Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

Podobne dokumenty
Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH

Katedra Inżynierii Materiałowej

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające

MA M + + A - K S, s M + + A - MA

Wyznaczanie parametrów równania Tafela w katodowym wydzielaniu metali na elektrodzie platynowej

Elektrochemia - szereg elektrochemiczny metali. Zadania

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,

Korozja kontaktowa depolaryzacja tlenowa

wykład 6 elektorochemia

Podstawy elektrochemii

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

Podstawowe pojęcia 1

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.

Korozja kontaktowa depolaryzacja wodorowa.

Ć W I C Z E N I E 5. Kinetyka cementacji metali

ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw.

TŻ Wykład 9-10 I 2018

Podstawy elektrochemii i korozji Ćwiczenie 5. Korozja. Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji.

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1

Schemat ogniwa:... Równanie reakcji:...

KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

10. OGNIWA GALWANICZNE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

10. OGNIWA GALWANICZNE

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.

( liczba oddanych elektronów)

Metody Badań Składu Chemicznego

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

ĆWICZENIE 2 KONDUKTOMETRIA

ELEKTROLIZA. Oznaczenie równoważnika elektrochemicznego miedzi oraz stałej Faradaya.

Elektroliza: polaryzacja elektrod, nadnapięcie Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ.

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

ELEKTROCHEMIA. Podstawy

Metody badań składu chemicznego

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie

I 2 + H 2 S 2 HI + S Wielkością charakteryzującą właściwości redoksowe jest potencjał redoksowy E dany wzorem Nernsta. red

Ć W I C Z E N I E 1. Kinetyka roztwarzania miedzi metalicznej w roztworach amoniakalnych

Reakcje utleniania i redukcji. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria nanotechnologia II rok 1

ĆWICZENIE 18 Elektroliza - +

Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji)

Laboratorium Ochrony przed Korozją. KOROZJA KONTAKTOWA Część I Ćw. 5: DEPOLARYZACJA WODOROWA

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY. PRACOWNIA MATERIAŁOZNAWSTWA ELEKTROTECHNICZNEGO KWNiAE

Problemy elektrochemii w inżynierii materiałowej

Wykład z Chemii Ogólnej i Nieorganicznej

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza

Laboratorium Ochrony przed Korozją. Ćw. 4: KOROZJA KONTAKTOWA - DEPOLARYZACJA WODOROWA

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Polarografia jest metodą elektroanalityczną, w której bada się zależność natężenia prądu płynącego przez badany roztwór w funkcji przyłożonego do

VII Podkarpacki Konkurs Chemiczny 2014/2015

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

A4.05 Instrukcja wykonania ćwiczenia

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

(1) Przewodnictwo roztworów elektrolitów

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

WYBRANE TECHNIKI ELEKTROANALITYCZNE

Warstwa podwójna, kondensatory i kinetyka procesów elektrodowych

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE

Miareczkowanie kulometryczne

Woltamperometria Cykliczna instrukcja do ćwiczenia mgr inż. Marta Kasprzyk

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

cyklicznej woltamperometrii

ĆWICZENIE: Wpływ przewodnictwa elektrycznego roztworu na promień działania protektora

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE

IV A. Reakcje utleniania i redukcji. Metale i niemetale

IV. Reakcje utleniania i redukcji. Metale i niemetale

Przetwarzanie energii: kondensatory

Ć W I C Z E N I E 9 GALWANICZNE POWŁOKI NIKLOWE

MODUŁ. Elektrochemia

ĆWICZENIE 10. Szereg napięciowy metali

POWŁOKI GALWANICZNE. Wprowadzenie

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

VI Podkarpacki Konkurs Chemiczny 2013/2014

Materiały elektrodowe

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Czy prąd przepływający przez ciecz zmienia jej własności chemiczne?

BIOTECHNOLOGIA. Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 2014/15

Ćwiczenie nr 43: HALOTRON

Reakcje utleniania i redukcji

Ć W I C Z E N I E 8. Wydajność prądowa w procesie elektrolizy siarczanu cynku

Transkrypt:

HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1) gdzie: Ox substancja utleniona Red substancja zredukowana, odpowiada określona wartość potencjału równowagowego. Potencjał ten, opisany równaniem Nernsta, zależy od aktywności reagentów oraz temperatury: x o RT aox Eo, Ox / Re d EOx / Re d ln (6.2) y zf a Re d gdzie: Eo, Ox / Re d potencjał równowagowy odpowiadający aktualnym warunkom równowagi reakcji (6.1) o EOx / Re d potencjał równowagowy standardowy (tzn. w warunkach, gdy aktywności wszystkich reagentów są równe 1) R stała gazowa T temperatura (w skali elvina) F stała Faradaya z liczba elektronów biorących udział w elementarnej reakcji elektrodowej a aktywność reagenta Sens fizyczny wartości potencjału równowagowego elektrody Red/Ox jest taki, że przy tym potencjale szybkość redukcji formy utlenionej (proces katodowy) jest taka sama jak szybkość utleniania formy zredukowanej (proces anodowy) ustala się stan równowagi dynamicznej: ia i i0 ; i o gęstość prądu wymiany. W skali makroskopowej na elektrodzie nie obserwuje się żadnych zmian; ilość substancji Red i Ox w układzie pozostaje bez zmian układ jest w stanie równowagi. W przypadku, gdy jeden z reagentów ( Red lub Ox) jest gazem, wówczas elektrodę nazywa się elektrodą gazową. Elektrody tego rodzaju realizowane są na powierzchni metalu, na której zachodzi reakcja elektrodowa (6.1). Najbardziej znaną elektrodą gazową jest elektroda wodorowa. Stanowi ją blaszka platynowa pokryta czernią platynową 1 zanurzona w roztworze zawierającym jony H + i omywana gazowym wodorem. Na powierzchni takiej elektrody ustala się równowaga: H 2 2H 2e (6.3) Równanie Nernsta (6.2) można wówczas zapisać w postaci uproszczonej. Przyjmując założenie, że współczynnik aktywności jonów H + w roztworze jest równy jedności 1 Czerń platynowa silnie rozdrobniona platyna, stosowana w celu rozwinięcia powierzchni elektrody.

HYDROMETALURGIA METALI NIEŻELAZNYCH 2 (aktywność jest równa stężeniu 2 ) oraz aktywność gazowego wodoru jest równa ciśnieniu gazu, potencjał równowagowy elektrody wodorowej można przedstawić równaniem: 2 o RT c H E E ln (6.4) o, H 2 / H H 2 / H F p 2 H 2 Potencjał standardowy elektrody wodorowej jest przyjęty umownie jako równy 0 (jest to tzw. normalna elektroda wodorowa NEW, dla której a H+ = 1 i p H2 = 1 atm w temperaturze 298 ), stąd: E o, H 2 / H 2,303RT F ph W przypadku włączenia elektrody w obwód prądowy (źródło prądu i elektroda pomocnicza), jej potencjał można zmieniać w szerokim zakresie, zaburzając równowagę reakcji (6.1). W tych warunkach elektroda ulega polaryzacji, a różnicę między potencjałem elektrody E i (przez którą płynie prąd o gęstości i) a potencjałem równowagowym E o nazywa się nadnapięciem η: Ei E o (6.6) Jeśli elektroda w badanym układzie jest anodą mówimy o nadnapięciu anodowym η A, jeśli katodą o nadnapięciu katodowym η. Reakcje elektrodowe są procesami wieloetapowymi, a sumaryczne reakcje elektrodowe (6.1) nie oddają rzeczywistego mechanizmu procesu. Proces elektrodowy składa się z kolejnych, następujących po sobie etapów, z których jeden jest najwolniejszy i stanowi główną przyczynę hamowania procesu elektrodowego (czyli polaryzacji elektrody). Jeśli etapem powolnym reakcji (6.1) jest: reakcja elektrodowa przebiegająca na granicy fazowej przewodnik elektronowyelektrolit (przejście ładunku przez granicę fazową) mówi się o nadnapięciu aktywacyjnym. W takim przypadku zależność nadnapięcia elektrody od gęstości prądu opisuje równanie Tafela: Ei Eo a blogi (6.7) W przypadku polaryzacji katody współczynniki w równaniu Tafela wynoszą: 2,3RT 2,3RT a logi0 oraz b (1 ) zf (1 ) zf gdzie: α współczynnik symetrii bariery energetycznej, który w większości przypadków przyjmuje się jako równy 0,5. transport jonu do granicy fazowej przez warstwę dyfuzyjną mówi się o nadnapięciu dyfuzyjnym. W tym przypadku istnieje następująca zależność nadnapięcia katodowego od gęstości prądu: 2,3RT i log 1 (6.8) zf igr gdzie: i gęstość prądu granicznego katodowej redukcji jonu (np. M z+, H + ). gr (6.5) Proces wydzielania wodoru z roztworów kwaśnych jest opisany sumaryczną reakcją (6.3). W rzeczywistości składa się on z następujących etapów pośrednich: 1. transport jonu H + z głębi roztworu do powierzchni elektrody na drodze konwekcji 2. transport jonu H + przez warstwę Nernsta do powierzchni elektrody na drodze dyfuzji 2 a = f c gdzie: f współczynnik aktywności; c stężenie

HYDROMETALURGIA METALI NIEŻELAZNYCH 3 3. dehydratacja jonu i rozładowanie kationu z utworzeniem atomu wodoru zaadsorbowanego na powierzchni elektrody: H + + e H ads (6.9) 4a. rekombinacja katalityczna (etap powolny) H ads + H ads H 2 (6.10) 4b. rekombinacja elektrochemiczna (etap wolny) H ads + H + + e H 2 (6.11) 5. wydzielanie wodoru w postaci pęcherzyków gazu (gdy ciśnienie wydzielającego się gazu osiągnie wartość ciśnienia zewnętrznego) Wartość potencjału, przy którym zachodzi wydzielanie wodoru zależy m.in. od rodzaju metalu i stanu powierzchni. Różnica między tym potencjałem a potencjałem równowagowym elektrody wodorowej (równanie (6.5)) n osi nazwę nadnapięcia wydzielania wodoru. Nadnapięcie wydzielania wodoru jest silnie związane z wartościami prądów wymiany elektrody na poszczególnych metalach nadnapięcie osiąga znaczne wartości przy małych prądach wymiany (Tabela 6.1). Tabela 6.1. Stałe w równaniu Tafela w odniesieniu do katodowej redukcji jonów H + na różnych metalach Są to: Metal Roztwór b, mv/dekada log i o, A/cm 2 η, mv (dla i = 10 1 A/cm 2 ) Ag 1 M HCl 1 M NaOH 130 120 3,70 6,50 900 Cu 0,1 M HCl 0,01 M NaOH 114 107 6,84 6,09 820 Fe 0,01 M HCl 0,1 M NaOH 118 120 6,29 6,06 820 Hg 0,1 M HCl 116 12 1 180 Pb 2 M H 2 SO 4 120 12,7 1 200 Pt 0,1 M H 2 SO 4 0,5 M NaOH 30 117 3,53 4,06 390 Zn 2 M H 2 SO 4 120 10,8 1 060 * Pt etap powolny: rekombinacja katalityczna: H ads + H ads H 2 Pozostałe metale etap powolny: rekombinacja elektrochemiczna H ads + H + + e H 2 Nadnapięcie wydzielania wodoru na metalach uzależnione jest od wielu czynników. gęstość prądu nadnapięcie wzrasta ze wzrostem gęstości prądu temperatura nadnapięcie maleje ze wzrostem temperatury, a przy wyższych temperaturach może wynosić 0 (np. η H2/Ni 0V w 90 o C). ciśnienie w warunkach podwyższonego ciśnienia nadnapięcie wydzielania wodoru praktycznie nie ulega zmianom, natomiast w warunkach niskiego ciśnienia zmienia się drastycznie (np. w przypadku katod z Cu, Ni, Hg). metal podłoża silna zmiana w zależności od rodzaju metalu (Tabela 6.1). jakość powierzchni podłoża nadnapięcie wydzielania wodoru na gładkich, błyszczących, wypolerowanych powierzchniach metalicznych jest wyższe niż na podłożu chropowatym. ph ze wzrostem ph nadnapięcie wydzielania wodoru w roztworach kwaśnych początkowo wzrasta, natomiast w roztworach alkalicznych maleje.

HYDROMETALURGIA METALI NIEŻELAZNYCH 4 Pomiar zależności potencjału elektrody od gęstości prądu stanowi podstawę konstrukcji tzw. krzywych polaryzacyjnych. Przedstawia się je na wykresie w postaci zależności E = f(i) lub i = f(e). rzywe polaryzacyjne pozwalają określić etap powolny procesu. Dane doświadczalne uzyskuje się w pomiarach galwanostatycznych (zmieniając skokowo natężenie prądu mierzy się potencjał elektrody) lub potencjostatycznych (zmieniając potencjał elektrody mierzy się natężenie prądu). Zastosowanie potencjostatu umożliwia zmiany potencjału elektrody lub natężenia prądu w zaprogramowany sposób, tzn. w określonych, krótkich przedziałach czasowych zmienia się potencjał lub natężenie prądu o określoną wartość rejestrując równocześnie, odpowiednio: natężenie prądu lub potencjał. Uzyskane w ten sposób krzywe polaryzacyjne noszą nazwę, odpowiednio: potencjokinetycznych oraz galwanokinetycznych. MATERIAŁY I APARATURA płytki: Pt, Cu, Sn, Ni, Fe, Zn, Pb nasycona elektroda kalomelowa NE klucz elektrolityczny z kapilarą Ługgina klucz elektrolityczny elektrolizer szklany z pokrywą 3 zlewki 150 cm 3 mieszadło magnetyczne zasilacz woltomierz amperomierz 0,5 M H 2 SO 4 1 M H 2 SO 4 Cl roztw. nasyc. 96 % C 2 H 5 OH WYONANIE ĆWICZENIA 1. Płytki metalowe należy wyczyścić papierem ściernym, przemyć wodą i alkoholem, wysuszyć i zaizolować jedną stronę lakierem. 2. Zestawić układ do pomiaru potencjału elektrod według schematu przedstawionego na rys.6.1. katoda anoda Pb NE (katoda) k 2 k 1 b a a Rys. 6.1. Schemat układu do pomiaru potencjału elektrod a roztwór badany, b nasycony roztwór Cl k 1 klucz elektrolityczny z kapilarą Ługgina, napełniony roztworem "a" k 2 klucz elektrolityczny napełniony roztworem "b"

HYDROMETALURGIA METALI NIEŻELAZNYCH 5 Tak przygotowany układ elektrochemiczny należy włączyć w obwód prądowy, którego schemat przedstawiono na rys. 6.2. Z + II A V E Rys. 6.2. Schemat połączeń elektrod do układu prądowego Z zasilacz stabilizowany prądu stałego, A amperomierz, V woltomierz cyfrowy 3. Należy dokonać pomiaru potencjału elektrody badanej względem nasyconej elektrody kalomelowej NE a) w układzie, w którym nie płynie prąd z zewnętrznego źródła b) w układzie włączonym w układ prądowy elektrolizy Za pomocą zasilacza prądu stałego należy ustawiać kolejno wartości natężenia prądu (w zakresie 01,5 A, co 0,1A). Po każdorazowej zmianie natężenia prądu należy odczekać minutę i odczytać wartości potencjału elektrod względem NE. Wyniki pomiarów należy zanotować w tabeli 6.2. Pomiary należy wykonać dla różnych elektrod metalicznych w 0,5M lub 1 M roztworze H 2 SO 4 mieszanym i bez stosowania mieszania elektrolitu. Tabela 6.2 Wyniki pomiarów polaryzacji katodowej Natężenie prądu I, A Gęstość prądu katodowego i, A dm 2 Logarytm gęstości prądu katodowgo log i ( NE ) Różnica potencjałów: elektroda badana elektroda odniesienia Potencjał elektrody wzgl. NEW NE E, mv E, mv Metal / roztwór H 2 SO 4 / Pb Polaryzacja elektrody = E E i 0, mv Powierzchnia katody : S =...cm 2 Temperatura:... o C mieszanie...

HYDROMETALURGIA METALI NIEŻELAZNYCH 6 OPRACOWANIE WYNIÓW 1. Wartości potencjału elektrody zmierzone względem NE należy przeliczyć względem normalnej elektrody wodorowej NEW. Potencjał NE względem NEW wynosi: o E 241,5 0,76( t 25) mv (6.12) o, NE gdzie: t o temperatura pomiaru w o C. 2. Wyniki uzyskane w pomiarach polaryzacji elektrod należy przedstawić na wykresach w układzie współrzędnych: i f ( E ) oraz f (logi). Wyznaczyć graficznie współczynniki b w równaniu Tafela. 3. Na podstawie uzyskanych zależności należy omówić wpływ: a) rodzaju podłoża b) gęstości prądu c) ph d) mieszania na wielkość nadnapięcia wydzielania wodoru.