Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY



Podobne dokumenty
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

Tematy: zadania tematyczne

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

PYTANIA TEORETYCZNE Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/ ZAKRES PODSTAWOWY

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Próbny egzamin maturalny z matematyki Poziom rozszerzony

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

I. Funkcja kwadratowa

I. Funkcja kwadratowa

MATURA PRÓBNA - odpowiedzi

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

Przykładowe rozwiązania

I Liceum Ogólnokształcące w Warszawie

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Wymagania edukacyjne z matematyki

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Rozkład materiału nauczania

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

1 wyznacza współrzędne punktów przecięcia prostej danej

PRACA KONTROLNA nr 1

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

ARKUSZ X

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

EGZAMIN MATURALNY Z MATEMATYKI

Mini tablice matematyczne. Figury geometryczne

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony

Liczby i działania klasa III

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY

Wymagania edukacyjne z matematyki do klasy ósmej rok szkolny 2018/2019

Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA III GIMNAZJUM

Matematyka rozszerzona matura 2017

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

NaCoBeZU z matematyki dla klasy 8

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Rozwiązaniem nierówności A. B. C. 4 D. 2

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Rozwiązania listopad 2016 Zadania zamknięte = = = 2. = =1 (D) Zad 3. Październik x; listopad 1,1x; grudzień 0,6x. (D) Zad 5. #./ 0'!

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

MATURA probna listopad 2010

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

MATeMAtyka zakres podstawowy

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

PRÓBNY EGZAMIN MATURALNY

Wymagania edukacyjne z matematyki dla klasy VIII. rok szkolny 2018/2019

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE

Wymagania edukacyjne zakres podstawowy klasa 3A

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Transkrypt:

Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej. Obliczamy o ile liczba jest odległa od krańców przedziału 7 i. / 7 Stąd zbiór wszystkich x, które są odległe od o 7 tworzący przedział domknięty jest opisany nierównością 7 Sposób II Stosujemy sposób graficzny Rysujemy oś liczbową obierając jednostkę np 0,75 cm, aby było 0,5 cm na osi, łatwo wtedy zaznaczyć liczby, sprawdzić czy środkiem odcinka łączącego zaznaczone punkty jest oraz znaleźć odległość od do Rys (oś liczbowa) Odległość jest równa 7. 7 Odp. 7 Zadanie (pkt) 5 5 9 5 5 5 9 5 6 Odp. 5 6 5 6 5 5

Zadanie (pkt) Obliczamy stawiając sobie pytanie: do jakiej potęgi podnieść podstawę logarytmu, aby otrzymać? Stąd, gdyż Odp. Zadanie (pkt) Korzystamy z definicji logarytmu Obliczamy ( ) Odp. Zadanie 5 (pkt) Rozwiązujemy równanie ( 0,8) 0

0 0 0 0,8 0 0,8 Porządkujemy rosnąco uzyskane rozwiązania równania:, 0, 0,8 Odp., 0, 0,8 Zadanie 6 (pkt) Proste są równoległe, gdy oraz są prostopadłe, gdy Prosta ma współczynnik kierunkowy, to. prosta do niej prostopadła musi mieć współczynnik kierunkowy,. prosta do niej równoległa musi mieć współczynnik kierunkowy Odp. Z podanych prostych tylko : ł i : 8 ó ł Zadanie 7 (pkt) Plecak kosztował o 59, zł więcej niż wszystkie zakupione książki, gdyż 57,0 98 59,. Ile procent liczba 59, stanowi liczby 98? 59, 98 00 0 Odp. 0% Zadanie 8 (pkt) Sposób I ( ) 0,5,, 0,5

Obliczamy wyróżnik trójmianu ( 0,5) 5 Korzystamy ze wzorów na współrzędne wierzchołka paraboli Sposób II ( ę ) 5 8 ( ę ) ( ) 0,5,, 0,5 5 ( )=. / odcięta ( ) ( ) 0,5 rzędna Odp. Zadanie 9 (pkt) ( ) ( ) ( ) 0 ( ) 8 Odp. 8 Zadanie 0 (pkt) Sposób I Obliczamy pierwiastki równania 0 0 : 0 0

Pierwiastkami równania są liczby,, a ich iloczyn Sposób II 0 Zastosujemy wzór na iloczyn pierwiastków równania kwadratowego (wzór, ) Stąd Odp. Zadanie (pkt) W ciągu 0,, kolejne wyrazy są równe 0 Odp Ciąg,, jest ciągiem stałym Zadanie (pkt) Sposób I Ponieważ, to podstawiając do drugiego równania otrzymujemy ( ) :, bo 0 Stąd ciąg jest postaci:,, Sposób II

Skoro, to ciąg,, jest ciągiem geometrycznym Wobec warunku iloraz ciągu. A więc trzeci wyraz Odp.,, Zadanie (pkt) Sposób I Ze wzoru na ogólny wyraz ciągu geometrycznego dzielimy równania stronami ( 0 0, bo 0) Sposób II Z własności ciągu geometrycznego, żeby otrzymać wyraz piąty trzeba drugi pomnożyć trzykrotnie przez iloraz ciągu Odp. Zadanie (pkt)

Rys (trójkąt) Z twierdzenia Pitagorasa 5 5 5 długość boku trójkąta jest liczbą dodatnią, drugie rozwiązanie odrzucamy Z definicji funkcji trygonometrycznych 5 5 5 5 5 Odp. Zadanie 5 (pkt) Sposób I 5 Z definicji sinusa kąta ostrego, a więc kąta trójkąta prostokątnego, możemy narysować rysunek, w którym przyprostokątna leżąca naprzeciw kąta α ma długość, a przeciwprostokątna 5 Rys (trójkąt) Z twierdzenia Pitagorasa lub trójki pitagorejskiej otrzymujemy, gdyż 5 5 9 Sposób II

Korzystamy z jedynki trygonometrycznej 5 lub Kąt α jest ostry, więc 0, stąd. Odp. Zadanie 6 (pkt) Rys. (z walcem), 0,,,, Odp., Zadanie 7 (pkt) Sposób I Rys 5 (z okręgiem) Kąty B i C są ostre, a trójkąt prostokątny, więc 90 90 0 50 Kąt prosty wpisany w okrąg jest oparty na półokręgu, więc przeciwprostokątna trójkąta jest średnicą okręgu, a jego środek O leży w połowie przeciwprostokątnej jako kąty środkowy i wpisany oparte na tym samym łuku 50, stąd 50 00

Sposób II Kąty B i C są ostre, a trójkąt okręgu, więc prostokątny i jego przeciwprostokątna jest średnicą Trójkąt jest równoramienny, 0. Korzystając z twierdzenia o sumie kątów w trójkącie uzyskujemy 80 0 0 00 Odp. 00 Zadanie 8 (pkt) Oznaczenie długość ramienia trapezu Z twierdzenia Talesa lub z podobieństwa trójkątów wynika Korzystając z prawa proporcji mamy 8 Odp. 8 8 Zadanie 9 (pkt) Współrzędne punktu spełniają równanie okręgu Podstawiając do równania okręgu otrzymujemy ( ) ( ) Środek okręgu (, ) Sposób I Stosując wzór skróconego mnożenia

0 6 sprzeczne Stąd (, ) Sposób II ( ) ( ) ( ) Pierwiastkujemy stronami Współrzędne punktu są dodatnie to rozwiązanie odrzucamy i (, ) Odp. (, ) Zadanie 0 (pkt) Środek przekątnej pokrywa się z środkiem przekątnej, co wynika z własności kwadratu. Korzystamy ze wzoru na współrzędne środka odcinka WZÓR Środek odcinka ma współrzędne 5 8 7

Odp. (7, ) Zadanie (pkt) Rys 6 ( stożki sklejone podstawami) Muszą zachodzić warunki:. Punkty,, są współliniowe, gdyż leżą na osi symetrii bryły. przekrój osiowy stożka jest trójkątem równoramiennym. figura ma być rombem Oznaczenie Z trójkąta 60 80 60 Trójkąt jest równoboczny, czyli. Stąd. Zatem Odp Stożki muszą mieć przekroje osiowe będące trójkątami równobocznymi przystającymi Zadanie (pkt) Oznaczenie środki danych okręgów, (, 6) Korzystamy ze wzoru na długość odcinka

(6 ( )) ( ) 00 6 9 Odp. 9 Zadanie (pkt) Oznaczenie długość krawędzi podstawy ostrosłupa Pole powierzchni bocznej ostrosłupa 6 8 Pole ściany bocznej ostrosłupa 6 6 6 W podstawie ostrosłupa jest trójkąt równoboczny o boku 6 Pole podstawy jest równe 6 9, - Pole powierzchni całkowitej jest równe 9 8 9( ) Odp. 9( ) Zadanie (pkt) Kolejne liczby naturalne to takie, które różnią się o Dany zbiór liczb naturalnych jest więc postaci *7, 8, 9,, 5,6,7+

Wszystkich liczb w tym zbiorze jest 7 6, w tym 5 parzystych i 6 nieparzystych. Losujemy dwie liczby i dodajemy je, a więc uporządkowanie tych liczb nie jest istotne jak i nie możemy uzyskać dwóch takich samych liczb Skoro suma liczb ma być liczbą nieparzystą, więc jedna z nich musi być parzystą, a druga nieparzystą Liczbę nieparzystą możemy wybrać 6 sposobów a parzysta na 5. Wszystkich par jest więc Odp. 0 Zadanie 5(pkt) ł, 5 wylosowanie kuli białej wylosowanie kuli czarnej 6 5 0 zdarzenie polegające na wylosowaniu kul białych w losowaniu bez zwrotu Stosujemy metodę drzewa B C B C B C Rys. 7 Idąc wzdłuż czerwonej gałęzi otrzymamy dwie kule białe Korzystając z reguły iloczynu mamy ( ) 9 Odp. 8 6

ZADANIA OTWARTE Zadanie 6 (pkt) Rys. 8 Czworokąt wpisany jest w prostokąt tak jak na podanym rysunku Łącząc środki przeciwległych boków prostokąta dzielimy go na przystające prostokąty, których przekątne są równe Stad otrzymujemy, że czworokąt jest rombem. Oznaczenia długość dłuższej przekątnej czworokąta 8 długość krótszej przekątnej pole rombu WZÓR długość promienia okregu wpisanego w romb Korzystamy ze wzoru na pole rombu 8 6 Z trójkąta Z trójki pitagorejskiej 5 ( 5 ) Pole rombu jest sumą pól trójkątów przystających o podstawach równych wysokości r i

0, Odp., Zadanie 7 (pkt) Rozwiązujemy nierówność 0 Sposób I 6 ( ) 6 8 8 8 8 8 Szkicujemy parabolę Rys.9 ( ) Sposób II 0 ( ) Pierwiastkujemy stronami i z monotoniczności funkcji ( ) Z własności wartości bezwzględnej: Dla 0

Funkcja przyjmuje wartości dodatnie dla ( ) Odp.. / ( ) Zadanie 8(pkt) Oznaczenia długość podstawy trójkąta i jednego z boków prostokąta długość wysokości trójkąta opuszczonej na podstawę długość drugiebo boku prostokąta Z treści zadania wynika, że : ( ),75,5,5,5,5,5,5,5 Odp.,5, Zadanie 9 (pkt) Rys 0. Oznaczenie punkt przecięcia odcinków

Punkty należa do obu okręgów, więc odcinek jest ich wspólną cięciwą jako długości promieni okręgu o środku jako długości promieni okręgu o środku Trójkąty sa równoramienne o wspólnej podstawie Z punktów prowadzimy wysokości trójkątów, które dzielą podstawę na dwie równe części we wspólnym punkcie Punkt ten jest więc współliniowy z środkami okręgów Zatem oraz odcinek jest prostopadły do, gdyż prowadzone wysokości sa prostopadłe do Zdanie. jest prawdziwe.. Trójkąty są przystające, gdyż mają jeden wspólny bok i dwa pozostałe parami równe jako promienie okręgów Ponieważ okręgi są dowolne, więc rozpatrując dwa okręgi o takim samym promieniu przecinające się tak, że jeden przechodzi przez środek drugiego zauważamy, że rozpatrywane trójkąty są równoboczne Rys. Trójkąty nie muszą być prostokątne Zdanie. nie jest prawdziwe.. Zdanie. nie jest prawdziwe, gdyż rozpatrując szczególny przypadek okręgów o takim samym promieniu, z których jeden przechodzi przez środek drugiego otrzymujemy co oznacza, że, gdzie jest wysokością trójkąta równobocznego o boku, Długość odcinka nie jest równa średniej arytmetycznej promieni okręgów.

Odcinek jest prostopadły do odcinka, co udowodniliśmy przy uzasadnianiu zdania. Natomiast nie zawsze dzieli go w stosunku ( ), gdyż w szczególnym przypadku rozpatrywanym wyżej Zdanie. nie jest prawdziwe. Odp. Zdanie. Zadanie 0(pkt) Aby ustalić punkty przecięcia krzywych trzeba rozwiązać układ ( ) ( ) Rozwiązujemy równanie otrzymane z przyrównania prawych stron równań układu ( ) ( )( ) ( ) ( ) 0 0 0 0 6 6 6 lub 0 Z drugiego równania układu obliczymy 6

6 Wykres wielomianu przecina prostą w trzech punktach Odp. ( 6, 6),. 6, 6/, (, 0) Zadanie (pkt) Oznaczenia strzelec trafił do celu strzelec nie trafił do celu strzelec trafił co najmniej razy Stosujemy metodę drzewa Rys. Co najmniej dwa trafienia oznacza trafienia lub. Na drzewie zaznaczamy drogi z dokładnie dwoma trafienia i z trzema Na każdej zaznaczonej gałęzi drzewa stosujemy regułę mnożenia, a do obliczenia prawdopodobieństwa regułę dodawania ( ) ( ) 7 9 6 5 6 7 Odp.

Zadanie (pkt) Oznaczenia kapitał początkowy 000 ł oprocentowanie roczne oprocentowanie miesięczne liczba okresów kapitalizacji (od stycznia do listopada) 0 Stosujemy wzór na procent składany ( 00 ) 000 (,0) 000,06 6,80, ł- Na koncie Michała będzie kwota 6,80 ł Zysk na lokacie wynosi 6,80zł i pokryje brakująca kwotę 00zł na zakup laptopa Przedstawiamy zysk w procentach w stosunku do początkowej kwoty 6,80 000 00 0,56 Kwota na koncie Michała wzrosła o 0,56 Odp. Tak, o 0,56%. Zadanie (pkt) Skoro, to dane są ciągi:,, geometryczny i,, arytmetyczny.

Z własności ciągów arytmetycznego i geometrycznego. / 0 0 0 lub 0 jest sprzeczne, gdyż ciąg 0, 0, nie jest ciągiem geometrycznym 0 Stąd,, Odp.,,, Zadanie (pkt) Oznaczenia objętość sześcianu długość krawędzi sześcianu Rys. a) Powstała bryła jest ostrosłupem o podstawie będącej trójkątem równoramiennym, gdyż jako przeciwprostokątne przystających trójkątów prostokątnych

5 5 Wysokość spełnia warunek Wysokością ostrosłupa jest odcinek,, prostopadły do płaszczyzny podstawy sześcianu, gdyż łączy środki przeciwległych boków kwadratu Wykażemy, że Odcinek jako prostopadły do podstawy spełnia warunki i oraz, więc trójkąty są prostokątne i przystające Stąd i trójkąt ó. Obliczamy wysokość trójkąta Z trójkąta 5, - Obliczamy pole powierzchni całkowitej ostrosłupa ( 5)

b) Kąt nachylenia ściany do płaszczyzny podstawy sześcianu jest kątem w trójkącie Zatem trójkąt jest równoramienny i prostokątny 5 c) Obliczamy objętość bryły 6, - 6 Odp. ) 5 ) 5 ) 6