Wprowadzenie do zagadnień akceleratorów elektronów Szkoła Fizyki Akceleratorów Medycznych, Świerk 2007
Akcelerator Akcelerator to urządzenie do przyspieszania cząstek, w którym możemy kontrolować parametry wiązki. Akceleracja odbywa się poprzez wykorzystanie pola elektrycznego (przyspieszamy tylko cząstki niosące ładunek elektrony, protony itp.). Do skupienia wiązki oraz nadania jej pożądanego kierunku używa się odpowiednio ukształtowanego pola magnetycznego i/lub elektrycznego (stałego lub zmiennego w czasie). 2
Akcelerator w domu Telewizor: urządzenie przyspieszające cząstki naładowane. Przemiatana wiązka elektronów uderza w ekran, a pojawiające się rozbłyski tworzą zmienny obraz, wywołujący wrażenie ruchu. 3
Ładunek w polu elektrycznym Różnica potencjałów powoduje ruch ładunków cząstki nabierają energii. Miarą energii cząstki jest elektronowolt (ev). Różnica potencjałów 1 V powoduje przyspieszenie elektronu do energii 1 ev. 1 ev to bardzo mało: Światło widzialne: 1,5 3,5 ev Telewizor: 20 kev (20 000 ev) 4
Wyższe energie? Potrzebowalibyśmy sporo baterii! Połączenie w szeregu 6 milionów baterii R6, jedna za drugą, dała by różnicę potencjałów 9 milionów wolt elektron mógłby być przyspieszony do energii 9 MeV! Niestety, taki układ (gdyby był możliwy do zrealizowania) miałby 300 kilometrów długości. 5
Przyspieszanie cząstek Rozwój źródeł wysokich napięć umożliwił rozwój technik akceleracji cząstek. Metody elektrostatyczne Metody wysokich częstotliwości 6
Akcelerator co jest potrzebne? Źródło Akcelerator Wiązka Źródło cząstek naładowanych (elektrony, protony, ciężkie jony itp.) Elementy przyspieszające (także zapewnienie pola elektrycznego przekazującego cząstkom energię) Elementy transportujące (głównie magnetyczne, skupiające wiązkę i zapewniające właściwą trajektorię) Systemy towarzyszące (kształtowanie i monitorowanie wiązki, układ chłodzenia, system podtrzymywania próżni, osłony przed promieniowaniem itd.) 7
O jakich akceleratorach mowa? medycznych liniowych (linac = linear accelerator) wysokiej częstotliwości (w. cz.) elektronowych 8
Budowa medycznego linac-a Źródło elektronów Układ odchylający Struktura przyspieszająca Źródło elektronów Struktura przyspieszająca + źródło mocy mikrofalowej (magnetron lub klistron) System transportu wiązki Głowica akceleratora I jeszcze... Źródło mocy w. cz. Głowica akceleratora 9
Budowa medycznego linac-a 10
Budowa medycznego linac-a... i wiele innych! 11
Wiązki promieniowania 12
Wybrane parametry Maszyny izocentryczne (izocentrum: punkt przecięcia osi obrotu ramienia z osią obrotu kolimatora standardowo odległy o 100 cm od źródła promieniowania) Pełny obrót ramienia (360o) wokół izocentrum. Energie promieniowania:. Fotony: do 2(3) wiązek z zakresu 4 25 MeV Elektrony: do 6 wiązek z zakresu 4 25 MeV Moc dawki: od 50 do nawet 1000 cgy/min. Wymiary pól napromieniania: Fotony: do 40 cm x 40 cm Elektrony: do 25 cm x 25 cm 13
Historia 14
Pierwszy medyczny akcelerator w. cz. (1953) Energia wiązki elektronów padającej na target: 8 MeV. Struktura przyspieszająca o długości 3 m, ułożona poziomo z systemem odchylania wiązki 90o. Pole napromieniania do 20 cm x 20 cm w odległości 1 m z mocą dawki około 150 cgy/min. 15
Kolejne akceleratory (I) 4 MeV linac (Newcastle General Hospital). Mullard Equipment ( Philips Elekta). 16
Kolejne akceleratory (II) 4 MeV Metropolitan-Vickers Orthotron. 17
Kolejne akceleratory (III) Energia: 4 MeV Długość struktury przyspieszającej: 1 m Moc dawki: około 200 cgy/min Zakres obrotu ramienia: ±120o Maksymalne wymiary pola: 25 cm 30 cm (zaokrąglone rogi). 18
Kolejne akceleratory (IV) USA: Stanford University Medical Center (H. Kaplan, E. Ginzton, 1957) W pobliżu tarczy konwersji mogła być umieszczona lampa RTG (100 kvp) do wykonywania zdjęć portalowych! Energia wiązki: 6 MeV Długość struktury przyspieszającej: 1,65 m 19
Ograniczenia pierwszych akceleratorów Niewielki obrót wokół pacjenta. System próżniowy (pompy dyfuzyjne, dopiero później pompy jonowe). Układ odchylania wiązki (niedostateczna stabilność wiązki lub brak odchylania). 20
Akcelerator MEL 6 MeV akcelerator MEL (Cookridge Hospital, Leeds, lata 1960.). Maszyna w pełni izocentryczna (izocentrum 120130 cm nad podłogą). 21
Clinac i Mevatron Clinac 6 (Varian), 1961 Mevatron (Applied Radiation), 1966 22
Akceleratory niskoi wieloenergetyczne 23
Kolimatory (ASYM i MLC) Standardowy kolimator Kolimator wielolistkowy Koncepcja wieloelementowych ograniczników wiązki sięga lat 60. XX wieku! 24
Obrazowanie portalowe EPID = Electronic Portal Imaging Device Już w 1942 zastosowano ekran fluoroscencyjny do weryfikacji ułożenia pacjentów na terapeutycznych aparatach kilowoltowych. Właściwy portal imaging pojawił się w 1958 (oparty na kamerach CCTV). 25
Systemy sterowania Początki komputerowych systemów kontroli ruchów maszyny, jej nastawiania oraz dynamicznej kontroli rozkładu dawki datuje się na koniec lat 70. XX wieku. 26
Modulacja intensywności wiązki (IMRT) Modulacja intensywności wiązki (choć nie była tak nazywana od razu) posiada długą historię, począwszy od kompensatorów i innych elementów modyfikujących wiązkę. Natomiast znane dziś techniki dynamiczne swoje początki mają już w latach 60. (stosowane przy bombach kobaltowych), a nawet w 50. (aparaty kilowoltowe). 27
Image Guided RT (IGRT) Dodatkowe systemy obrazujące wyposażone w lampy RTG używane były od lat 60. XX wieku. IGRT to jednak nie tylko obrazowanie rentgenowskie! 28
Techniki specjalne i urządzenia dedykowane Linac 3 MeV 9 MeV do radioterapii śródoperacyjnej (IORT) Linac 4 MV do napromieniania całego ciała (TBI) 29
Tomoterapia Technika radioterapii polegająca na napromienianiu kolejnych warstw (przekrojów) pacjenta (stąd też nazwa zapożyczona z tomografii). Dwa rodzaje tomoterapii: sekwencyjna (klasyczny linac z dodatkowymi komponentami) i helikalna (dedykowane urządzenie). 30
TomoTherapy Hi-Art Długość struktury przyspieszającej: ok. 40 cm Rodzaj wiązki: X (6 MV) Odległość źródłoizocentrum: 85 cm Otwór gantry: 85 cm Moc dawki w izocentrum: do 800 cgy/min 64 listki binarnego MLC o szerokości około 6 mm Grubość napromienianej warstwy: od 5 mm do 5 cm (o szerokości do 40 cm) Brak filtra wyrównującego rozkład dawki. Precyzja ustawienia stołu: 0,25 mm 31
Robotic arm: Cyber Knife Rodzaj wiązki: X (6 MV) Moc dawki: do 600 cgy/min (@ 80 cm) Zestaw kolimatorów kołowych o średnicy od 5 mm do 6 cm Brak filtra wyrównującego 6 stopni swobody (robot może przyjąć 1200 pozycji podczas leczenia) Akcelerator wyposażony w dwa źródła RTG (umocowane pod sufitem) 32
Mitsubishi 4D IGRT Rodzaj wiązki: X (6 MV) Moc dawki: do 500 cgy/min (@ 100 cm) Wyrównane pole 14 x 14 cm MLC: 30 listków 5 mm (15 cm x 15 cm) Dwa źródła RTG 33
Rozwój akceleratorów Przejście od badań laboratoryjnych do zastosowań klinicznych. Rozwój systemów kontroli i zabezpieczeń, modyfikacji wiązki oraz pozycjonowania pacjenta. Izocentryczne zawieszenie oraz pełny obrót wokół pacjenta. Rozwój systemów próżniowych. Rozwój systemów odchylania wiązki. Wzrost energii promieniowania, maszyny wielo-modalne. Kolimatory asymetryczne, rozwój kolimatorów wielolistkowych. Obrazowanie portalowe (fluorescent, matrix ion chamber, then amorphous silicon flat panel). Komputerowe systemy sterowania, następnie bardziej zaawansowane systemy informatyczne (zarządzanie radioterapią). Kliny dynamiczne i dalsza kontrola dynamiczna. Terapia z modulacją intensywności wiązki (IMRT), rozwój technik napromieniania wspomaganych obrazowaniem (IGRT). 34