ( ) g m3 + g m2 R 2 Wzmocnienie określają: transkonduktancje (określane przez prądy, które zależą od UP i UP2) oraz rezystancje R i R2 20

63 Przedwzmacniacz UDD UP UP2 T3 Uwe Uwy UP3 Umożliwia przepływ prądu stałego; można go wyłączyć Uwe2 T R T2 R2 k u = 2 g m R g m2 ( ) g m3 + g m2 R 2 Wzmocnienie określają: transkonduktancje (określane przez prądy, które zależą od UP i UP2) oraz rezystancje R i R2 20

64 Przedwzmacniacz UDD UP UP2 T3 Uwe Uwy UP3 Umożliwia przepływ prądu stałego; można go wyłączyć Uwe2 T R A T2 R2 k u = 2 g m R g m2 ( ) g m3 + g m2 R 2 Układ polaryzacji węzła A o bardzo wysokiej impedancji w tym węźle Wzmocnienie określają: transkonduktancje (określane przez prądy, które zależą od UP i UP2) oraz rezystancje R i R2 20

65 Układ dzielnika napięcia UDD Pojemność rzędu pf L>>W; oba wymiary duże Węzeł o bardzo wysokiej impedancji (kilka TΩ) L>>W; oba wymiary duże Dolna częstotliwość pasma przenoszenia rzędu Hz lub poniżej 2

66 Filtr UDD 22

67 Filtr UDD UP CHF CLF Pojemności rzędu pf Rezystancje (tr. w zakresie liniowym) 22

68 Filtr UDD UP UHF CHF CLF ULF Układy dynamicznej polaryzacji Pojemności rzędu pf Rezystancje (tr. w zakresie liniowym) 22

69 Filtr UDD UP UHF CHF CLF ULF Wtórnik przesuwający poziom składowej stałej Układy dynamicznej polaryzacji Pojemności rzędu pf Rezystancje (tr. w zakresie liniowym) 22

70 Filtr UDD UP UHF CHF CLF ULF Zmiana UHF=ULF przesuwa środkową częstotliwość pasma bez zmiany wzmocnienia Zmiana UP przesuwa częstotliwość dolną Niezależna regulacja UHF i ULF zmienia odpowiednio górną i dolną częstotliwość oraz wzmocnienie 23

71 Stopień wyjściowy UDD UP 24

72 Stopień wyjściowy UDD UP2 UP 24

73 Stopień wyjściowy UDD UP2 UP 24

74 Stopień wyjściowy UDD UP2 UP UP: regulacja wzmocnienia 24

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2

Komparator napięcia. Komparator a wzmacniacz operacyjny. Vwe1. Vwy. Vwe2 PUAV Wykład 11 Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Komparator a wzmacniacz operacyjny Vwe1 Vwe2 + Vwy Wzmacniacz operacyjny ( ) V wy = k u V we2 V we1 Komparator a wzmacniacz operacyjny

Bardziej szczegółowo

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie Liniowe układy scalone Komparatory napięcia i ich zastosowanie Komparator Zadaniem komparatora jest wytworzenie sygnału logicznego 0 lub 1 na wyjściu w zależności od znaku różnicy napięć wejściowych Jest

Bardziej szczegółowo

Liniowe układy scalone

Liniowe układy scalone Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Dr inż. Adam Klimowicz konsultacje: wtorek, 9:15 12:00 czwartek, 9:15 10:00 pok. 132 aklim@wi.pb.edu.pl Literatura Łakomy M. Zabrodzki J. : Liniowe układy scalone

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.

Bardziej szczegółowo

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące Liniowe układy scalone Wykład 2 Wzmacniacze różnicowe i sumujące Wzmacniacze o wejściu symetrycznym Do wzmacniania małych sygnałów z różnych czujników, występujących na tle dużej składowej sumacyjnej (tłumionej

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne e operacyjne Wrocław 2018 Wprowadzenie operacyjny jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne. N P E

Bardziej szczegółowo

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.

Instrukcja nr 6. Wzmacniacz operacyjny i jego aplikacje. AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6. Instrukcja nr 6 Wzmacniacz operacyjny i jego aplikacje AGH Zespół Mikroelektroniki Układy Elektroniczne J. Ostrowski, P. Dorosz Lab 6.1 Wzmacniacz operacyjny Wzmacniaczem operacyjnym nazywamy różnicowy

Bardziej szczegółowo

Wzmacniacze operacyjne.

Wzmacniacze operacyjne. Wzmacniacze operacyjne Jacek.Szczytko@fuw.edu.pl Polecam dla początkujących! Piotr Górecki Wzmacniacze operacyjne Jak to działa? Powtórzenie: dzielnik napięcia R 2 Jeśli pominiemy prąd płynący przez wyjście:

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Wzmacniacze, wzmacniacze operacyjne

Wzmacniacze, wzmacniacze operacyjne Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Temat i plan wykładu Wzmacniacze operacyjne. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Wzmacniacz odwracający i nieodwracający 4. kład całkujący, różniczkujący, różnicowy 5. Konwerter prąd-napięcie

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).

Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny). WFiIS LABOATOIM Z ELEKTONIKI Imię i nazwisko:.. TEMAT: OK GPA ZESPÓŁ N ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Zaprojektowanie i zbadanie

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

Podstawowe układy elektroniczne

Podstawowe układy elektroniczne Podstawowe układy elektroniczne Nanodiagnostyka 16.11.2018, Wrocław MACIEJ RUDEK Podstawowe elementy Podstawowe elementy elektroniczne Podstawowe elementy elektroniczne Rezystor Kondensator Cewka 3 Podział

Bardziej szczegółowo

P-1a. Dyskryminator progowy z histerezą

P-1a. Dyskryminator progowy z histerezą wersja 03 2017 1. Zakres i cel ćwiczenia Celem ćwiczenia jest zaprojektowanie dyskryminatora progowego z histerezą wykorzystując komparatora napięcia A710, a następnie zmontowanie i przebadanie funkcjonalne

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4 Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie

Bardziej szczegółowo

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. Wykonanie ćwiczenia 1. Zapoznać się ze schematem ideowym układu ze wzmacniaczem operacyjnym. 2. Zmontować wzmacniacz odwracający fazę o

Bardziej szczegółowo

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009 Wzmacniacz operacyjny zastosowania linio Wrocław 009 wzmocnienie różnico Pole wzmocnienia 3dB częstotliwość graniczna k D [db] -3dB 0dB/dek 0 db f ca f T Tłumienie sygnału wspólnego - OT ins M[ V / V ]

Bardziej szczegółowo

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax

Bardziej szczegółowo

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego Liniowe układy scalone Budowa scalonego wzmacniacza operacyjnego Wzmacniacze scalone Duża różnorodność Powtarzające się układy elementarne Układy elementarne zbliżone do odpowiedników dyskretnych, ale

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych Liniowe układy scalone Wykład 4 Parametry wzmacniaczy operacyjnych 1. Wzmocnienie napięciowe z otwartą pętlą ang. open loop voltage gain Stosunek zmiany napięcia wyjściowego do wywołującej ją zmiany różnicowego

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czyli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)

Bardziej szczegółowo

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Wykład 2 Projektowanie cyfrowych układów elektronicznych Wykład 2 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill kłady półprzewodnikowe.tietze,

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE e LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary wzmacniacza operacyjnego Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ujemne sprzężenie zwrotne, WO przypomnienie

Ujemne sprzężenie zwrotne, WO przypomnienie Ujemne sprzężenie zwrotne, WO przypomnienie Stabilna praca układu. Przykład: wzmacniacz nie odw. fazy: v o P kt pracy =( v 1+ R ) 2 0 R 1 w.12, p.1 v v o = A OL ( v ) ( ) v v o ( ) Jeśli z jakiegoś powodu

Bardziej szczegółowo

A-3. Wzmacniacze operacyjne w układach liniowych

A-3. Wzmacniacze operacyjne w układach liniowych A-3. Wzmacniacze operacyjne w kładach liniowych I. Zakres ćwiczenia wyznaczenia charakterystyk amplitdowych i częstotliwościowych oraz parametrów czasowych:. wtórnika napięcia. wzmacniacza nieodwracającego

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Demonstracja: konwerter prąd napięcie

Demonstracja: konwerter prąd napięcie Demonstracja: konwerter prąd napięcie i WE =i i WE i v = i WE R R=1 M Ω i WE = [V ] 10 6 [Ω] v + Zasilanie: +12, 12 V wy( ) 1) Oświetlanie o stałym natężeniu: =? (tryb DC) 2) Oświetlanie przez lampę wstrząsoodporną:

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/12

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/12 PL 219586 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219586 (13) B1 (21) Numer zgłoszenia: 392996 (51) Int.Cl. H03F 1/30 (2006.01) H04R 3/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia:

Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia: Wydział EAIiIB Katedra Laboratorium Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 5. Funktory CMOS cz.1 Data wykonania: Grupa (godz.): Dzień tygodnia:

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Projekt z Układów Elektronicznych 1

Projekt z Układów Elektronicznych 1 Projekt z Układów Elektronicznych 1 Lista zadań nr 4 (liniowe zastosowanie wzmacniaczy operacyjnych) Zadanie 1 W układzie wzmacniacza z rys.1a (wzmacniacz odwracający) zakładając idealne parametry WO a)

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28 Spis treści CZE ŚĆ ANALOGOWA 1. Wstęp do układów elektronicznych............................. 10 1.1. Filtr dolnoprzepustowy RC.............................. 13 1.2. Filtr górnoprzepustowy RC..............................

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

I-21 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI

I-21 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI Ćwiczenie nr 0 Cel ćwiczenia: Poznanie cech wzmacniaczy operacyjnych oraz charakterystyk opisujących wzmacniacz poprzez przeprowadzenie pomiarów dla wzmacniacza odwracającego. Program ćwiczenia. Identyfikacja

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITEHNIKA BIAŁOSTOKA WYDZIAŁ ELEKTRYZNY KATEDRA AUTOMATYKI I ELEKTRONIKI 5. Wzmacniacze mocy Materiały pomocnicze do pracowni specjalistycznej z przedmiotu: Systemy AD w elektronice TS1422 380 Opracował:

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Elektronika. Wzmacniacz operacyjny

Elektronika. Wzmacniacz operacyjny LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza

Bardziej szczegółowo

EL_w05: Wzmacniacze operacyjne rzeczywiste

EL_w05: Wzmacniacze operacyjne rzeczywiste EL_w05: Wzmacniacze operacyjne rzeczywiste Budowa zewnętrzna i wewnętrzna wzmacniacza Zasilanie wzmacniaczy Zakresy napięć wejściowych i wyjściowych Parametry statyczne wzmacniaczy operacyjnych Parametry

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI UKŁADÓW PÓBKUJĄCO- PAMIĘTAJĄCYCH

BADANIE WŁAŚCIWOŚCI UKŁADÓW PÓBKUJĄCO- PAMIĘTAJĄCYCH BADANIE WŁAŚCIWOŚCI UKŁADÓW PÓBKUJĄCO- PAMIĘTAJĄCYCH 1. Budowa i zasada działania układu próbkująco-pamiętającego. Układami próbkująco pamiętającymi (ang. sample-hold) nazywa się całą grupę układów spełniających

Bardziej szczegółowo

Liniowe układy scalone. Elementy miernictwa cyfrowego

Liniowe układy scalone. Elementy miernictwa cyfrowego Liniowe układy scalone Elementy miernictwa cyfrowego Wielkości mierzone Czas Częstotliwość Napięcie Prąd Rezystancja, pojemność Przesunięcie fazowe Czasomierz cyfrowy f w f GW g N D L start stop SB GW

Bardziej szczegółowo

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH 1 ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH 14.1. CEL ĆWICZENIA Celem ćwiczenia jest pomiar wybranych charakterystyk i parametrów określających podstawowe właściwości statyczne i dynamiczne

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

cennik detaliczny , ,- seria wzmacniacz zintegrowany 1010 odtwarzacz CD

cennik detaliczny , ,- seria wzmacniacz zintegrowany 1010 odtwarzacz CD Exposure - cennik detaliczny 09.2017 cennik detaliczny.. seria 1010 1010 wzmacniacz 2 790,- Maksymalna moc wyjściowa (1 KHz): 50W na kanał RMS (8 Ohm) Czułość wejść liniowych: 250mV Impedancja wejściowa:

Bardziej szczegółowo

Wzmacniacze prądu stałego

Wzmacniacze prądu stałego PUAV Wykład 13 Wzmacniacze prądu stałego Idea Problem: wzmacniacz prądu stałego (lub sygnałów o bardzo małej częstotliwości, rzędu ułamków Hz) zrealizowany konwencjonalnie wprowadza błąd wynikający z wejściowego

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ z 0 0-0-5 :56 PODSTAWY ELEKTONIKI I TECHNIKI CYFOWEJ opracowanie zagadnieo dwiczenie Badanie wzmacniaczy operacyjnych POLITECHNIKA KAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej Kierunek informatyka

Bardziej szczegółowo

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.

Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości. Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Analiza ustalonego punktu pracy dla układu zamkniętego

Analiza ustalonego punktu pracy dla układu zamkniętego Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Cennik detaliczny. Wyłączny dystrybutor w Polsce. Obowiązuje od 15.04.2016

Cennik detaliczny. Wyłączny dystrybutor w Polsce. Obowiązuje od 15.04.2016 Cennik detaliczny Wyłączny dystrybutor w Polsce Obowiązuje od 15.04.2016 Szczegóły dotyczące produktów: www.exposurehifi.pl tel. (22) 642 46 29 mail: biuro@trimex.com.pl www.trimex.pl SERIA 1010 1010 WZMACNIACZ

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz. 1. Parametr Vpp zawarty w dokumentacji technicznej wzmacniacza mocy małej częstotliwości oznacza wartość: A. średnią sygnału, B. skuteczną sygnału, C. maksymalną sygnału, D. międzyszczytową sygnału. 2.

Bardziej szczegółowo

Filtry przypomnienie. Układ różniczujący Wymuszenie sinusoidalne. Układ całkujący Wymuszenie sinusoidalne. w.6, p.1

Filtry przypomnienie. Układ różniczujący Wymuszenie sinusoidalne. Układ całkujący Wymuszenie sinusoidalne. w.6, p.1 Filtry przypomnienie Układ różniczujący Wymuszenie sinusoidalne górno przepustowy w.6, p.1 Układ całkujący Wymuszenie sinusoidalne dolno przepustowy Sprzężenie zwrotne, wzmacniacz operacyjny w.6, p.2 Sprzężenie

Bardziej szczegółowo

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego.

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego. Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czy jak kto woli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

, , ,

, , , Filtry scalone czasu ciągłego laboratorium Organizacja laboratorium W czasie laboratorium należy wykonać 5 ćwiczeń symulacyjnych z użyciem symulatora PSPICE a wyniki symulacji należy przesłać prowadzącemu

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI 3. Podstawowe układy wzmacniaczy tranzystorowych Materiały pomocnicze do pracowni specjalistycznej z przedmiotu: Systemy CAD

Bardziej szczegółowo

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. WZMACNIACZ 1. Wzmacniacz elektryczny (wzmacniacz) to układ elektroniczny, którego

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ 1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

3. Funktory CMOS cz.1

3. Funktory CMOS cz.1 3. Funktory CMOS cz.1 Druga charakterystyczna rodzina układów cyfrowych to układy CMOS. W jej ramach występuje zbliżony asortyment funktorów i przerzutników jak dla układów TTL (wejście standardowe i wejście

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada

Bardziej szczegółowo